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ABSTRACT

Recent simulations of multispectral sensors are based on
a simple Gaussian model, which includes filters transmittance
and substrate absorption. In this paper we want to make the
distinction between these two layers. We discuss the balance
of energy by channel in multispectral solid state sensors and
propose an updated simple Gaussian model to simulate mul-
tispectral sensors. Results are based on simulation of typical
sensor configurations.

Index Terms— Spectral and color filter arrays, light sen-
sor, transmittance filters, energy balance.

1. INTRODUCTION

In recent works on multispectral acquisition, energy bal-
ance of the sensor is not taken into account clearly into the
model. Most simulations consider filters with a Gaussian
shape [20, 18, 17] leads to no distinction between the inter-
ference filters and the substrate. Filters can be metallic filters
[16, 5, 19, 11, 2, 21] or nano structure filters [14, 6, 9], and
the substrate is often silicon or doped silicones [7][8], germa-
nium, AsGa, indium, etc. We propose to study how different
spectral configurations would impact the quality of acquisi-
tion of a sensor. We focus typically on solid state sensors
based on CFA (Color Filter Array) [15, 1] technology, such as
Bayer configuration [4] or SFA (Spectral Filters Array) tech-
nology [13, 12, 20], since there is no real mean of having a
different acquisition time by channel on such sensors. We
propose an extended Gaussian model of filters, which guar-
antee the energy balance of the sensor by optimizing the stan-
dard deviation or the amplitude of the filter in addition to a
given substrate and a typical, standard or neutral illumination.

Let us recall that the energy E is a function of the number
of wave, i.e. function of the wavelength:

Eph = hν =
hc

λ
(1)

where h is the Plank constant (6.626 ∗ 1034J.s), c is the
speed of light, and λ is the wavelength. In this paper λ is
considered to be between 300 and 1100 nm.

If we replace the constants by their value, the photon en-
ergy is expressed in electron-volts (1eV = 1.602.10−19J) and
if the wavelength is expressed in nanometers, we have:

Eph[eV ] =
1240

λ[nm]
(2)

Thus, low wavelengths contain more energy than higher
ones. The definition of a multispectral sensor should carefully
take this fact into account.

Indeed, one channel might be over-exposed (saturated),
while another might be under-exposed (noise level). Thus
it appears that some balancing shall be performed in order
to optimize the shape of the transmittance filters. While the
number of filter increases, and their bandwidth decreases, this
becomes a critical issue.

We recall the usual model of camera acquisition and add
a term to consider each wavelength energy. From this model,
we propose a constraint that should guarantee the energy bal-
ance of the senor, and a simple integration model for future
simulations. This is illustrated with results from simulation
of typical sensor configurations.

2. ENERGY BALANCING

2.1. Model

Let us consider L(λ) the radiance of the scene, result-
ing of the convolution of the illumination I(λ) and the ob-
ject reflectance R(λ), the transmittance of a filter T (λ) and
the sensitivity of the substrate to energy s(λ); z(k) is the
given value of the sensor for L(λ) and a channel k. Usually,
k ∈ {R, V,B} for a CFA configuration, k ∈ {F1, ..., Fn} for
an SFA multispectral configuration with N channels.

Considering a typical camera model [3], substrate, energy
and filters are mixed up in G(k)(λ):

ρ(k) = F (k)(z(k)) =

∫
Λ

L(λ)G(k)(λ)dλ (3)

where F (k) is a linearization function, and ρ(k) the actual
linear response of the camera. F (k) can be typically a gamma
correction and includes the camera offset.



If we wish to include the energy of every wavelength
within this equation, we simply need to weight the quantity
of equation 3 by the energy estimation:

ρ(k) = hc

∫
Λ

L(λ)T (k)(λ)s(k)(λ)
dλ

λ
(4)

In order to simplify the equation, and considering that the
absorption of silicon as given as curves includes the energy in
the following of this paper, we consider:

S(λ) =
hc

λ
s(λ) (5)

Thus, Equation 4 becomes:

ρ(k) =

∫
Λ

L(λ)T (k)(λ)S(k)(λ)dλ (6)

If the camera contains N different channels k (k ∈
[1...N ], we have energy balance when and only when,

∀λ ∈ [300, 1100]
∀k, k ∈ N,hc

∫
Λ
I(λ)RW (λ)T (λ)s(λ)dλλ = A

(7)

where Fk is the spectral transmittance of channel k, A is con-
stant ∀ RW (λ). RW (λ) is a flat reflectance object.

In a more compact notations, for a white1 radiance
LW (λ), we have:

∀k, k ∈ [1...N ],

∫
Λ

LW (λ)T (k)(λ)S(λ)dλ = A (8)

In the following, we use this model to evaluate different
sensor configurations and optimize the transmittance k(λ) of
the filters.

2.2. Simulations

In this section, we use the model above to illustrate the
importance of filters.

2.2.1. Discrete model definition

We will consider the reflectance R(λ) of the scene as per-
fectly uniform through wavelengths (RW (λ)). In our prelim-
inary results we consider I(λ) as a flat illumination. Thus,
L(λ) is a flat radiance in the following, i.e. a vector of one
that can be removed from the discrete representation of the
above model.

With these assumptions, a discrete version of Equation 3
becomes:

1White radiance means here a given illumination and a flat reflectance
object. This implies basically that the camera would be naturally white bal-
anced for this given illumination

ρ(k) = T.S′ (9)

where . represents the inner product between vector T and
the transpose of S. T is a vector containing the transmittance
properties of each filter. S is a vector containing the absorp-
tion of silicon. Then, our filters are optimized when ρ(k) = A
for each k. A is a given value, which might depends on ac-
quisition time, intensity of lighting, etc.

2.2.2. Consideration on Silicon

This simulation demonstrates the importance of energy bal-
ance in the sensor.

For this simulation, we consider the case of a silicon
substrate. A similar process can be used for any substrate
for which absorption by wavelength is known. Photons with
an energy bellow 1.1eV will go through silicon without
interaction[7]. This corresponds, by relation (2), to a theo-
retical wavelength larger than 1125nm. The structure of the
sensor will, in fact, cut this limit sooner than the theoretical
limit. [7].

This simulation does not include the optical effects. In-
deed, the layer of silicon can act as a Fabry-Pérot interferometer[10],
i.e. , which modifies the absorption properties of the sub-
strate.

Without the optical effects, we can use the absorption
properties of silicon as defined in Fig.1, based on data from
the technical report of Darmont [7].

Fig. 1. Silicon efficiency in function of wavelength. This
curve is based on Darmont’s technical report [7] and ignores
optical effects. We observe that the silicon efficiency is not
linear.

To start with, we consider the case of a camera based on
similar Gaussian filters. Three cases are investigated: 3 filters,
5 filters, and 10 filters. Ten filters are represented with the
silicon efficiency in background on Figure 2. The results of



the convolution, following the discrete model are shown in
Table 1. Results are normalized by dividing the value by the
number of samples.

These results show that the difference of values might be
ten times larger from one filter to another with 10 different fil-
ters. Differences are less important in a 3 filters configuration
(up to 2).

Fig. 2. Ten generated filters in function of wavelength with
silicon efficiency in background. The light is not taken into
account.

3. FILTER OPTIMIZATION

We use this model to derive an optimization process that al-
lows building a filter set, while taking into account some pa-
rameters, such as the substrate absorption and the spectral
properties of the illumination. Given an arbitrary value A,
we propose to optimize the filters by modifying the proper-
ties of the Gaussian for each channel, following Equation 8,
in order to have energy balance. Given the equation of the
normal Gaussian law:

f(x) = B
1

σ
√
2π

exp−1

2
(
x− µ
σ

)2 (10)

we identify µ as the bandpass peak of the filter at one wave-
length, σ as indicator of the width of the filter and B, a real
constant value below 1 as the amplitude of the filter. We pro-
pose to optimize the parameters σ and B in order to reach the
energy balance in some given conditions. In the following,
we optimize each parameter independently.

3.1. Energy balancing by changing the amplitude

In order to calculate the value of B for which the filters are
balanced, we used a rescale algorithm. We first calculate the
convolution with the uncorrected filters. Then, we consider

the greatest value of the convolution. We normalize the val-
ues by dividing the greatest value by the convolution of each
filter. We apply a second normalization to obtain some values
between 0 and 1, which correspond to B1, B2... BN . Then,
we multiply each filter by its scaling factor B1, B2... BN .

We implemented our algorithm to change the magnitude
B of the Gaussian and obtain energetically balanced filters
(Figure 3, Figure 4 and Figure 5). The value of σ is constant
during the process and is equal to 57.1 for three filters, 36.36
for five filters and 19.04 for ten filters.

Fig. 3. Three amplitude corrected filters in function of wave-
length with silicon efficiency in background. We observe that
the amplitude of each filter depends on the response of silicon

Fig. 4. Five amplitude corrected filters in function of wave-
length with silicon efficiency in background. The amplitude
of each filter depends on the response of silicon.

These figures include the fact that the energy of the low
wavelength is higher than the high wavelength, and the silicon



Filter F 10
1 F 10

2 F 10
3 F 10

4 F 10
5 F 10

6 F 10
7 F 10

8 F 10
9 F 10

10

ρ 43,45 187,47 326,12 407,3 481,57 549,8 559,66 531,67 388,57 87,63
Filter F 5

1 F 5
2 F 5

3 F 5
4 F 5

5

ρ 259,04 713,39 985,37 1049,19 550,88
Filter F 3

1 F 3
2 F 3

3

ρ 759,05 1535,58 1323,35

Table 1. Values of the convolution ρ depending on the filter for 3, 5, and 10 filters.

Fig. 5. Ten amplitude corrected filters in function of wave-
length with silicon efficiency in background. In that case the
lowest amplitude of most of the corrected filters is really low.

response is not uniform.
We can observe that the difference between filters in-

creases as the bandwidth of the filters become narrow.
In figure 5 we can see that we severely reduced the trans-

mittance efficiency of most of the filters. This appears to be an
inefficient situation for practical implementation, considering
the noise that might appear.

3.2. Energy balancing by changing the standard devia-
tion

The aim is to obtain the same convolution A for N filters. In
the presented results, we use A = A(1).....A(N)

N

We calculate the convolution depending on the σ parame-
ter of the Gaussian: f(σ) = Â

The result must be equal to A. In order to obtain the value
of σ for which the filter has the value A, we search for the
minimum of the function f ′(σ) = |A− Â|

The value of σ for which the convolution is equal to A
allows us to generate the balanced Gaussian filters. The ob-
tained energetically ballanced filters are presented in Figure
6, Figure 7 and Figure 8.

Fig. 6. Three bandwidth corrected filters in function of wave-
length with silicon efficiency in background. The bandwidth
is larger when the silicon efficiency is lower.

Fig. 7. Five bandwidth corrected filters in function of wave-
length with silicon efficiency in background.

4. A CONCRETE CASE: D65 ILLUMINANT AND
VISIBLE SPECTRAL RESPONSE ON A FIVE

FILTERS SFA CAMERA

We consider now a practical case with a camera consisting
of an SFA of five filters distributed over the visible spec-



Fig. 8. Ten bandwidth corrected filters in function of wave-
length with silicon efficiency in background. We observe
some gaps and overlapping, which must be corrected.

tral range, shooting a scene illuminated by a D65 illuminant.
Equation 8 becomes Equation 11 in discrete terms.∑

LD65.T.S (11)

We consider a range of [300, 780]nm.

Fig. 9. Spectral response of the silicon (plain gray line), nor-
malized illuminant D65 (dashed gray line) with 5 filters opti-
mized in amplitude.

The optimization shows that while optimizing the ampli-
tude of the filter, we have an important reduction of energy.
Indeed, 90% of the energy should be filtered to guarantee the
balance. This result is illustrated in Figure 9 and is similar
to the results shown in Figure 5. Similar results are observed
when we perform the optimization on sigma, which suggests

again that we need to add constraints to this optimization to
reach a practical sensor configuration.

The optimization shows that while we optimize the ampli-
tude of the filter, we have an important reduction of energy,
around 10%. This is similar to the results shown in Figure 5.
Similar results are observed when we perform the optimiza-
tion on sigma. This suggest that we need to add constraints to
this optimization.

5. CONCLUSION

We proposed to optimize the energy of each filters in an SFA
camera configuration. Results show that the loss of energy
induced by such a process is critical and is not acceptable
in most sensor configurations. Moreover, when we optimized
the band pass of the filter (sigma parameter), we observe some
gaps in the spectra or too much overlapping (Figure 8).

This suggests that further works would focus on combin-
ing amplitude and bandwidth into a single optimization func-
tion f(B, σ) under constraints. The set of constraints might
include:

1. There should be no gap in the spectral domain, other-
wise some spectral information will be lost for some
wavelengths.

2. There should be no full overlapping of a filter over an-
other.

3. Peak attenuation should not be so large. A good com-
promise must be found.

4. A value should be optimized regarding to these parame-
ters. We arbitrarily used A = A(1)......(N)=N but a value
that fits better the previous parameters could be found.

Energy balance is one of the problems to address for this
technology, but other problems need to be solved by further
works, including blurr from chromatic aberration.
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