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Abstract
Spatial uniformity is one of the most important image qual-

ity attributes in visual experience of displays. In conventional
researches, spatial uniformity was mostly measured with a ra-
diometer and its quality was assessed with non-reference image
quality metrics. Cameras are cheaper than radiometers and they
can provide accurate relative measurements if they are carefully
calibrated. In this paper, we propose and implement a work-�ow
to use a calibrated camera as a relative acquisition device of in-
tensity to measure the spatial uniformity of projection displays.
The camera intensity transfer functions for every projected pix-
els are recovered, so we can produce multiple levels of linearized
non-uniformity on the screen in the purpose of image quality
assessment. The experiment results suggest that our work-�ow
works well. Besides, none of the frequently referred uniformity
metrics correlate well with the perceptual results for all types of
test images. The spatial non-uniformity is largely masked by the
high frequency components in the displayed image content, and
we should simulate the human visual system to ignore the non-
uniformity that cannot be discriminated by human observers. The
simulation can be implemented using models based on contrast
sensitivity functions, contrast masking, etc.

Introduction
In the past decade, tremendous growth in the use of digital

media implies that our daily life and work have been greatly im-
pacted by the rapid advancement of display technologies. Hence,
the image quality assessment of displays become an essential
topic for both scienti�c research and industrial communities. Pro-
jection displays have advantages like high resolution, portability
and �exibility. For example, multiple projectors can be tiled up to
form a large perceptual photometric seamless image [1]. It is cost
effective for users to visualize information in a very high resolu-
tion without issuing a customized manufacturing demand.

In general, the image quality of displays can be character-
ized by groups of image quality attributes. One group of them in-
cludes physical screen dimension, display resolution, refreshing
rate, viewing distance, and viewing angle etc. These attributes are
associated with a speci�c display and its viewing condition. They
indeed have impacts on the perceptual image quality, but in most
cases they are assumed to be constants within one working cycle
of image quality assessment. The rest of the attributes include,
but are not limited to, brightness, contrast, color gamut, sharp-
ness and artifacts (including noises). Among these attributes, the
spatial uniformity can be of a major importance for projection
displays [2, 3]. Researchers tried to achieve objective spatial uni-
formity with mathematical modeling, but soon they realized that
some restraints can be relaxed due to the limitation of perception

of Human Visual System (HVS) [1]. In recent studies [4, 5, 6],
radiometers were used as absolute acquisition devices to measure
the luminance and chrominance of projection displays. Measur-
ing with radiometers is time consuming. The devices are expen-
sive and they are likely to be unavailable in real practice. Digital
still cameras have been used to record projection pixels including
its background and surrounding on the displays [7, 8, 9]. Cameras
have the advantage that they can be placed at different locations
in order to achieve a location- and view-dependent image qual-
ity assessment, and the acquisition process are much accelerated.
However, cameras offer relative sensor responses upon the incom-
ing lights, so they need to be carefully calibrated in advance.

In this paper, we propose and implement a work-�ow to use
a calibrated camera as a relative acquisition device to record the
intensity of projections, and evaluate the spatial uniformity of pro-
jections against image quality metrics. The correlation between
perceived and measured results suggest that the camera based im-
age quality assessment can be reliable and accurate.

This paper is organized as follows: �rst, in the background
section, we review the existing image quality metrics for spatial
uniformity assessment. Then in uniformity assessment section,
we describe the setup of our control lab environment, and demon-
strate how to calibrate a camera and a projector to produce mul-
tiple levels of linearized non-uniformity on the projection screen.
In addition, we also describe the experiment procedure and show
the experiment results. In the last section, the conclusions and
future works are presented.

Background
Many uniformity metrics have been proposed based on lu-

minance measurements of gray patches. Among the international
standards for image quality assessment of displays, FPDM [10]
de�nes uniformity as(100%� (Lmin=Lmax)) , whereLmin andLmax
stand for minimum and maximum measured luminance respec-
tively. TCO 6.0 [11] de�nes a compliance threshold based on
four luminance samples as(Lmax=Lmin), assuming that the min-
imum luminance is not even close to zero. SPWG [12] de�nes
uniformity as(100%� (Lmax� Lmin) =Lmax) based on thirteen in-
dependent luminance measurements. These metrics associate uni-
formity with Luminance Ratio (LR) between two extreme pixels.

However, Tang [13] and Ngai [14] demonstrated that the
LR based methods have inaccurate predictions of the non-linear
HVS. Tang [13] incorporated the viewing distanced and spa-
tial derivativess of luminance to de�ne the uniformity asSFA=
d2 �

Lmax+ Lmin � 2L
�

=s2, whereL stands for the average of mea-
sured luminance. Further research from Samuelson et al. [21]
quantify the image quality of an illuminated surface with a pro-
posed spatial frequency analysis algorithm incorporating the dif-



ference of Gaussian function, and they suggested that the aver-
age magnitudes of luminance contrast within selected spatial fre-
quency bands are related to the lighting quality of the scene rep-
resented by the image. Beyond these studies, Ashdown [15] in-
vestigated the in�uence of Luminance Gradient (LG) on the spa-
tial uniformity and they indicated that their results were more
correlated to the subjective perceptual ratings than LRs. How-
ever, these studies ignore the factor of viewing distance which is
important to the uniformity assessment. Meanwhile, other met-
rics based on statistical analysis and/or color distances in speci�c
color spaces were proposed. Poulin et al. [16] proposed a met-
ric to determine the spatial uniformity as(100%� STDEV(L)) ,
whereSTDEV(L) stands for the standard deviation (STDEV) of
luminance. Thomas et al. [4] used color differencesDL andDC
measured with a spectroradiometer. The results suggested that the
chromaticity shifts are signi�cant and they should be accounted
for. Another statistics based uniformity is de�ned as the variation

of coef�cient
q

å N
i= 1

�
Li � L

�
=

�
L(N � 1)

�
, whereN stands for

the number of sample points [17].
There are also existing works that are relevant to the uni-

formity assessment based on captured images. In the domain of
printing, Green [18] proposed a metric for measuring smoothness
of color transforms. The metric computes the second derivative
from the vector of color differences. Besides, wavelet analysis
[19] and standard deviation [20] are common methods to analyze
non-uniformity (mottle). These methods were originally designed
for printings, but they can be used for displays in a similar fashion.

Uniformity Assessment
In this section, we describe the experimental setup and how

to use a camera and a projector to produce multiple levels of non-
uniformity on the projection display.

Experimental Setup
The experiments take place in a controlled lab environment

where the only illuminant in the room is the projector. We use
a portable three chip LCD projector SONY APL-AW15 (throw
ratio: 1.5) to produce projections on a planar screen which is nat-
urally hanging on the ceiling. The projector is placed on a table in
front of the projection screen, and the distance is approximately
3m with respect to the throw ratio of the projector. A remote
controlling laptop is connected to the projector via a VGA cable
in order to generate full screen projections which have resolution
1280� 768 in pixels. On the screen, the dimension of projection
area is approximately 2� 1:2 in meters. We use a DLSR Nikon
D610 which has an imaging resolution 6048� 4016 in pixels and
with a Sigma VR 24-105mm f/4G (VR off) lens to capture the pro-
jections. The camera is �xed on a tripod and the pictures are taken
remotely with a software control on the laptop without physically
touching the camera. The pictures are saved in raw format and
rendered with Aliasing Minimization and Zipper Elimination de-
mosaicing algorithm [22] without automatic vignette correction,
brightness adjustment, gamma correction and noise reduction etc.

Vignetting Correction
Captured pictures are known to have vignetting effect which

stands for an undesirable gradual intensity fall off from the im-
age center to its external limits. In this paper, we correct camera

Figure 1. Experiment setup (throw ratio: 1.5)
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Figure 2. The generated vignetting mask for our camera Nikon D610 with

a Sigma VR 24-105mm f/4G (VR off) lens

vignetting based on the captures of a hazy sky which is closely
uniform in gray [23]. In the lab, we take several trial shots of
projections with either minimum or maximum projector input in-
tensity. In this process, we adjust the camera settings iteratively
until all the captures are neither underexposure nor overexposure.
Then we keep all camera settings except exposure time, hook a
neutral light diffuser (white and semi-transparent) over the cam-
era lens, and use the camera to take multiple pictures toward the
same spot of the hazy sky. Each time we take a picture we rotate
the camera a bit. Then we calculate the intensity median response
for each camera pixel over all pictures we have taken, and use
them to generate a vignetting mask which is then applied to the
camera RGB channels separately to correct the vignetting.

In the experiment, we take 60 pictures of the hazy sky and
put 40 of them into a training set and the rest into a validation set.
The median responses are obtained based on 5, 10, ..., and 60 pic-
tures in the training set respectively. Then we apply correspond-
ing masks to the pictures in the validation set. The minimum
averaged standard deviation over all validation pictures indicate
that empirically 10 pictures are suf�cient to generate convergent
median results. The mask we generate for our camera is shown
in Figure 2. We can see that the vignetting is not even closely
symmetric. The center has shifted upward and also a bit to the
right. This observation is contrary to common assumptions about
the vignetting symmetry in many literature (cos four law [24] for
example). In order to maximize the validity and reliability of im-
age quality assessment, we should offer the best effort to avoid
assumptions. Our method places no assumption about the camera
or the light condition, and the whole procedure can be �nished
within a few minutes.



Exposure Optimization
The daylight environment has a much higher luminance (nor-

mally above 1000 Lux) than the projection environment (around
10 Lux for example). In order to avoid either underexposure or
overexposure of captures, the camera's exposure time varies be-
tween the two light conditions. The vignetting mask generated
in a daylight condition might not be appropriate for the low light
condition, since in this context we implicitly assume that all cam-
era sensors have linear responses. In order to verify the linearity,
we equally separate the range of projector input intensity into 15
levels. For each level, we display a gray patch and capture it un-
der all possible camera exposure times ranging from 1/4000s to
30s. Meanwhile, we use a light meter to measure the physical
luminance on the projection screen as a reference to the camera.
Then we construct surfaces of camera intensity responses versus
the projector luminance and camera's exposure time.

The �rst picture in Figure 3 depicts the intensity response of
one camera sensor in the red channel. In the deep blue region, the
responses are closely linear to all possible projector luminance
while the exposure time is �xed, and vice versa. However, in the
aqua regions, such sensor has a large boost in responses. It may
be argued that this is because the camera sensor is closely satu-
rated in these cases. Then we can have a look at the second picture
in Figure 3 where the responses of another camera sensor in the
green channel is obviously not saturated. In this case, the boost
is still available at the areas where the blue and aqua regions in-
tersect. In this context, we can see that the camera gives linear
responses corresponding to limited combinations of projector lu-
minance and camera's exposure time.

This conclusion seems to be trivial because the exposure
time should be kept below 2s in most cases. However, in order
to apply the vignetting mask generated in a high light condition
to a low light condition, we have to make sure that the camera
responses are all linear with respect to a common exposure time.
For this reason, we determine the strongest responses over each
camera intensity response for the maximum luminance under the
two light conditions with a common exposure time, and we con-
tinue to decrease the exposure time until the ratios between such
two sensor responses are equal. However, applying an exposure
time which is too small would not take the full advantage of the
dynamic range of the camera. Once this condition is met, the
camera's exposure time is optimized, and the generated vignetting
mask can be applied to the camera despite of light conditions.

Image Registration
In the context of image quality assessment incorporating full

reference metrics, it is critical to achieve accurate and automatic
image registration between the captured image and its reference
image. Then we can apply existing full reference metrics with no
modi�cation to them. The preservation of geometrical order as
well as the color relationships between two consecutive pixels on
displays are maximized. In our previous research [25], we pro-
posed a marker-less and view-independent method to use a cam-
era to do the image registration. The maximum pixel shift error
is below 0.2 pixel in the cases that camera resolution is higher
than projection resolution. With respect to the performance eval-
uations with SSIM metric [28], the image registration accuracy
is higher than 0.95 in a dark room environment and it is above
0.9 in a dimmed light condition where ambient light is below 30
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Figure 3. Intensity responses of one camera sensor in the red channel (1st

picture), and another sensor in the green channel (2nd picture)

Lux. In this paper, we adopt this method to extract projections
from the captured images, and make them have exactly the same
dimension and resolution as their reference images.

Projector Calibration
In order to assess the perceptual spatial uniformity, we pro-

duce multiple levels of linearized non-uniformity on the screen to
be observed and captured. Brown et al. [9] located the minimum
common achievable projector response for all pixels and gener-
ated a luminance attenuation map to correct the projection colors.
The linearity of projector's intensity responses is assumed; other-
wise the inverse projector intensity transfer function is applied to
compensate for that. Pagani et al. [23] proposed a shading table
based automatic uniformity correction. The colors of each shad-
ing point are corrected by iteratively re�ning the projector output
intensities in order to avoid temporary stability problem of projec-
tors, and the colors of other pixels are linearly interpolated based
on its shading point neighbors.

In this research, we adopt and extend the method proposed
by Brown et al. [9] for its simplicity and effectiveness. First,
we equally separate the range of projector input intensity into 15
levels, and for each level we display and capture a gray patch
10 times. Then the projector intensity transfer functions can be
recovered by polynomial regression upon the median responses
over the gray patches at all intensity levels. In this way, we can
avoid the temporary stability problems of both camera and pro-
jector. However, it is computational inef�cient to determine the
regression coef�cients for all twenty million pixels of the cam-
era Nikon D610. We calculate only the coef�cients for the refer-
ence pixel which gives the lowest camera sensor response upon
maximum projector luminance. The coef�cients for other pixels
can be obtained by linearly scaling the one of the reference pixel.
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Figure 4. Polynomial regression of camera sensor responses

The method is processed in a color channel basis. After this, we
inverse the regression functions to compensate the non-linearity
of camera responses in order to create �attened projections. In
our experiment, 5th order polynomial regression is suf�cient to
achieve good approximation. The projectors intensity transfer
functions for the reference pixel are depicted in Figure 4. Lower
order regressions (2nd order for example) produces slightly differ-
ent curves, but they may cause overcasting of dominated colors.
The polynomial regression may produce negative values which
are invalid. In such cases, we simply clip them because the abso-
lute values are small(< 1e� 3) to be negligible.

Suppose that the scaling ratio of one pixelpi j in an individ-
ual color channel on theith row andjth column of the registered
image isr i j � 1, the corresponding regression function for the ref-
erence pixel isf (x) and its inverse function is denoted asf � 1 (x).
The x stands for the projector input intensity of the pixelpi j . The
camera response of pixelpi j is denoted asci j = f (x) � r i j . In this
context, the projector input intensity for the pixelpi j at a certain
non-uniformity level is de�ned asg(x) = f � 1 �

f (x) � s
�
r i j � m

��
,

wherem= å
ny
i= 1å nx

j= 1 r i j =
�
nx � ny

�
, nx andny stand for the width

and height for the projection in pixels respectively, ands stands
for a linear scaling factor of non-uniformity and it is under the
constraint thatf (0) � r i j � gi j (x) � f (x) � r i j assuming that the
projector input intensities are normalized to between 0 and 1. The
value ofr i j can be determined asmax

�
ci j

�
=f (1), where the op-

eratormaxstands for the maximum value ofci j .

Experimental Procedure
We incorporate human observers and full reference image

quality metrics to assess the spatial uniformity of projection dis-
plays. We display seven types of test images (see Figure 5):
two natural color pictures (the 15th and 23th picture from Kodak
Photo CD PCD0992 [26]), three uniform colored patches with
opponent colors: yellow, magenta and cyan respectively, one gray
patch (the gray level equals to 0.5) and one slide like image with
dark texts on a gradient background. For each test image, we
linearly scale its natural projection's non-uniformity to produce
multiple levels of non-uniformity. These scaling ratios can be nor-
malized into the range between -1 and 1, and then we split it into
�ve levels: -0.6, -0.2, 0, 0.2 and 0.6. The level 0 corresponds to
�attened projections where the projector's natural non-uniformity
is canceled. We also display one image reserving the projectors
natural non-uniformity by displaying the image as it is; so 42 im-
ages in total are presented to each human observer.

The viewing condition is similar to a home theater environ-
ment where the room is dark, and the observers are located at the

camera's position. The test images are displayed to observers in
a randomized order. The experiment is set up as a category judg-
ment experiment. So, for each displayed image, the observers are
asked to indicate the perceptual uniformity with a category label
which stands for the rank between not uniform at all and perfectly
uniform corresponding to the ratings numbers from 1 to 5. At the
same time, the observers are also asked to indicate how the non-
uniformity affect their pleasantness with a category label which
stands for the rank between very disturbing and not disturbing at
all corresponding to the rating numbers from 1 to 5. The percep-
tual ratings are collected from 10 human observers and then they
are scaled to generate Z-scores [28].

We also evaluate the uniformity with the following image
quality metrics: LR de�ned in VESA FPDM [10], LG based
de�nition [13] (SFA), averaged standard deviation of RGB val-
ues (Stddev), coef�cients of variation [17] (Coeff), averaged Eu-
clidean distanceDE�

ab in CIELAB color space (DEab), PSNR-M
[27], SSIM [28], and S-CIELAB [29]. The �rst four metrics
are commonly referred uniformity metrics in literature, while the
metricsDE�

ab is frequently referred to determine the perceptual
distance between two colors. Since the non-uniformity changes
the structure information in the images, we adopt SSIM as well.

Subjective Results
The �rst observation is that the rank order of non-uniformity

is largely preserved for the seven types of test images as expected
(see Figure 5). If we assume that the general tendency of Z-scores
are smooth, then they can be represented by parabolic curves.
The curves might be more or less skewed depends on the pro-
jected image content. The �attened projections do not necessary
correspond to the highest overall Z-scores, while small negative
non-uniformity and natural projection images have similar or rel-
ative lower Z-scores in many cases, and either positive or negative
large non-uniformity leads to the lowest Z-scores. This observa-
tion supports the fact that HVS is not sensitive to small variation
of non-uniformity. The spatial non-uniformity is largely masked
by the high frequency components in the displayed image content,
and we should simulate the human visual system to ignore the
non-uniformity that cannot be discriminated by human observers.
The simulation can be implemented using models based on con-
trast sensitivity functions, contrast masking, etc. For the distorted
slide like images (correspond to the 7th test image), the Z scores
of �attened versions are clearly greater than others (higher mean
value and no overlapping of con�dence intervals). This is because
such reference image has dark texts on a large gradient back-
ground in a bright color, and the non-uniformity on a gradient
background can be easier to be detected by HVS than that on a
�at background which is the case of a gray patches (correspond
to the 1st test image). The general tendency of mean Z-scores of
pleasantness are very similar to the ones of perceived uniformity
and the Pearson correlation between them are all above 0.98 for all
test images, except the absolute mean values of pleasantness are
slightly larger in general. This observation suggests that the HVS
has a certain degree of but limited tolerance on average against
non-uniformity on the display. For the gray patch test images, the
observers have a dif�culty to distinguish the differences between
the small minus non-uniform, �attened, natural projections. In a
similar fashion, the pleasantness of small minus non-uniformity,
�attened and natural projections for the two natural images have
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Figure 6. Pearson (1st picture) and Spearman (2nd picture) correlations

between the mean Z-scores of subjective ratings and objective metric results

similar values but their corresponding perceived uniformity have
different mean values. This observation suggests that the non-
uniformity is masked by the complex colors of natural pictures
and in such cases achieving a restrained uniform is not the only
way to produce the best perceptual experience.

Objective Results
Figure 6 demonstrates the Pearson and Spearman correla-

tions between the mean Z scores of perceived uniformity and ob-
jective results from all metrics. Obviously, none of these metrics
works well for all types of images, especially for natural color

images (the 2nd and 6th test images). Simple metrics like LR
and SFA work surprisingly better than others in many cases. We
think this might because in our experiment the non-uniformity for
all pixels is globally scaled, so the rank order of intensities in
each primary color channel is largely preserved; although we ap-
ply negative scalars to non-uniformity as well, the magnitude of
scaled non-uniformity is still comparatively smaller than the ref-
erence intensity values in the reference images. However, in real
practice, the non-uniformity level of projections should be rela-
tively small, otherwise the optical components of such a projector
should be replaced with new ones. The metric Coeff also gives
high correlation scores for patches but negative values for natu-
ral pictures (the 2nd and 6th test images). However, no metric
works well for the natural color images and slide like images (the
7th test images). In such cases, the correlation values are largely
below 0.6. S-CIELAB also adopts CSF but it has slightly better
correlation results than PSNR-M and SSIM metrics in all cases.
It is also interesting to �gure out the reason why metric LR does
not work well in many cases, so we generate the plots of the sub-
jective results versus the objective results for the LR metric (see
Figure 7). It is clear that for the non-patch test images, the vari-
ance of metric scores are largely compressed and a few outliers
are visible. By examining the metric score values, we �nd out
that these outliers correspond to the �attened projection and nat-
ural projection. Similar phenomenon can be observed for other
metrics. It suggests that either the metrics give lower values for
the �attened projection, or higher values for the natural projec-
tion comparing to their expected values. In other words, the dis-
tance between the two consecutive levels of perceived uniformity
is more compressed than the results of metrics.

Conclusion and Future Works
In this paper, we propose and implement a work-�ow to use

a calibrated camera as a relative acquisition device of intensity to
measure the spatial uniformity of projection displays. The exper-
imental results suggest that none of the frequently referred spa-
tial uniformity metrics works well for all types of test images,
especially for the �attened projections and natural projection of
natural color images. In such cases, The spatial non-uniformity
is largely masked by the high frequency components in the dis-
played image content, and we should simulate the human visual
system to ignore the non-uniformity that cannot be discriminated
by human observers. The simulation can be implemented using
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Figure 7. LR metric scores versus subjective mean Z-scores for all test images

models based on contrast sensitivity functions, contrast masking,
etc. In addition, the colors can be considered to be transformed
into the frequency domain and analyzed at a smaller granularity
in order to engage the issue of contrast masking. In the coming
future, we should either improve the existing metrics or design a
new one to evaluate the spatial uniformity of projection displays.
Such a metric should be incorporated into a uni�ed image quality
assessment framework for projection displays.
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