
Web technologies enable agile color management

Philippe Colantoni1, Jean-Baptiste Thomas2, Alain Trémeau1, Jon Yngve Hardeberg2

1Université de Lyon, Université Jean Monnet,

Laboratoire Hubert Curien, UMR 5516

Email: (philippe.colantoni,alain.tremeau)@univ-st-etienne.fr
2NTNUNorwegian University of Science and Technology

The Norwegian Colour and Visual Computing Laboratory

Email: (jean.b.thomas,jon.hardeberg)@ntnu.no

Abstract—With the number of display technologies, cameras,
operating systems and software solutions, one of the only
technologies that is compatible across this diversity is the web
browser. We propose to show that the technologies now present
in web browsers allow an indepent management of the color
information on large variety of devices. For this purpose we
introduce the basic concepts of color management and then we
show how to implement them with WebAssembly and WebGL by
introducing the concept of WebCMM. A WebCMM adapted for
the color management of HTML elements in 2D, 3D but also for
virtual environments. Finally, we present how we can implement
this WebCMM for a real case of color workflow implemented in
a demonstrator web page.

Index Terms—Color management, World Wide Web, Browsers

I. INTRODUCTION

It is a well-known fact that different color imaging devices

process color information in different ways. For instance, it

is pretty obvious that a printer and a display employ very

different processes to produce the desired colors. But also

within one class of devices, e.g. displays, there are significant

differences, even between displays based on the same technol-

ogy (e.g. LCD). Therefore, achieving consistent reproduction

of colour images in heterogenous systems (such as the web)

has been an important research challenge for decades [1],

[2]. Thanks mainly to the invention and implementation of

the concept of color management [3]–[5], in which every

imaging device must be characterized colorimetrically, color

consistency may be achieved trough adapted color space trans-

formations. Most of the recent work on display colorimetric

calibration concerns the calibration of HDR displays [6],

which is not considered in this work.

Mainly based on ICC profiles for general purpose and

graphic arts industry defined by the International Color Con-

sortium1, it has evolved with iccMAX for spectral and ap-

pearance management or with ACES for digital cinema2. It

uses Color Management Modules (CMM) implemented in

the operating system (accessible to software running on this

operating system) or in specific software (e.g. Photoshop) in

order to do the necessary color transformations.

This is limited in the sense that:

1http://color.org/
2https://www.oscars.org/science-technology/sci-tech-projects/aces

• Different CMM handle the same information (ICC pro-

files for example) in different ways across operating

systems.

• Some software has no link to color management (e.g.

most of the pdf readers except Adobe Acrobat).

• Some software may have reduced connection to color

management (e.g. Google Chrome and Mozilla Firefox).

• The color management is only applied to static calibrated

images and not to the full work space.

• It is not designed to work with 3D or virtual reality (VR)

rendering.

On the other hand, web browsers are usually compatible

across operating systems, and can read several types of files

via dedicated applications (incl. pdf). Web browsers can work

with 3D (WebGL) and VR (WebVR) rendering, and simplify

communication through the stream of video, sharing screen

and video-conferencing systems (WebRTC).

We propose here a color management solution based on web

technologies, that embed all those features into a single HTML

element. This impacts the way we use color management today

and create opportunities to extend the control of colors in

extended reality (mixed, augmented or virtual) and related

visual technologies.

People and applications benefiting from this potential are

web developers or hybrid application developers, e.g. use web

technologies for color applications and image rendering. It

is also useful for web designers in the context of market-

ing or creation of visual content, e.g. on-line shopping or

advertisement, appearance, brand-colors. And it is extremely

useful for researchers working on color and vision, e.g. tools

for colorimetric image rendering in psychological studies and

computer graphics.

Two other contributions of this work are 1-exchange be-

tween the color imaging and the web communities. 2-the

potential to keep the stimulus under control while using VR

headset, compared to only use a rendering engine, such as

Unreal Engine [7].

In the following we describe the basic concepts of color

management in Section II and in Section III the web tech-

nologies that we used in order to make an implementation

inside a modern web browser. Section IV describes accurately

an experimental demonstrator that is associated to this article,

with the parameters, the results it achieves and its performance.

303

2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

978-1-7281-5686-6/19/$31.00 ©2019 IEEE
DOI 10.1109/SITIS.2019.00057

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

II. COLOR MANAGEMENT

A. Color characterization

Device characterization [8], [9] can be defined as the process

of how a device reproduces or reacts to colors. The result

is typically stored as a file that can be an ICC profile or

raw color measurement data (in CxF file format or inside

an ICCMax Profile). This type of file does not allow direct

color modification, it must be associated with a dedicated

system or application’s color management module as well

as with another device’s characterization file to allow color

transformation. Knowing the characteristics of the two devices

makes possible to transfer the colors from one to the other.

This characterization process enables determining the range of

colors that can be produced by an output device (such as a

monitor or a printer) or discernible by an input device (such

as a camera) defined as color gamuts.

B. Connection color spaces

1) Profile Connection Space: The profile connection space

(PCS) is used to describe a device in a CIE reference space

(with the 1931 standard colorimetric observer). This standard

color space is the interface that ensures an unambiguous

connection between input and output profiles. If the input

and output color transformations are based on the same PCS

definition, even if they are created independently, then they

can be arbitrarily matched.

The default measurement parameters for the profile connec-

tion space and all other color spaces defined in this specifi-

cation are based on the ISO 13655 standard, ”Graphic tech-

nology - Spectral measurement and colorimetric computation

for graphic arts images”. Essentially, it requires to use a D50

standard illuminant and the 1931 CIE standard colorimetric

observer (and for graphics arts and photography print viewing

environment an illumination level of 500 lux), this PCS can

be either the CIEXYZ or the CIELAB. Inside a PCS a color

gamut appears as a 3D shape. All the colors outside this

shape are considered as out of gamut (unreproducible or

undistinguishable).

2) Target color space: For research purpose, we also define

a Target Color Space (TCS). The TCS is a custom variation

of the profile connection space. It is based on CIELAB (D50

CIE 31 or 64 standard observer) but adapted to a sampling

method based on non-Euclidean color differences. Different

sampling strategies can be used depending the sampling dis-

tance considered [10] (e.g. ΔE76, ΔE94, ΔECMC , ΔEBFD

or ΔE00). By using use such samplings we can redefine the

volume properties of the different colors gamuts (see Figure 1)

and thus offer new settings for the gamut mapping techniques

that we will present in the next section.

C. Gamut mapping

One of the goals of the color management is to let people

transform colors from one device to another while keeping

some of their characteristics. As mentioned above, each device

has its own ability to reproduce or distinguish colors. The

transformation from one device to another is therefore not

always possible. This is the reason why this process usually

involves a gamut mapping. This gamut mapping is, for most of

the different techniques available [11], based on 3D geometric

transformations allowing to switch from a source gamut to

a destination gamut. The application of these techniques is

traditionally done in the PCS, in our case we propose to apply

them in the TCS that has been chosen. For a same gamut

mapping technique, the choice of TCS modifies significantly

the shapes of the gamuts (see Figure 1) and so the result that

we obtain.

D. Rendering intent

Rendering intents are linked to ICC profile which can

contain data associated to each rendering intent provided by

the corresponding ICC file. They allow the Color Management

Module (see next section) to perform different color trans-

formations for a same device according the usage scenario

wanted by the user and, of course the destination device. The

4 available rendering intents (Absolute colorimetric, Relative

colorimetric, Perceptual and Saturation) can be seen as pre-

defined transformations which can perform color transforma-

tions similar to a gamut mapping.

E. Color management module

The CMM makes possible to perform all the calculations

necessary to transform colors: from a device to the TCS or

PCS (forward transformation), from the TCS to the device

(backward transform) and a gamut mapping.

III. WEB IMPLEMENTATION

A. Color characterization

Traditional color characterization methods use software

tools, which can drive color measurement instruments, exe-

cuted directly on the computer that is connected to the screen

to be characterized. Then the obtained profiles are registered to

the operating system or assigned to the software that performs

the color management. Unfortunately, the great heterogeneity

of systems that can execute a web browser makes impossible

to use this kind of method.

In [16], we presented a method portable across any oper-

ating system supporting a web browser. This method which

integrates an algorithm that allows to dynamically select color

patches according to several criteria has been implemented

inside a software that controls a colorimeter running on a

computer using the same local network. This software is also a

web server able to send the selected colors to a mobile device,

a computer or a VR headset running the web browser.

B. Color management module

Because the web browser handles exclusively RGB data,

the forward and backward transformation models correspond

to the following:

• RGBsrc → XY Zsrc → L∗a∗b∗ → TCS
• TCS → L∗a∗b∗ → XY Zdst → RGBdest

The transformations used in our demonstrator are described

in [17]. The forward transformation is based on polyharmonic

304

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Color gamut of an Apple iPad 2 visualized in 3 custom TCS (based on ΔE76, ΔE94 and ΔE00)

splines (a subset of the Radial Basis Functions that can be used

for interpolating or approximating arbitrarily distributed data)

and the backward transformation (or inverse transformation)

is based on a tetrahedral interpolation [15].
In our case, these transformations written in C++ are

not linked to any external software module. This process

is therefore performed by our code independently of any

function of the system on which it is performed. For this

reason, we were able to generate a particular version of

our code entirely compiled in WebAssembly3. WebAssembly,

or wasm, is a low-level binary programming language for

developing applications in web browsers. Since WebAssem-

bly only specifies a low-level language, bytecode is usually

produced by compiling a higher-level language. Supported

languages include C and C++, compiled with Emscripten4.

The transformation of our code into wasm allowed us to define

interface functions in JavaScript. These functions now allow us

to run color management systems within web browsers using

standard html pages. We therefore have a color management

module dedicated to the Web (a WebCMM).
In order to perform the color transformations (forward

and backward) as well as gamut mapping our CMM must

generate a set of data structures, for a given color flow, during

the initialization stage. To do this, we must provide several

parameters:

• The source profile.

• The destination profile.

• The CIELAB sampling used for the TCS.

• The color adaptation model (a function that defines

how the CIEXYZ tri-stimuli should be transformed) used

before or after the color transformations.

• The gamut mapping method used.

We have built a JavaScript interface that allows the user to

pass these parameters to the initialization functions written in

C++. This interface also provides access to the transformation

and gamut mapping functions as well as functions to generate

3D Look-Up Table (3D LUT). 3D LUT are required to perform

accelerated color transformations with the GPU of the system

running the web browser with WebGL5.

3https://webassembly.org/
4https://emscripten.org
5https://www.khronos.org/webgl/

C. Source images

The web browsers can use many types of images. Simple

images coming from files (jpeg, png, etc.) and videos (mp4,

webm, etc.) but also more exotic sources through the Web

Real-Time Communication (WebRTC)6 Application Program-

ming Interface (API). WebRTC is a JavaScript API developed

by the W3C and the IETF, it is also a canvas for real-time

communication. The purpose of WebRTC is to link applica-

tions such as video conferencing, screen or window sharing

in peer-to-peer mode by freeing itself from the proprietary

extension modules that were previously required.

These different types of images are all associated with

input and output devices. Input devices for images, videos

and WebRTC feeds from a WebCam (all three types of images

are obtained using RGB sensors) and output devices for those

obtained through screen and window sharing. The images

produced by sharing screens or windows are quite special

because in such a case the output device (corresponding to

the split screen) becomes an input device when transferring

the images as a video stream.

D. Transformation computations

We defined the JavaScript interface to perform the necessary

calculations needed by our different color transformations.

Although very efficient with WebAssembly, they do not allow

high-resolution images or videos to be processed in an accept-

able time. To overcome this, we implemented a highly efficient

computational mechanism based on pre-calculated 3D LUT

associated with graphics shaders managed through WebGL.

WebGL is a dynamic 3D API specification that allows

OpenGL Embedded System to be used within a web page

based on the HTML5 standard, with the help of the JavaScript

language. WebGL offers a hardware acceleration for the calcu-

lation and 3D rendering with the help of the graphics processor

of the computer system on which the web browser is running

(computer, smartphone, tablet, etc.).

The RGB values sent to the color flow (coming from the

input image) are used as input for the computation which is

done by a tri-linear interpolation computed by a graphic shader

with the 3D LUT.

6https://webrtc.org

305

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTAL DEMONSTRATION

In this section we describe the WebCMM demonstrator that

we have developped. This demonstrator is available from this

web page https://www.couleur.org/articles/SITIS2019-I-WeCA/
(with a mirror site here

https://ipem.univ-st-etienne.fr/articles/SITIS2019-I-WeCA/).

A. Color workflow

We chose to implement a color management process that

transforms RGB colors from an input device (a camera or a

monitor) to an output device (a monitor). This workflow, which

can potentially process all the image types presented in Section

III-C, is the first element displayed in our demonstrator (see

the Color Workflow box in Figure 2).

It performs the following transformations:

• RGB → XY Zsrc: forward transformation

• XY Zsrc → XY Z ′
src: color adaptation

• XY Z → Lab: CIEXYZ to CIELAB color space conver-

sion

• Lab → LabΔE : CIELAB sampling forward transforma-

tion

• LabΔE → LabΔEwithGM : gamut mapping

• LabΔEwithGM → Lab: CIELAB inverse sampling trans-

formation

• Lab → XY Z ′
dst: CIELAB to CIEXYZ color space inverse

conversion

• XY Z ′
dst → XY Zdst: inverse color adaptation

• XY Zdst → RGB: backward transformation

The whole sequence of transformations allows to create

a single function, which is the composition of these trans-

formations. This function, which is, for efficiency reasons,

entirely realized in C++, will be used to generate the 3D LUT

required for the real-time transformations a user would like to

implement in 2D, 3D and virtual environments.

To be able to run this function, it is necessary, as a

preliminary step, to launch an initialization process allowing

to set up all the various data structures used internally. The

parameters required for this function are, for this demonstrator,

to be chosen among many presets (see the Color Workflow
Parameters box in Figure 2).

B. Workflow parameters

The parameters chosen for this demonstrator allow to ad-

dress the main usage scenarios presented in our introduction.

Web developers or hybrid application developers who wish to

produce classic sites or applications for e-commerce, market-

ing, etc. will prefer to use ICC profiles associated with chro-

matic adaptation, while a vision science researcher should be

able to use profiles based on CxF files for reproducing identical

stimuli on several screens as part of the implementation of a

psychovisual experiment.

1) Source and destination gamuts: The source profile and

the destination gamuts can be ICC or CxF files. This demon-

stration makes it possible to choose among 6 profiles (see

Figure 3:

• 4 CxF profiles generated with the characterization tool

presented in [8] corresponding to the following devices:

2 tablets with LCD screens (Apple iPad 2 and Google

Pixel C), a smartphone on an OLED screen (OnePlus

5) and a virtual reality headset with an OLED screen

(Oculus Rift).

• 2 generic ICC profiles: sRGB and ProPhoto.

2) Color adaptation and CIELAB conversion: The color

adaptation is a function that defines how the CIEXYZ tri-

stimuli should be transformed. Three different color adaptation

models can be used in this color workflow:

• The first adaptation (Absolute) consists in using the white

point of the destination device. The white point of a

display corresponds to color value for which all R, G

and B channels are set to their maximum. We use the

CIEXYZ value of this white point as reference for all the

colorimetric transformation to the CIELAB color space

without any transformation of the CIEXYZ obtained with

the forward model. With this method we try to reproduce

exactly in the destination device the same CIEXYZ stimuli

coming from the source device.

• The second adaptation (Luminance) is similar to the first

one except that we first scale all the inputs CIEXYZ Y

values in order to have the same CIEXYZ maximum value

as the output device. With this method we equalize the

luminance while we keep the CIEXYZ xy chromaticities.

It represents a luminance compression or expansion (de-

pending the scale of the luminance in the source and

destination gamuts).

• The third one is a chromatic adaptation (Chromatic

Adaptation). Several Chromatic Adaptation Transforms

(CATs) exist in the state of the art, such as von Kries,

Bradford, Sharp, CMCCAT2000 and CAT02 [13], [14].

Chromatic adaptation corresponds to the human visual

systems ability to adapt (by adjusting human cone cell

spectral sensitivity responses) to changes in illumination,

in order to preserve the appearance of object colors. The

aim of Chromatic Adaptation Transforms is to predict

corresponding colors between pairs of corresponding col-

ors, e.g. a color displayed on a screen observed under one

illuminant and another color displayed on another screen

observed under a different illuminant that has the same

appearance than the first one. The method that we propose

corresponds to the Bradford transform, any other CAT

could be also used. XYZ values are independently scaled

by a linear transformation (a 3x3 diagonal matrix) which

compensates chromaticity shifts induced by a change of

illuminant (between the input illuminant and the output

illuminant). For this color adaptation the user can choose

the illuminant that will be used from a predefined list of

standard illuminants.

The first two methods of color adaptation can only be used

if the source and destination profiles are CxF files because

only these files contain the necessary colorimetric information.

Only chromatic adaptation can be used when the source or

destination, or both, are ICC profiles.

306

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The color flow implemented

(a) Apple iPad 2 - CxF (b) Google Pixel C - CxF

(c) OnePlus 5 - CxF (d) Oculus Rift - CxF

(e) sRGB - ICC (f) ProPhoto - ICC

Fig. 3: The 6 available profiles and the corresponding 3D

visualization in CIELAB

3) Target color spaces: In this demonstrator we propose

3 TCS based on ΔE76, ΔE94 and ΔE00 corresponding to

a tabulated version of CIELAB, which can be found at the

following address https://data.couleur.org/deltaE/ described in

[10].

4) Gamut mapping methods: We have chosen to include

3 gamut mapping techniques in our demonstrator, the first

two (gamut clipping and gamut compression) are presented in

[11] and the third (gamut compression and expansion) is an

extension of gamut compression. For these three techniques

we use the same convergence point (direction of mapping)

which is the isobarycentre of the destination gamut and the

ways how gamut compression and expansion are carried out

are linear:

• Gamut clipping: change only the colors which are outside

the destination gamut, for this we compute the intersec-

tion of the ray starting from the isobarycentre of the

destination gamut and passing through the source color

with the surface of the destination gamut.

• Gamut compression: we compute the intersections of the

ray starting from the isobarycentre of the destination

gamut through the source color with the surfaces of the

source and destination gamuts. If the intersection with the

source gamut is on the ray after the intersection with the

destination gamut then the source color is transformed

linearly into the destination gamut.

• Gamut compression and expansion: this technique makes

possible to fully use the destination gamut but can lead to

significant color changes. It is very similar to the gamut

compression method with additional processing that are

performed when the intersection with the source gamut

is before the one with the destination gamut. In this case

the source color is extended linearly in the destination

gamut.

Our gamut mapping tool is very customizable and it allows,

by changing the parameters that we can pass to it, to produce

a large variety of techniques presented in [11]. For reasons

of readability we have chosen to propose only the three

techniques presented in the previous paragraph.

C. Data structures and transformations visualization

As mentioned above, all these parameters are used to

generate the internal data structures required to transform

the source colors in the destination gamut. Our demonstrator

307

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

allows to display these data structures as well as the result of

the transformations on a set of colors resulting from a sampling

of the source RGB space.

When a color workflow parameter is modified, all a user

has to do is to click on the ”Generate” button to update all

the internal data structures.

This view (see Figures 4 and 5) is divided into 4 sub-views:

1) Source Gamut: Display the source gamut in CIELAB
with ΔE76, 94, 00 sampling.

2) Display Gamut: Display the destination gamut in

CIELAB with ΔE76, 94, 00 sampling.

3) RGB Transformation: Transformation visualization of

the source RGB color space with a sampling 8× 8× 8
(512 samples).

4) Target Color Space Transformation: Transformation vi-

sualization of the 512 color samples in CIELAB with

ΔE76, 94, 00 sampling for the gamut mapping (when a

gamut clipping is used, the size of the cubes used to

visualize the colors is proportional to the distance of

this color from the destination gamut).

Fig. 4: Result with Source Gamut: iPad2, Destination Gamut:

Oculus Rift, Gamut Mapping: clipping, TCS: ΔE1976

We provide sub-views 3 and 4 in the Figure 6 for a

comparison, for the same color workflow parameters, and for

the three available gamut mapping methods. These two 3D

visualizations show the transformed colors in the destination

gamut (global transformation for the sub-view 3 and only

the transformation during gamut mapping for the sub-view 4)

using colored 3D geometric shapes and indicate with segments

the transformations that the source color has undergone.

D. 3D LUT generation and test

When the initialization phase is completed, it is possible

to generate the corresponding 3D LUT and use it with a test

video (a screen capture simulating the use of WebRTC), either

in a 3D environment (with the ”Test Color Workflow” button)

or in virtual reality (with the ”Test Color Workflow in VR”

button).

Fig. 5: Result with Source Gamut: iPad2, Destination Gamut:

Oculus Rift, Gamut Mapping: compression and expansion,

TCS: ΔE1994

A new window (see Figure 7) is then generated in which

a 3D environment is displayed containing the test video (the

big buck bunny video7 which is an open content: “The results

of the Peach open movie project has been licensed under the

Creative Commons Attribution 3.0 license.”) shown with these

original colors in a rectangle on the left and the video with

these modified colors in a rectangle on the right.

We chose to generate a 3D LUT of size 64× 64× 64. It is

possible to increase the size of the 3D LUT (if this size can fit

in the maximum size of the textures that WebGL can manage)

but at the cost of a significant increase in computation time.

E. Performances

In this section we will show the computation times obtained

on different web browsers (Google Chrome, Mozilla Firefox

and Apple Safari) with several systems (a OnePlus 7 Pro

smartphone, an iPad 2, a desktop computer with an Intel

Core i7 6700K CPU and a Geforce RTX 2080 graphics card).

These calculation times have been obtained for the following

workflows:

1) Source gamut: iPad2, Destination gamut: OnePlus 5;

TCS: ΔE76, Gamut mapping: Clipping, Color adapta-

tion model: Absolute

2) Source gamut: iPad2, Destination gamut: Pixel C; TCS:

ΔE94, Gamut mapping: Compress, Color adaptation

model: Luminance

3) Source gamut: sRGB, Destination gamut: ProPhoto;

TCS: ΔE00, Gamut mapping: Compress and expend,

Color adaptation model: Chromatic adaptation

Table I presents the computation time for the data structure

generation (initialization process) on several configurations.

Table II presents the computation time for the 3D LUT

generated on the same configurations.

7https://peach.blender.org/download/

308

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

(a) Gamut clipping

(b) Gamut compression

(c) Gamut compression and expansion

Fig. 6: Results the three gamut mapping methods implemented

in our demonstrator with the visualization of the corresponding

color transformations (with an iPad2 device as source gamut

and an OnePlus 5 device as destination gamut)

TABLE I: Initialization process time

Workflow
OnePlus7Pro

Firefox
iPad 2
Safari

Desktop

Firefox

Desktop

Chrome
1 2.68s 2.64s 1.07s 0.89s
2 12.56s 10.00s 3.60s 3.10s
3 11.19s 9.23s 3.26s 2.82s

The initialization and the 3D LUT generation processes can

take between 15 and 17 seconds on smartphone and tablet

which is not acceptable. On a desktop computer the compu-

tation time is more appropriate (between 2.5 and 5 seconds).

We plan to soon accelerate these processes by parallelizing

some of the computations with the help of Web Workers.

The tri-linear interpolation computed for each frame of the

video by a graphic shader with the 3D LUT is very fast, even

on smartphones or tablets (less than 1ms on an HD frame).

V. CONCLUSION AND PERSPECTIVES

In this article we demonstrated the possibility to implement

a complete color management for html elements dedicated

to 2D and 3D (via WebGL) and virtual environment (with

WebVR) within modern web browsers, with the full imple-

mentation of a WebCMM. Even if these browsers already have

TABLE II: 3D LUT generation time

Workflow
OnePlus7Pro

Firefox
iPad 2
Safari

Desktop

Firefox

Desktop

Chrome
1 3.82s 3.50s 1.15s 1.11s
2 4.56s 4.26s 1.67s 1.58s
3 3.67s 3.74s 1.49s 1.40s

a relatively complete image oriented color management, our

proposal opens up new and particularly interesting possibilities

for some WebRTC-based applications such as video confer-

encing and screen sharing (html elements, browser tabs or

complete screens) but also the implementation of sophisticated

soft proofing techniques dedicated to images and videos.

To promote this technology and distribute our WebCMM,

we plan to implement new HTML tags to simplify its use.

These tags will initially be associated with file formats that are

natively supported by web browsers (RGB images and videos)

for soft proofing and unconventional files (images and spectral

videos). We will also be very vigilant about the security issues

related to this technology.

Finally, we intend to integrate the management of the CMYK
format into our WebCMM and thus be able to manage image

files dedicated to printers. This new format will allow us to

extend the capabilities for soft proofing techniques with our

color management system.

REFERENCES

[1] R.W.G. Hunt, The Reproduction of Colour, 5th Ed., Fountain Press, 1995
[2] R.W.G. Hunt, How to Shop on the Web Without Seeing Red, Proceedings

of IS&T/SID Eight Color Imaging Conference, p. 2-7, 2000
[3] P. Green, Color Management: Understanding and using ICC Pro-

files,Wiley, 2010
[4] E.J Giorgianni, T.E. Madden, Digital color management: encoding solu-

tions, Addison-Wesley, 1998
[5] J. Y. Hardeberg, Color management: principles and solutions, NORsig-

nalets, vol. 3, pp. 612, 1999
[6] F. Dufaux, P. Le Callet, R. Mantiuk, M. Mrak, High Dynamic Range

Video 1st Edition, ISBN: 9780081004128, pp.237-272, 2016
[7] W. Qiu, F. Zhong, Y. Zhang, S. Qiao, Z. Xiao, T. S. Kim, Y. Wang.

2017. UnrealCV: Virtual Worlds for Computer Vision. In Proceedings of
the 25th ACM international conference on Multimedia (MM ’17). ACM,
New York, NY, USA, 1221-1224

[8] J.-B. Thomas, J. Y. Hardeberg, I. Foucherot, P. Gouton, The PLVC display
color characterization model revisited, Color Research And Application
33 (6), 2008. 449460. doi:10.1002/col.20447.

[9] J.-B. Thomas, Colorimetric characterization of displays and multi-display
systems, PhD thesis, Université de Bourgogne, 2009.

[10] P. Colantoni, J.B. Thomas, A. Trémeau, Sampling CIELAB color space
with perceptual metrics, International Journal of Imaging and Robotics,
16 (3), pp.1-22, 2016.

[11] J. Morovic, Color Gamut Mapping. John Wiley and Sons Ltd. 2008.
[12] J. Morovic, M.R. Luo, The fundamentals of gamut mapping: A survey.

Journal of Imaging Science and Technology vol. 45, no. 3, pp. 283290,
2001.

[13] CIE Publ. 160: 2004. A Review of Chromatic Adaptation Transforms.
2004. Vienna: CIE Central Bureau; 2004.

[14] S. Bianco, R. Schettini, Two New von Kries Based Chromatic Adapta-
tion Transforms Found by Numerical Optimization, Color research and
application, pp 184-192, Volume 35, Number 3, June 2010

[15] L. M. Kasson,S. I. Nin, W. Plouffe, J. L. Hafner, Performing color
space conversions with three-dimensional linear interpolation, Journal of
Electronic Imaging , Vol. 4(3), pp. 226250, 1995.

[16] P. Colantoni, A. Trèmeau,Web Browsers Colorimetric Characterization,
CCIW’2019, Chiba, February 2019, LNCS Vol. 11418, pp 145-161.

[17] P. Colantoni, J.B. Thomas, J.Y. Hardeberg, I. Foucherot, P. Gouton,
High-end colorimetric display characterization using an adaptive training
set, The Journal of the Society for Information Display, 19:520-530, 2011.

309

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Visualization of the result in a 3D environment: original colors on the left (sRGB ICC Profile) and modified colors on

the right (ProPhoto ICC Profile)

310

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:16:56 UTC from IEEE Xplore. Restrictions apply.

