
An online tool for displaying and processing
spectral reflectance images

Philippe Colantoni1, Jean-Baptiste Thomas2, Mathieu Hebert1, Alain Trémeau1

1Université de Lyon, Université Jean Monnet,

Laboratoire Hubert Curien, UMR 5516

Email: (philippe.colantoni,mathieu.hebert,alain.tremeau)@univ-st-etienne.fr
2NTNU - Norwegian University of Science and Technology

The Norwegian Colour and Visual Computing Laboratory

Email: jean.b.thomas@ntnu.no

Abstract—Modern web browsers allow to manipulate different
types of multimedia files and can be adapted, with standardized
technologies (WebAssembly, WebGL, etc.), to an ever-increasing
number of contents. In this article, we describe how we were able
to set up the necessary data structures and software techniques
to enable web browsers to manipulate and visualize multi- and
hyper-spectral images. A demonstrator, based on two images from
a SpecimIQ hyperspectral sensor, is also presented as showcase.

Index Terms—Multispectral imaging, Hyperspectral imaging,
Image color analysis, World Wide Web, Browsers

I. INTRODUCTION

Web browsers had become, over time, our main visualiza-

tion tools for a very wide variety of content. It can appear

as a dedicated software (Google Chrome, Mozilla Firefox,

Apple Safari, etc.) or as a web view integrated into an

application. Unfortunately, many types of content are not

natively supported specifically for image type contents (only

Jpeg, PNG, GIF and WebP formats in RGB are supported),

even by the newest web browsers. This is the case for spectral

reflectance images, mostly due to a lack of standard image

format an issue which should be solved soon attended the

recent initiatives, e.g. the one reported in [1].
Reflectance, also called reflectivity, is the fraction of light

reflected from the surface of a material. It is defined as the ratio

of reflected light flux to incident light flux. The reflectance

of a surface generally varies according to the wavelength of

the incident light. The curve representing the reflectance is a

function of wavelength called a spectral reflectance.
It is possible, with specific sensors [2]–[4], [6]–[8] or

by reconstruction [9], [10], to produce reflectance images

where each pixel contains a spectral reflectance. These spectral

images are useful to analyze the nature of the materials that

compose an object.
There are several techniques to obtain spectral reflectance

images. One way is to use dedicated spectral sensors (filter

wheels [2], [3], Spectral Filter Arrays (SFA) [6], diffraction

gratings [7], [8], liquid crystal tunable filter [4], etc.). It is also

possible to perform spectral reconstructions calculated from

one or several RGB images [9], [10].
Visualization and processing techniques are available for

this kind of images [5], [11]–[13], but they are all available

as dedicated software. IIPImage1 is the only online tool we

know that can handle spectral images but, at this time, it does

not include any real-time color or spectral reconstructions.

In this article, we propose to show that it is possible

to interact with such images directly through web pages

viewed in a web browser. We propose an implementation

with hyperspectral reflectance images acquired by a SpecimIQ

camera. For this purpose:

• We perform a transformation and store the information

adapted to usage scenarios, we also implemented a Web

platform with accelerated calculations through the Graph-

ics Processing Unit (GPU).

• We perform color (with color management) and spectral

reconstructions optimized for implementation on GPUs

to perform our calculations in real-time and therefore

vary the parameters (virtual illuminant, luminance, wave-

lengths selection and mapping to RGB, etc.) for a better

exploration of the spectral image information.

• We use an evolutive processing and visualization model

based on custom shaders (dynamically built graphics

shaders as in [14]).

• We use existing Web technologies: WebAssembly2 for the

implementation of complex algorithms and data struc-

tures, WebGL3 to access the computing power of the

GPU.

The operations that allow to create the different data struc-

tures required by our tools are described in Section II, our

tools with their functionalities and their usages are described

in Section III, the limits of our tools in Section IV, and, in

Section V we present our demonstrator.

II. DATA STRUCTURES

A. Spectral reflectance images

The images are then multi- or hyper-spectral images, de-

pending on the dimensionality and the nature of the images.

The reflectance estimation is based on a calibration process

based on a standard reference. This calibration process allows

1https://iipimage.sourceforge.io/
2https://webassembly.org/
3https://www.khronos.org/webgl/

725

2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

978-1-7281-5686-6/19/$31.00 ©2019 IEEE
DOI 10.1109/SITIS.2019.00118

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:17:04 UTC from IEEE Xplore. Restrictions apply.

to produce a reflectance factor image which can be considered

as reflectance image only in the case of Lambertian surfaces

(therefore perfectly diffuse, this hypothesis is never fully

verified but is assumed in this paper).

B. Image resolution and dimensionality
The very large variety of sensors and techniques to obtain

spectral reflectance images generate a multitude of image

types with various resolutions, numbers of spectral bands, and

sensitivities.
A Silios CMS-C multispectral camera based on SFA allows

to obtain images of size 1280 × 1024 pixels with 9 bands,

between 430 and 700 nm, and 10-bit coded information (this

kind of image requires to use specific demosaicing algorithm

[5]). A HySpex VNIR-1800 camera scans lines of 1800

pixels with 186 bands, between 400 and 1000 nm, and 16-

bit coded information using diffraction gratings; A SpecimIQ

hyperspectral camera, produces with an integrated scanner

that uses diffraction grating, a 512 × 512 pixels image with

202 bands, between 400 and 1000 nm, with 16-bit encoded

information.
A HySpex VNIR-1800 camera placed on two translation

axes X and Y, scanning 10 cm stripes, will generate for a

painting of the size of Leonardo da Vinci’s Mona Lisa (77×53
cm) an image of size 13860 × 9540 pixels with 182 double-

byte coded strips which would represent 48.130GB of data.

For the same painting, the multispectral camera Silios CMS-

C will produce an image of 1.64 MB of data, with a much

lower spatio-spectral resolution.
We see that the amount of information that needs to be ma-

nipulated to process and/or display such images can therefore

be very large, making it difficult to handle them. It is therefore

essential to have data structures adapted to their usage.

C. Hierarchical transformation of the information
a) Spatial resolution: We use a Gaussian pyramid that

enables us to have a multi-resolution representation of our

images. This representation lets us select the level of detail we

want to manipulate/display [16]. Each level l of this pyramid

has a resolution divided by 2 compared to level l − 1, level

l = 0 containing the original image. Depending on the usage,

it is sometimes interesting to decompose an image into tiles.

This representation is particularly interesting when we want

to visualize images in very high resolution (VHR) [22] from

a server. This representation mode is particularly well suited

for dynamic client/server visualization processes where the

client only requests the subparts of the image that he/she needs

for his/her process while keeping the still visible parts of the

image.
b) Spectral dimension: The spectral information that we

manipulate with these images is highly correlated, this allows

to use different techniques to simplify the interaction with the

huge data. We can consider different information hierarchies

based on dimensionality reduction techniques [17]. For this

article we implemented a global principal component analysis

(PCA) [18]. An image with reflectance dimension of m can

then be represented by an image of dimension k (with k ≤ m),

with minimum loss.

D. Metadata

In order to facilitate its manipulation, it is possible to add

metadata to a complex and voluminous data structure. In our

case, we have chosen to integrate metadata that quantify the

quality of the spectral and color reconstructions according to

the number of dimensions used as a result of the PCA. For

this purpose we used the eigenvalues (sorted in descending

order) and 2 metrics described in [20]: the ΔE00 [19] on color

reconstructions and the root mean square error (RMS error)

on spectral reconstructions. This allows us to produce a set of

5 indicators:

1) The sum of the k first eigenvalues (k varying from 1 to

m).

2) The average ΔE00 values between the color recon-

struction, with a D65 illuminant, of the pixels in the

original image (encoded on m dimensions) and those

reconstructed with k dimensions of the PCA, k varying

from 1 to m.

3) The 99 percentile of the ΔE00 values between the color

reconstruction, with an illuminant D65, of all pixels in

the original image (encoded in m dimensions) and the

pixels reconstructed with k dimensions of the PCA, k
varying from 1 to m.

4) The average value of the root mean square error for all

pixels in the original image (encoded on m dimensions)

with the corresponding reconstructed pixels with k di-

mensions of the PCA, k varying from 1 to m.

5) The 99 percentile of the root mean square error for all

pixels in the original image (encoded on m dimensions)

with the corresponding reconstructed pixels with k di-

mensions of the PCA, k varying from 1 to m.

E. Usage scenarios

The benefits of the metadata are multiple because they

allow to have a report on the analysis of the accuracy of the

reconstruction according to the number of dimensions chosen.

They also allow to define scenarios for the usage of the spectral

images stored in this way. For example, we can define a

colorimetric scenario based on the 99 percentile of the ΔE00

that will indicate the number of dimensions required to have a

maximum value of 1.0 or a spectral and colorimetric scenario

that defines the dimension necessary to have an average RMS

error value below 0.003 and an average ΔE00 below 1.0.

For a given image, the chosen usage scenario permits to

define the number of dimensions k′ to be read on the available

k. This allows limiting the network bandwidth required and

the memory used while maintaining the digital quality of the

reconstruction.

F. Data structure

The basic element of our data structure is the tile (see

Figures 1). It has a fixed size t × t pixels. A tile contains

m PCA Image (see II-B) with values that are either floating

numbers in single (4 bytes) or half (2 bytes) precision. The

values of a tile are the ones of a spectral band at a position

and level of our given pyramid.

726

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:17:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The last two levels of the data structure (the top of the

pyramid)

Standard formats, such as JPEG2000 or TIFF, can be used to

store this kind of data structure, but unfortunately it is currently

impossible to decode these files in a web browser. We therefore

had to choose a simple proprietary format that was easy to

decode.

The tiles are stored successively (see Figure 2), for a given

image, in one or more files (several files can be used if the

size of the structure is so large that it is not desired to handle

it as a single large file). All metadata as well as data related

to resolution, spectral dimension, PCA eigenvectors, pyramid

size, coding of the information used (half or single precision)

are stored in the file headers.

Fig. 2: Data storage in the file(s)

G. Calculations

The PCA and metadata values are calculated from the

original image, with m spectral dimensions.

For each of the eigenvalues, sorted in descending order,

we project each of the spectra contained in the pixels of the

image using the corresponding eigenvector. Each component

resulting from these projections generates an image that is used

as basis for calculating a Gaussian pyramid that is decomposed

into tiles of size t× t pixels, starting from the top left corner

of the corresponding level in the pyramid, before being stored

in the destination file(s).

The 5 indicators that constitute the metadata appear as 5

arrays of size m, the spectral dimension of the original image.

The values of the indicators that form these arrays are, for a

given index, calculated from the same spectral reconstruction.

For the i-index of these tables, the reconstruction is calculated

from the first ith components of the PCA.
1) Test images: We made 2 image captures with a Spec-

imIQ which are used as test images for this article (see Figures

3 and 4).

PCA (float) 1 4 8 12 32 64

sum(λ) 0.8659 0.9964 0.9994 0.9998 0.9999 0.9999

X(ΔE00) 19.306 4.5692 0.2691 0.1061 0.01882 0.01359
P99%ΔE00 54.60 16.715 1.2437 0.4597 0.07398 0.05358

X(RMSE) 0.1228 0.01808 0.00748 0.00472 0.00291 0.00186
P99% RMSE 0.2518 0.06098 0.02416 0.00992 0.00440 0.00305

PCA (half) 1 4 8 12 32 64

sum(λ) 0.8659 0.9964 0.9994 0.9998 0.9999 0.9999

X(ΔE00) 19.306 4.5692 0.2696 0.1072 0.02205 0.01757
P99%ΔE00 54.609 16.715 1.2437 0.4598 0.08469 0.07138

X(RMSE) 0.1228 0.01808 0.00748 0.00472 0.00291 0.00186
P99% RMSE 0.2518 0.06098 0.02416 0.00992 0.00440 0.00305

TABLE I: Metadata results for test image 1

PCA (float) 1 4 8 12 32 64

sum(λ) 0.9195 0.9995 0.9998 0.9999 0.9999 0.9999

X(ΔE00) 22.951 1.5975 0.34817 0.19544 0.08743 0.05218
P99%ΔE00 45.696 6.3196 1.7967 0.9407 0.37329 0.2129

X(RMSE) 0.1006 0.00677 0.00373 0.00332 0.00229 0.00156
P99% RMSE 0.2400 0.02650 0.00741 0.00553 0.00397 0.00289

PCA (half) 1 4 8 12 32 64

sum(λ) 0.9195 0.9995 0.9998 0.9999 0.9999 0.9999

X(ΔE00) 22.951 1.5976 0.3485 0.1961 0.08908 0.05478
P99%ΔE00 45.701 6.3191 1.7970 0.9395 0.3744 0.2145

X(RMSE) 0.1006 0.00677 0.00373 0.00332 0.00229 0.00157
P99% RMSE 0.2400 0.02650 0.00741 0.00553 0.00397 0.00289

TABLE II: Metadata results for test image 2

2) Metadata calculation results: In tables I and II, we

can see the values of the calculated metadata (with k =
1, 4, 8, 12, 32, 64) for the test images 1 and 2.

The values obtained indicate that it is not necessary to

store the information with a single precision (float) encoding

because the gain in terms of accuracy, compared to half-float,

is negligible for a storage twice large. We also see that the

gain is marginal for a k value higher than 32. For the two test

images, 9 dimensions are enough to obtain a 99 percentile of

the ΔE00 lower than 1.0.

H. Conversion tool

We currently have a converter tool that can handle multi-

spectral images from the CRISATEL project as well as hyper-

spectral images from the SpecimIQ. This tool, implemented

in C++, is cross-platform (Mac OS, Linux and Windows)

and can be modified to support other multi- or hyper-spectral

727

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:17:04 UTC from IEEE Xplore. Restrictions apply.

(a) Color reconstruction: with a D65 il-
luminant and a sRGB ICC profile, to be
visualized on a sRGB monitor

(b) Spectral reconstruction: 650 nm as-
signed to the Red channel, 550 nm to the
Green and 450 nm to the Blue channel

(c) Spectral reconstruction: 850 nm (IR)
assigned to the Red channel, 550 nm to the
Green and 450 nm to the Blue channel

Fig. 3: Specim IQ test image 1

(a) Spectral reconstruction: 450 nm assigned
to the Red, Green and Blue channels

(b) Spectral reconstruction: 850 nm (IR) as-
signed to the Red, Green and Blue channels

(c) Color reconstruction: with a D65 illumi-
nant and a sRGB ICC profile

Fig. 4: Specim IQ test image 2

image formats. It is also in charge of the metadata computation

and we can, if we want, add new statistics (metadata) in our

files (for this it will be necessary to reconvert all the original

spectral images). This tool is optimized to handle very high

resolution multi- and hyper-spectral images.

III. WEB-BASED TOOL

In this section, we present the functionalities and imple-

mentation methods of our Web visualization tool. This tool is

dedicated to process and display the images described in the

previous section It has been designed to integrate basic and

evolutive functionalities.

A. Basic functionalities

We integrate the following basic functionalities into our

tool:

a) Color reconstruction: The purpose of color recon-

struction is to define for each pixel of the image the CIEXYZ
tri-stimulus values generated when illuminated by a virtual

light L. Once reconstructed, the colors are displayed on the

screen using a color management process. The numerical

values for the pixel below the mouse cursor are displayed

in a dedicated information frame at the bottom left of the

display window. This information box displays the calculated

CIEXYZ values as well as the corresponding CIELAB values

(under illuminant L) and the RGB values calculated during the

color management.

b) Spectral reconstruction: The purpose of spectral re-

construction is to generate by interpolation, for a given

wavelength, a reflectance image. We provide the possibility

to simultaneously display 3 reflectance images (for 3 given

wavelengths) assigned to the R, G and B channels of the

displayed image which gives us a false color visualization. The

wavelengths associated with the R, G and B channels of the

pixel below the mouse cursor are displayed in the information

frame (the spectrum will be available soon).

c) Color management and out-of-gamut color display:
Color management consists in a controlled transformation

between the color representations of different devices. In

728

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:17:04 UTC from IEEE Xplore. Restrictions apply.

the context of a color reconstruction, the calculated CIEXYZ
values are transformed into an RGB triplet with a complex

transformation managed by the color management module

(CMM). Since screens can only display a limited number of

colors, we have also set up a specific display mechanism for

the so-called ”out of gamut” colors (not directly displayable

on the screen) with a color code that assesses the distance

between these colors and the gamut surface of the target

screen. The gamut corresponds to the surface of the 3D shape

containing all the colors displayable by a screen. When a color

is out of the gamut, we bring it back to the gamut surface by

using a gamut clipping technique. The out-of-gamut distance

is then defined by the Euclidean distance in the CIELAB space

between the original color and the one on the surface of the

gamut.
d) Color mixing of reconstructions: It is possible to

select the type of reconstruction that is displayed on the screen

but also to combine them dynamically with a mixing ratio

(between 0 and 1).

B. Implementation

Our implementation is mainly based on 2 Web technolo-

gies. WebAssembly allowed us to transpose our C++ library

which manages our spectral data files (and the associated

data structures) as well as our color management functions

as modules that can be accessed directly through JavaScript.

WebAssembly allows us to have execution times that are close

to those we can have with native applications. WebGL 1.0

allowed us to access to the computing power of the graphics

card used to execute the web browser, via graphic shaders,

and to transfer the image data as textures that are also stored

in the graphics card’s memory for maximum efficiency.

The heterogeneity in the sources of the reflectance spectra

that we have to process (cf. subsection II-A) requires us

to standardize the sampling of these spectra. Our color and

spectral reconstructions are based on tabulated data available

with a 1 nm spectral sampling, so we have chosen to use this

sampling. To do this, all the reflectance spectra we use for our

pre-calculations are resampled using an Akima interpolation

[15].
a) Color reconstruction: The computation of the color

reconstruction for a given reflectance R(λ) and a light L(λ)
is performed in the color space CIEXY Z 1931 or 1964 with

the following formula:⎧⎪⎨
⎪⎩

X =
∑λ=760

λ=400 x(λ)R(λ)L(λ)

Y =
∑λ=760

λ=400 y(λ)R(λ)L(λ)

Z =
∑λ=760

λ=400 z(λ)R(λ)L(λ)

where x, y and z are the colorimetric functions of the CIE
1931 or 1964 reference observer. In the case of a representation

of spectral data after the PCA this color reconstruction is sim-

plified because we only have to pre-calculate with the previous

formula the CIEXYZ values for each of the eigenvectors used.

The CIEXYZ values for a given pixel is then, if we use k
dimension for reconstruction:

d=k−1∑
d=0

PCAd(i, j) ∗XY Zeigenvectord

The transformation of the tri-stimuli so obtained into RGB
values dedicated for the screen is then done through a color

management process that requires to transform these CIEXYZ
values into CIELAB values that will be used as input for

interpolation process made with the 3D Look Up Table (LUT)

defined bellow.

b) Spectral reconstruction: To compute, at a given wave-

length, a reflectance image we use the tabulated values coming

from the interpolated eigenvectors of the PCA. For a given

wavelength, the reflectance value of a pixel is computed with

the following formula:

d=k−1∑
d=0

PCAd(i, j) ∗ eigenvectord[λ]

c) Color management and out-of-gamut color display:
Color management is performed using a pre-calculated 3D

LUT [23] with a function from our WebCMM (our JavaScript

color management module) based on a calibration technique

described in [24]. The implementation of this technique was

made possible by the creation of a color characterization tool

dedicated to Web browsers that we have described in [25]. The

computation of the out-of-gamut distance is also performed

with this 3D LUT which contains RGBA color vectors where

the component A is the out-of-gamut distance. The CIELAB
values that has been calculated in the color reconstruction are

used as input for the computation, by a tri-linear interpolation

inside the 3D LUT, of the RGB color and the A value.

The spectral image is associated to a web page through a

JavaScript initialization function with parameters that define

the resolution level l used (the level inside the pyramid stored

in the file) as well as the dimension k of the PCA used (on

the m dimensions available). This dimension k can be defined

as a constant or computed by a function that we provide.

This function will determine the value of k according to the

usage scenario wanted by the user and the metadata embedded

in the file. This function downloads all the necessary data

from a server into the browser’s memory, which then transfers

them inside 4-dimensional textures (RGBA encoded) either in

single precision (float) or in half precision (half float) format

(depending on the encoding of the information inside the

file). The use of RGBA textures allows us to package our k
dimensions inside (k− 1)/4+1 textures. The limited number

of texture units available in a graphical shader requires us to

use this packing method (see IV-A).

All these calculations, as well as the color mixing, are inte-

grated into a single graphical shader, a fragment shader, that is

in charge of the source spectral image processing process. The

source code of this shader is dynamically generated during the

spectral image initialization in order to be adapted to the used

k dimensions of the PCA (and to overcome some WebGL

1.0 limitations). The shader is then compiled by WebGL to

be directly executable by the GPU of the graphics card. This

shader, which is executed on all pixels of the source spectral

image, generates an RGB image as a new WebGL texture

(which have the same size as the source spectral image at

the resolution level l), which is then displayed in our web

729

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:17:04 UTC from IEEE Xplore. Restrictions apply.

page (with the possibility to zoom in) through the JavaScript

Three.js framework4.

C. Custom shader

In the previous subsection, all of the process-

ing/visualization is performed in a single graphical shader

with a dynamically created source code. It is therefore

possible to transform this shader’s code in order to make it

perform other processing/visualizations. It is the concept of

custom shader [14] which we implement on the basis of a

new function which will replace the one which implements

the basic treatment/visualization functions of our tool. Custom

shaders make it possible to implement treatment/visualization

processes adapted to very specific uses of spectral images

(medical, heritage culture, etc.)

IV. ANALYSIS

A. Limitations

For WebGL 1.0:

• Maximum texture size which is generally 16384×16384
and therefore, the images that we can process / view.

• Number of textures usable in a shader which is generally

16, this limits the dimension k that we can use up to 64
(16× 4 with our packing method).

• Number of instructions that a shader can execute which

may limit the capabilities of the custom shaders that will

be produced.

For WebAssembly:

• Compatibility issues with some Web browsers, mainly on

smartphones and tablets.

B. Performance

For an image of the SpecimIQ camera with k = 20,

visualized in Firefox under Windows 10 on a PC with an Intel

Core i7-6700K processor and a GeForce RTX 2800 graphics

card, we have the following execution times:

• WebCMM initialization (does not depend on the resolu-

tion of the source image): 815 ms

• Reading the image: 67 ms

• Image processing: 0.025 ms

With the same image displayed in Firefox under MacOS

10.14.5 on an Intel Core i7-4980HQ processor with an inte-

grated Intel Iris Pro graphics card we have:

• WebCMM initialization (does not depend on the resolu-

tion of the source image): 950 ms

• Reading the image: 72 ms

• Image processing: 0.16 ms

V. DEMONSTRATOR

A demonstrator is available at the following

address: https://www.couleur.org/articles/SITIS2019-WAI/

(with a mirror site here

https://ipem.univ-st-etienne.fr/articles/SITIS2019-WAI/).

4https://threejs.org

Fig. 5: Spectral image view window full interface

It allows:

• the visualization of the two test images presented in the

section II-G1 with several initial configurations where we

can change:

– The number of dimensions used.

– The testing of color management settings.

• to test 2 custom shaders dedicated:

– For color segmentation.

– For highlighting spectral properties in the infrared of

an image during its color reconstruction.

Fig. 6: Control panel

Each of the links presented on the home page of our

demonstrator opens a new tab that displays the corresponding

image with a classic or custom shader-based view. All spectral

image view windows (see Figure 5) have a control panel that

730

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:17:04 UTC from IEEE Xplore. Restrictions apply.

allows changing many display settings in real-time (see Figure

6).

Only this demonstrator is currently available. The C++ code

of our conversion tool as well as the one used for our Web

tool is not available, for the moment, in open source. In the

coming months, we will evaluate the possibility of making

them available.

VI. CONCLUSION AND PERSPECTIVES

In this article, we have presented an innovative web tool for

interacting and visualizing spectral reflectance images trans-

formed in a dedicated data format optimized for this purpose.

This data format, which includes metadata describing the

quality of the color and spectral reconstructions of our images,

allows us to precisely define, based on usage scenarios, the

dimensionality of the information we have to use and thus

limit the quantity of data we have to download.

The use of advanced Web technologies such as WebAssem-

bly and WebGL have enabled to achieve performance levels

close to those we can achieve with native applications. The

integration around a JavaScript framework that offers basic

functionalities (color and spectral reconstructions, color man-

agement, visualization of out of gamut, blending) also allows

to propose a simplified process for the implementation of

new processing techniques and visualizations based on custom

shader concept. A demonstrator has been placed online to

present the result of this work through two images obtained

with a SpecimIQ hyperspectral camera.

The framework can be extended to support new kinds of

spectral reflectance images. In particular, we will focus on

video streams from spectral cameras equipped with spectral

Bayer filters (such as the Silios CMC-C). Currently built

to allow interaction with only one image per web page we

also want it to be able to use several images simultaneously

within the same web page. This last point is essential for

its transformation into a more complete tool for visualizing

these images in a 3D environment accessible via augmented

reality devices (smartphones and tablets), mixed reality devices

(Magic Leap One, Hololens 2) and virtual reality headsets

thought WebVR and WebXR (when this web standard will

be available) this will call to multi-angle measurements and

relighting.

ACKNOWLEDGMENTS

This work was supported by the Fondation de l’Université
Jean Monnet de Saint-Étienne.

REFERENCES

[1] Multispectral Image Formats, CIE 223:2017, ISBN: 978-3-902842-10-
7, CIE Division 8, http://www.cie.co.at/publications/multispectral-image-
formats

[2] J. Brauers, N. Schulte and T. Aach, ”Multispectral Filter-Wheel Cameras:
Geometric Distortion Model and Compensation Algorithms,” in IEEE
Transactions on Image Processing, vol. 17, no. 12, pp. 2368-2380, Dec.
2008.

[3] A. Ribés, H. Brettel, F. J. M. Schmitt, H. Liang, J. Cupitt, D. Saunders,
Color and Multispectral Imaging with the CRISATEL Multispectral
System, PICS, 2003.

[4] J.Y. Hardeberg , F. Schmitt, H. Brettel, Multispectral color image capture
using a liquid crystal tunable filter. Optical Engineering 41(10), 25322548,
2002.

[5] J.B.Thomas, Multispectral imaging for computer vision. Signal and Image
Processing. Universit de Bourgogne, Franche-Comt, 2018.

[6] P.J. Lapray, X. Wang, J.B. Thomas, P. Gouton, Multispectral Filter Arrays:
Recent Advances and Practical Implementation, Sensors, 2014, vol. 14,
11, pp 21626.

[7] C. Cucci, J. K. Delaney, M. Picollo, ”Reflectance Hyperspectral Imaging
for Investigation of Works of Art: Old Master Paintings and Illuminated
Manuscripts”, Acc. Chem. Res., vol. 49, pp. 2070-2079, 2016.

[8] J. Behmann, K. Acebron, D. Emin, S. Bennertz, S. Matsubara, S.
Thomas, D. Bohnenkamp, M. T. Kuska, J. Jussila, H. Salo, A.K. Mahlein,
U. Rascher, Specim IQ: Evaluation of a New, Miniaturized Handheld
Hyperspectral Camera and Its Application for Plant Phenotyping and
Disease Detection. Sensors 18(2): 441 (2018)

[9] N. Akhtar, M. Ajmal, Hyperspectral recovery from RGB images using
Gaussian Processes, IEEE transactions on pattern analysis and machine
intelligence, 2018.

[10] R. M.H. Nguyen, D. K. Prasad, M. S. Brown, Training-Based Spectral
Reconstruction from a Single RGB Image, Lecture Notes in Computer
Science ; 8695 ; 186-201 Computer Vision, ECCV, European Conference
on Computer Vision, 13, 2014.

[11] N. Hashimoto, Y. Murakami, P. A. Bautista, M. Yamaguchi, T. Obi,
N. Ohyama, K. Uto, Y. Kosugi, Multispectral image enhancement for
effective visualization, Opt. Express 19, 9315-9329, 2011.

[12] G. Poldera, G. W.A.M. van der Heijdena, Proceedings of the SPIE,
Volume 4553, p. 132-137, 2001.

[13] M. Vilaseca, J. Pujol, M. Arjona, F.M. Martinez-Verdu, Color visuali-
sation system for near-infrared multispectral images. Journal of Imaging
Science and Technology pp. 246-255(3), 2005

[14] F. RoBler, R. P. Botchen, T. Ertl, Dynamic Shader Generation for
Flexible Multi-Volume Visualization, 2008 IEEE Pacific Visualization
Symposium, Kyoto, 2008, pp. 17-24.

[15] H. Akima, A New Method of Interpolation and Smooth Curve Fitting
Based on Local Procedures, Journal of the ACM, vol. 17, no. 4, pp.
589-602, 1970.

[16] B.K. Choudhary, N. KumarSinha, P. Shanker, Pyramid Method in Image
Processing, Journal of Information Systems and Communication ISSN:
0976-8742 & E-ISSN: 0976-8750, Volume 3, Issue 1, 2012, pp.- 269-273.

[17] C.O. Sánchez Sorzano, J. Vargas, A.D. Pascual-Montano, A survey of
dimensionality reduction techniques, ArXiv, abs/1403.2877, 2014.

[18] A. Agarwal, T. El-Ghazawi, H. El-Askary, J. Le-Moigne, Efficient
Hierarchical-PCA Dimension Reduction for Hyperspectral Imagery, 2007
IEEE International Symposium on Signal Processing and Information
Technology, Giza, 2007, pp. 353-356.

[19] W. Mokrzycki, M. Tatol, Color difference delta EA survey. Mach Graph
Vis 20:383-411, 2011.

[20] F. H. Imai, M. R. Rosen, R. S. Berns, Comparative Study of Metrics for
Spectral Match Quality, Proceedings of the First European Conference
on Colour in Graphics, Imaging and Vision, (Poitiers, France), 492-496
(2002).

[21] F. H. Imai, R. S. Berns, D. Tzeng, A comparative analysis of spectral
reflectance estimated in various spaces using a trichromatic camera
system, Journal of Imaging Science and Technology. 44 280-287 (2000).

[22] K. Martinez, J. Cupitt, S. Perrya, High resolution colorimetric image
browsing on the Web, Computer Networks and ISDN Systems, Volume
30, Issues 17, April 1998, Pages 399-405

[23] P. Colantoni, J.B. Thomas, A Color Management Process for Real Time
Color Reconstruction of Multispectral Images, In Arnt-Borre Salberg,
Jon Yngve Hardeberg, and Robert Jenssen, editors, Lecture Notes in
Computer Science, volume 5575 of 16th Scandinavian Conference, SCIA,
2009.

[24] P. Colantoni, J.B. Thomas, J.Y. Hardeberg, I. Foucherot, P. Gouton.
High-end colorimetric display characterization using an adaptive training
set. The Journal of the Society for Information Display, 19:520-530, 2011.

[25] P. Colantoni, A. Trèmeau,Web Browsers Colorimetric Characterization,
CCIW’2019, Chiba, February 2019, LNCS Vol. 11418, pp 145-161.

731

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 25,2020 at 10:17:04 UTC from IEEE Xplore. Restrictions apply.

