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Abstract
The Contrast Sensitivity Function (CSF) is an integral part

of objective foveated image/video quality assessment metrics.
In this paper, we investigate the effect of a new eccentricity-
dependent CSF model on the performance of the foveated
wavelet image quality index (FWQI). Our results do not show
a considerable change in FWQI performance when it is evalu-
ated against the LIVE-FBT-FCVR 2D dataset. We argue that the
resolution of the head-mounted display used in the subjective ex-
periment limits our ability to reveal the anticipated effect of the
new CSF on FWQI performance.

Introduction
Several mechanisms in the human visual system result in a

non-uniform distribution of neural sampling elements through-
out the retina [5]. It is well established that the sampling density
is highest in a small region of the retina called the fovea and
decreases as a function of angular distance (eccentricity). This
change in the neural anatomy of the retina translates to a loss
of contrast sensitivity and visual acuity in peripheral vision [18].
Foveated processing techniques exploit the decreased acuity in
peripheral vision to improve graphical rendering and video trans-
mission performance for displays with a wide field of view [15].

Omnidirectional videos are one of the main visual contents
available for Head-Mounted Displays (HMDs). These videos
provide a better sense of immersion than traditional videos due
to the increased field of view and the possibility of exploring var-
ious viewing angles through head rotations. However, increased
immersion comes at the expense of a significant increase in band-
width consumption [10]. Foveated compression is a promising
technique to alleviate the increasing demand for bandwidth in
HMDs. The core idea of foveated compression is to track the
location of the observer’s gaze and deliver a high-fidelity image
to foveal vision while at the same time exploiting the decreased
sensitivity of peripheral vision for more rigorous compression
without introducing visible artefacts [8]. As foveated algorithms
mature, interest in foveated image and video quality assessment
increases concurrently [10]. An objective foveated quality metric
would be helpful in the evaluation and optimization of foveated
processing algorithms, such as foveated compression. Further-
more, an efficient and differentiable metric could also be incorpo-
rated into the loss function of deep learning models [14]. Despite
considerable progress in subjective and objective quality assess-
ment of non-foveated content, foveated subjective and objective
quality assessment are both still in their infancy.

LIVE-FBT-FCVR [10] is a recent dataset investigating the
effect of VP9 compression artifacts in a foveated algorithm and
provides subjective scores for 180 distorted videos generated
from 10 reference 360-degree videos. Fovdots [14] is another re-
cent foveated dataset of a synthetic foveated stimulus with vary-
ing luminance, contrast, and velocity rated by 35 observers.

The Foveal Mean Squared Error (FMSE) and Foveal Peak
Signal to Noise Ratio (FPSNR) is based on the well-known MSE

and PSNR metrics to rate the quality of foveated content in
curvilinear coordinates [12]. The Foveated Wavelet image Qual-
ity Index (FWQI) is a foveated image quality metric using an
eccentricity-dependent Contrast Sensitivity Function (CSF) and
wavelet analysis to estimate the quality of foveated images [19].
A recent video quality metric called fovVideoVDP takes into ac-
count the physical properties of the displays and implements psy-
chophysical models to predict the quality of foveated videos in
terms of just-objectionable difference units [14].

The main motivation in this paper is to study the effect of
various eccentricity-dependent CSF models on the performance
of the FWQI.

Foveated wavelet image quality index
FWQI relies on wavelet analysis to measure the visual dif-

ference between a reference image and a distorted image based
on the following expression [19]:

FWQI = exp

(
−
(

1
M

M

∑
n=1

(
S f w (υ ,λn,θn,xn)

×|c(xn)− c̃(xn)|
)2
) 1

2
)
, (1)

where M is the total number of wavelet coefficients, and S f w is
the foveated error sensitivity model in the wavelet domain that
is a function of υ as the viewing distance (expressed in image
width), λn as the wavelet decomposition level, θn as the orienta-
tion, and xn as the position of the nth wavelet coefficient. c(xn)
is the value of the wavelet coefficient located at the coordinate
xn in the reference image, and c̃(xn) is the value of the wavelet
coefficient located at xn in the distorted image. S f w describes the
sensitivity of an average observer to the difference in the wavelet
coefficients of the reference image and distorted image and is
described by S f w = Sα1

w Sα2
f , where Sw is the error sensitivity for

wavelet coefficients in sub-band (λ ,θ) , S f is the normalized
foveation-based error sensitivity, and α1,α2 are two parameters
controlling the magnitude of Sw and S f , respectively. Follow-
ing the original implementation of FWQI we use α1 = 1, and
α2 = 2.5. S f is defined by the following expression:

S f (υ , f ,x) =

{
CS( f ,e(υ ,x))
CS( f ,e(υ ,0)) f ≤ fe(x,υ)

0 f ≥ fe(x,υ)
, (2)

where CS is an eccentricity-dependent CSF and fe is effective
cutoff frequency. Since the cutoff frequency could be limited
by display resolution, we define effective cutoff frequency as
fe (x,υ) = min( fc (e(x,υ)) , fd(υ )) where fc is the frequency
at which CS = 1 (cutoff frequency of CSF), and fd is the
highest frequency that can be represented on the display with-
out aliasing. For displays that span a small field of view, the
fd in cycle per visual degree can be approximated as fd.0 =

0.5π/
(

360arctan
(

0.5dwidth
rhdv

))
, where dwidth is the display width
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in meters, rh is the horizontal resolution in pixels, and dv is the
viewing distance in meters [14]. However, in displays with a
wide field of view, such as those of HMDs, fd changes as a func-
tion of eccentricity based on the following formula:

fd = fd.0
tan
(

πe
180 +0.5 f−1

d.0

)
− tan

(
πe
180
)

tan
(

0.5 f−1
d.0

) . (3)

The original implementation of FWQI relies on an empirical
CSF proposed by Geisler [9] to compute the normalized contrast
sensitivity as a function of eccentricity:

CS ( f ,e) =
1

CT0
exp
(

α f
e+ e2

e2

)−1
, (4)

where e is eccentricity expressed in visual degrees, CT0 is the
minimal contrast threshold, α is the spatial frequency decay
constant, and e2 is the half resolution eccentricity. These con-
stants are fitted to the contrast threshold data published for small,
briefly presented sinusoidal patches, which are the most rele-
vant stimulus settings for predicting visibility. The Geisler CSF
is simple and practical; however, it does not consider temporal
frequency and does not capture the effect of luminance on con-
trast sensitivity. Extension to the temporal aspect is desirable
while designing video quality assessment metrics and evaluating
foveated videos. The ability to model contrast sensitivity as a
function of luminance is also beneficial for high dynamic range
displays.

Barten contrast sensitivity function
Barten has proposed a physical model of CSF based on the

assumption that contrast sensitivity is partially determined by the
internal noise of the human visual system and partially by the
Modulation Transfer Function (MTF) of the eye and lateral inhi-
bition [2]. This model gives a thorough description of contrast
sensitivity as a function of spatial frequency, stimulus field size,
and has the possibility to be extended to the extra-foveal region
and temporal domain. Barten’s sensitivity function is defined as:

S( f ,e,L,X ,Y ) =
Mopt( f ,e)

2k

√√√√ X(e)Y (e)T

Φph(e)+
Φ0(e)

M2
lat ( f ,e)

, (5)

where f is the spatial frequency expressed in cycle per degree,
e is eccentricity expressed in visual degrees, L is the luminance
expressed in cd/m2, X , Y , T are the spatial and temporal dimen-
sion of the visual stimulus, k is a constant similar to the signal-
to-noise ratio, Φph is photon noise, Φ0 is neural noise, Mlat is the
lateral inhibition MTF, and Mopt is the MTF of the eye.

In the original implementation of the Barten CSF, it is
assumed that eccentricity parameter variations are mainly due
to variations in the density of ganglion cells over the retina.
Specifically, the MTF of the eye, which mediates the high-
frequency portion of the CSF and consequently the cutoff fre-
quencies, changes as a function of eccentricity by Mopt( f ,e) =
exp(−2πσ(e)2 f 2), where σ(e) is the standard deviation of the
line spread function describing the optical degradation stemmed
from combined effect of the eye lens, the discrete structure of
photoreceptors, stray light in the ocular media, and is modeled by

σ(e) =
√

σ2
0 (0)+σret(e)2 +(Cabd)2, where σ(0) is a constant

indicating the effect of ocular media in the fovea, σret character-
izes the effect of the retinal structure, Cab is a constant controlling

the increase of σ with increasing pupil size, and d is the pupil di-
ameter expressed in mm. The change in σret with eccentricity is
described by the following expression:

σret =
1√

7.2
√

3NM−on

, (6)

where NM−on is the density distribution of a subgroup of gan-
glion cells known as on-center parasol (M) cells. The typical
values of the constants in Barten CSF are reported in [2].

Although Barten assumes that the achromatic CSF is solely
supported by on-center parasol cells, there is a body of evidence
from anatomical, and psychophysical studies supporting the the-
ory that parasol and midget ganglion cells can contribute to the
perception of luminance gratings [17]. In this view, the high-
gain parasol (M) cells are well-tuned for the detection of low to
medium spatial frequency luminance gratings [13, 17], while the
condensed mosaic of midget cells provides the neural substrate
for resolving high-frequency luminance patterns [6, 21]. In [3]
the authors propose a modification to the Barten model to reflect
on the composite contribution of parasol and midget cells to the
achromatic CSF. Accordingly, the density of on-center parasol
cells in Eq. 6 is changed to the density of the midget cells. Wat-
son proposed the following expression for the total population of
the midget cells: [20]:

dm f (r,k) = 2dc(0)(1+
r

rm
)−1

(ak(1+
r

r2,k
)−2 +(1−ak)e

− r
re,k )),

(7)

where r is eccentricity expressed in visual degrees, k is the in-
dex number of the corresponding meridian, dc(0) is the density
of cones in the fovea, rm is the eccentricity at which midget cells
make up half of the total ganglion cells, r2,k is the eccentricity in
the meridian k where density is decreased by a factor of four, ak
is a weighting factor, and re,k is the scale factor of the exponen-
tial in meridian k. The quantitative values of the constants are
reported in [20]. The midget ganglion cells are composed of two
subgroups called on- and off-center cells, and each is expected
to form an individual array of sampling elements in the retina
[6, 7]. It is anticipated that in the central retina the receptive
fields of these two subgroups overlap, and hence, only 50 per-
cent of the total population of the midget cells sample the cone
mosaic [11]. Beyond 6 to 7 visual degrees, the receptive fields
begin to diverge and the opportunity arises for on- and off-center
cells to sample different locations of the cone mosaic, rendering
the total population of the midget cells as the limiting array [16].
To model this effect, the following correction is applied to dm f :

Ne =

(
1−

(
0.5

1+( r
rt
)4

))
dm f , (8)

where Ne is the effective density of the midget cells, rt is the
eccentricity at which the midget cells begin to collect input from
more than a single cone. Finally, the Ne in Eq. 6 is substituted
with NM−on resulting in:

σret =
1√

7.2
√

3Ne
. (9)

Comparison with recently published contrast sensitivity
data [4] reveals that the modified version of the Barten CSF re-
sults in more accurate estimates of the cutoff frequency com-
pared to the original version [3]. Fig. 1A. demonstrates the vari-
ation in the cutoff frequency values of the Geisler, original, and
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modified Barten CSFs as a function of eccentricity. The field
size and luminance parameter in Barten-based CSFs are set to
2◦ and 75 cd

m2 . These values are chosen to reflect the visibility
conditions in a typical HMD. Although the Geisler and original
Barten follow a similar trend, the modified Barten consistently
results in higher cutoff frequencies through all eccentricities. The
difference between cutoff frequency values of the original and
modified Barten CSF is due to the different ganglion cell density
functions used in Eqs. 6 and 9. If we define Rmo(e) as the ratio
of the modified Barten’s cutoff frequency values to the original
Barten’s cutoff frequency values, we can observe a significant in-
crease of the ratio from the fovea to 15◦ of the visual field, where
Rmo(e) reaches from 1 to 2.34 (Fig. 1B). Such a difference in the
high-frequency region of the two models, as it is evident from the
variation of Rmo, could influence the performance of a foveated
metric that relies on contrast sensitivity and cutoff frequency val-
ues, such as FWQI.

Figure 1. (A) cutoff frequency as a function of eccentricity; (B) Rmo as a

function of eccentricity

Barten contrast sensitivity function for foveated
wavelet quality index

To investigate the potential effect of the modified Barten on
the performance of the FWQI, we derive two additional versions
of the FWQI named OB-FWQI and MB-FWQI, each using the
contrast sensitivity and effective cutoff frequency ( fe) values re-
sulting from the original and modified Barten, respectively. Fig.
2 shows the error sensitivity for wavelet coefficients (Sw) and
the resulting normalized foveation-based error sensitivities (S f )
from Geisler, original, and modified Barten CSF in a three-level
decomposition square representation. The original and modified
Barten behave similarly and both result in a more pronounced
foveation effect compared to the Geisler CSF. However, in the
Geisler CSF weights are distributed more evenly and sensitivity
is diminished at a lower rate in higher eccentricities. Lower fre-
quency levels, as shown in the upper left corner of the decompo-
sition squares, are brighter for Geisler CSF compared to Barten
CSFs. This behavior is associated with the low-pass nature of
the Geisler CSF, where there is little room for attenuation of the
sensitivity at lower frequencies as eccentricity increases.

Evaluation
To evaluate the image quality metrics, we use the differen-

tial mean opinion scores (DMOS) reported in 2D LIVE-FBT-
FCVR as ground truth data and follow the evaluation frame-
work proposed by the authors of the dataset [10]. Despite dy-
namic foveation in the experiment, a fixed centered foveation
is assumed for evaluation due to lack of access to eye-tracking
data. Subsequently, the foveated experience of the observers who
participated in the subjective experiment was simulated for ob-
jective metrics by generation of foveated viewports with a 90-
degree field of view and three levels of compression. FWQI,
OB-FWQI, and MB-FWQI scores were computed for 10 video
contents ×18 distortions ×18 directions ×300 frames = 972000

Figure 2. Top left: the error sensitivity for wavelet coefficients (Sw) in

subband (λ ,θ) derived from Watson’s model. Top right: the normalized

foveation-based error sensitivity derived from the Geisler CSF. Bottom left:

the normalized foveation-based error sensitivity derived from the original

Barten CSF. Bottom right: the normalized foveation-based error sensitivity

derived from the modified Barten CSF.

viewports. Our analysis of the resulting scores shows that the
standard deviation is small along different frames, but more pro-
nounced along different directions (see Fig. 4). The lack of vari-
ation between frames might be explained by the stationary point
of view in the 360-videos of the dataset. In fact, most of the tem-
poral activity in the videos is originated by moving passengers or
vehicles, which seem to be insignificant in terms of scale com-
pared to fixed objects composing the scene. The variation among
directions, highlights the need for inclusion of eye-tracking data
and individual quality ratings in the subjective dataset since sim-
ple averaging of objective scores fails to address possible bias in
the directions subjects chose to investigate. Standard deviation
values for FWQI along different locations show a strong corre-
lation with video content as it is evident from the distinct colors
in the plot. However, in the case of MB-FWQI the correlation
between standard deviation along directions and video content
is diminished, instead there seems to be a negative correlation
with DMOS. Finally, the scores are averaged among frames and
directions to compare with the reported DMOS.

Three measures are implemented to evaluate the perfor-
mance of the resulting objective metrics [1]: Pearson’s linear
correlation coefficient (PLCC), Spearman’s rank-order correla-
tion coefficient (SROCC), and outlier ratio. A four-parameter
logistic regression was applied to the objective scores prior to
computation of PLCC [1]:

Q(x) = β2 +
β1 −β2

1+ exp(− x−β3
∥β4∥ )

, (10)

where the initial values for β1 to β4 are the maximum, mini-
mum, mean, and standard deviation of the objective scores, re-
spectively. Fig. 3 indicates the best-fitting logistic functions ob-
tained by using the ”nlinfit” function in MATLAB software. The
relationship between objective and DMOS is demonstrated in the
scatter plots of Fig. 3. Note that the shape of the fitted logistic
function changes when the CSF is changed to Barten. This ef-
fect might be due to the difference in the type of sensitivity de-
cay function implemented in the Geisler and Barten CSFs. In
the case of the Geisler CSF, the loss of sensitivity as a function
of eccentricity is characterized by an exponential decay function
[19]. However, in the Barten CSF model the loss of sensitivity
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Figure 3. Scatter plots for FPSNR, OB-FPSNR, and MB-FPSNR versus DMOS were reported in the 2D LIVE-FBT-FCVR dataset. Scores belonging to a

specific video content are given distinct colors. The black line shows the best-fitting logistic function on the objective scores.

Figure 4. Top row: standard deviation for 18 directions in FWQI and MB-

FWQI. Bottom row: standard deviation for 300 frames in FWQI and MB-

FWQI. Plots for FWQI-OB are not provided because of the high similarity to

FWQI-MB.

is mainly mediated by the neural noise term, which is charac-
terized by the second power of eccentricity [2]. The resulting
PLCC, SROCC, and outlier ratio are reported in Table 1. Of the
three versions, the original implementation of the FWQI with the
Geisler CSF results in the best overall performance. The result-
ing PLCC, SROCC, and outlier ratio scores are quite similar for
OB-FWQI and MB-FWQI. The F-test does not show a signif-
icant difference in the performance of the metrics. We believe
that the resolution of the HMD used in the LIVE-FBT-FCVR
subjective experiment, and consequently resolution of the simu-
lated viewports fed into the metric, limit our ability to reveal the
difference between OB-FWQI and MB-FWQI metrics. To clar-
ify this limitation, four plots are provided in Fig. 5, where the
original and modified Barten CSF are plotted from 5 to 20 de-
grees of visual degrees. The area between the two CSF curves
is marked with blue as an indicator of their difference. The red
dashed line in the plots represents the highest representable fre-
quency by the viewports (see Eq. 3) and three grey lines corre-
spond to the frequencies of wavelet decomposition levels. One

Table 1. Performance measures for objective metrics

Objective metrics PLCC SROCC Outlier Ratio

FWQI 0.7514 0.7419 0
OB-FWQI 0.6815 0.6939 0.0111
MB-FWQI 0.6875 0.6967 0.0111

Figure 5. The difference between original and modified Barten CSF. The

red dashed vertical line shows the highest frequency afforded by the HMD

as a function of eccentricity. Grey lines demonstrate frequency of each

wavelet decomposition level.

could interpret the red dashed line as the highest limit for the
frequencies presented to the observers during the subject exper-
iment, and the grey lines as the frequencies investigated by the
metric. In other words, none of the frequencies on the right side
of the red dashed line were present in the subjective experiment,
and only the frequencies on the left side were perceived by the
observers. The resulting plots suggest that most of the difference
between the two CSF curves (depicted by the blue area) lies on
the right side of the red dashed-line. Therefore, the resolution
of the HMD used in the LIVE-FBT-FCVR does not provide the
required bandwidth to reveal the difference between the original
and modified Barten.

Conclusion
Two additional versions of the FWQI were derived through

modification of the normalized sensitivity function. The resulting
scores were then compared to DMOS reported in the 2D LIVE-
FBT-FCVR dataset. The original implementation of the FWQI
with Geisler CSF resulted in the best performance measures;
however, F-test showed no significant difference in the perfor-
mance of the three metrics. The performance measures for the
OB-FWQI and MB-FWQI metrics are similar. Our study high-
lights the limitations of existing databases and the need to per-
form a foveated subjective quality assessment with a higher res-
olution HMD. Moreover, eye-tracking data and individual sub-
jective quality ratings can be helpful for the elimination of fixed
foveation assumption in evaluation framework.
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