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Abstract—Linear minimum mean square error can be used to
demosaic images from a colour-polarization filter array sensor.
However, the role of training data on its performance is yet
an open question. We study the model selection using cross-
validation techniques. The results show that the training model
converges quickly, and that there is no significant difference in
training the model with more than 12 images of approximately
1.5 megapixels. We also found that the selected trained model
performs better compared to a dedicated Colour-Polarization
Filter Array demosaicing algorithm in terms of Peak Signal-
to-Noise Ratio.

Index Terms—Color-polarization imaging, Polarization filter
array, demosaicing, spatial interpolation, linear minimum mean
squared error.

I. INTRODUCTION

Color-polarization image sensors capture images with a

spatial sampling based on a mosaic of Color Polarization Filter

Array (CPFA). It senses a specific filtered signal by pixel,

relatively to one spectral band and one polarization direction.

The most common CPFA camera is a 12-channel sensor, which

combines three color channels and four polarization angles of

analysis, equally-distributed between 0° and 180°. The SONY

IMX250 MYR [10] is one realization which is commercially

available, and its spatial arrangement is shown in Figure 1.

Demosaicing of filter arrays images is necessary to get a

full resolution image that is easier to handle by computer

vision algorithms. Like for the typical case of color filter

arrays that uses knowledge on spatio-spectral correlation [5],

CPFA demosaicing benefits from specific correlations present

in the data to perform image reconstruction [3], [6]. The Linear

Minimum Mean Square Error (LMMSE) was successfully

used to demosaic colour and polarisation images, with results

competitive to the state-of-the-art [11]. However, the role of

training data on its performance is yet an open question.

Thanks to the recent availability of a large image database,

this kind of analysis is now practically feasible.

This work was supported by the ANR JCJC SPIASI project, grant ANR-
18-CE10-0005 of the French Agence Nationale de la Recherche.

In this article, we study the performance of the LMMSE

demosaicing algorithm relatively to the amount of images used

for training. To this end, we use cross-validation techniques

applied to a dataset of spectral and polarimetric images. The

LMMSE algorithm is introduced in the next Section. Then,

we define an experiment for model selection over the largest

existing database. Results demonstrate that the learning model

reaches convergence with a limited number of training images,

and that the corresponding trained algorithm performs statisti-

cally better compared to a dedicated CPFA algorithm, i.e. the

Edge-Aware Residual Interpolation algorithm (EARI) [7], in

terms of PSNR.

1 Pixel1 Polarization Filter1 Spectral Filter

Polarization Filter Array
p 0,45,90,135 °Color Filter Array

c , , Pixel Array

Color-Polarization Filter Array

Fig. 1: A CPFA sensor architecture. A superpixel (4×4 pixels),

composed by filter and pixel arrays. The spatial arrangement

of filters used in this work is that of the SONY IMX250 MYR

sensor.

II. LMMSE DEMOSAICING

LMMSE is a supervised learning algorithm, which means

that a linear model must be trained to demosaic images. The
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training is performed on a set of images that contains both

mosaiced and full resolution images, called references. The

mosaiced images are generated with the Equation 1, where X
is the mosaiced image, Y is the reference image, and M is

the mosaicing matrix that simulates the effect of a CPFA filter

:

X = MY (1)

The size of Y is PHW with number of channels P = 12,
the height H , and the width W . The size of X is HW .

For the proper functioning of the algorithm, the image

data are rearranged in one dimensional vector. The reference

rearranged image is noted y, and the mosaiced rearranged

image x.

ŷ = Dx (2)

Equation 2 gives the relationship between the mosaiced

image x and the estimate of the reference image ŷ. Thus,

demosaicing can be considered as an inverse problem, which

admits a solution based on the criterion of minimizing the

Mean Square Error (MSE) between y and its estimate ŷ
derived from x. The demosaicing matrix D is computed as

follows:

D = Ei{yxt(xxt)−1} . (3)

E is the expectation, and i ∈ [1, n] indexes the image in a

database of n images.

To stabilize the solution of D, we use a neighbourhood of

10 × 10 pixels. This ad-hoc choice offered the best trade off

between performance and computational complexity [1], [11].

In the following, matrices that contain neighbouring pixels

will be denoted by the index 1. The matrix S1 is a constant

matrix with zeroes and ones, for removing neighbours from

y1. Taking into account the neighbours, we can rewrite the

above equations as follows:

⎧⎪⎪⎨
⎪⎪⎩

y = S1y1

x1 = M1y1

D = S1RM1
t(M1RM1

t)−1

ŷ = Dx1

(4)

with

R =
1

HW
hw k

Ei{y1y
t
1}, (5)

where hw is the size of superpixels. R is the mean of au-

tocorrelation of y1 over the HW
hw superpixels of each learning

image and over the k learning images of the database.

III. EXPERIMENTS

To study the performance of the LMMSE training, we used

two methods:

1) Method 1: the K-Fold cross-validation technique, in

which we vary K from 2 to 24, with a among a total of

n = 24 images.

2) Method 2: we vary the number of training images from

1 to 12 and compare the demosaicing results.

To assess the demosaicing quality, we use the Peak Signal to

Noise Ratio (PSNR).

Then, we compared the quality of the LMMSE demosaicing

with a demosaicing algorithm dedicated to CPFA, the Edge-

Aware Residual Interpolation algorithm (EARI).

A. Database

In our experiments, we use the database of images from Wen

et al. [12], which is available online. It is composed of 105
colour and polarimetric images of 1456 × 1088 pixels, each

of them having 12 channels. The channels are a combination

of three color channels (c ∈ {R,G,B}), and four polarization

angles of analysis, equally-distributed between 0° and 180°
(p ∈ {0°, 45°, 90°, 135°}). Each channel is defined by Ic,p.
The images have been captured with a three-CMOS prism-

based RGB camera, and with a linear polarizer rotated in front

of the camera. This is currently the largest available database

of colour and polarimetric images. This criterion is important

because we must be sure to have enough images to train and

test the algorithm. In addition, to avoid bias in the evaluation

procedure using learning methods, the images used for training

should not be reused for testing.

By examining individually each band visually, we noticed

that the blue channels at 0°, 45°, 90°, and 135° polarization

orientations are blurred. To measure it, we used the Helmli and

Scherer method [8] to estimate the degree of focus for each

of the 12 channels, and for the 105 images in the database.

This is an indicator for the relative measurement of blur

among channels. For comparison, we did the same process

with another dataset, which is the Monno et al. database [7]

(40 images).
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Fig. 2: Degree of focus (mean and standard deviation) ac-

cording to the channel. A factor of 0.1 is applied to standard

deviations for better readability.

Figure 2 shows the degree of focus computed on the two

databases for each of the 12 channels. It is noticeable that the
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measurements for the four blue channels of the Wen database

are lower relatively to the other channels. The differences for

the Monno database are much smaller. This blur study will

serve as an element of understanding for the result analysis in

the rest of the article. This does not call into question the use of

this database, since 1-the algorithms must be robust to this kind

of defect present in imperfect sensors, and 2-the demosaicing

results are compared by channel and relatively to the same set

of reference data. Moreover, Monno’s database only contains

40 images of 768× 1024 pixels, so Wen’s database allows us

to have much more data to conduct this study. Moreover, other

existing database, like Qiu et al. [9] (40 images of 512× 512
pixels) or Lapray et al. [4] (10 images of 368 × 496 pixels)

have a smaller amount of data than the Wen database.

B. Cross-validation using K-Fold

The first evaluation method (called Method 1) used in this

article is based on the K-Fold method [2]. This cross-validation

makes it possible to draw several sets of validation from

the same database and thus obtain a robust evaluation. The

principle is to divide the dataset of images into K groups.

K − 1 groups are used to train the algorithm, and one group

is used to test the algorithm. There are K iterations so that

each individual group serves once as a test group. In our

case, we take n = 24 random images from the database.

To vary the number of images used for training, we vary

K ∈ {2, 3, 4, 6, 8, 12, 24}, which gives respectively 12, 16,
18, 20, 21, 22, and 23 learning images. The last case where

K = n = 24 is a special case of the K-Fold and corresponds to

a leave-one-out cross-validation (LOOCV). The Algorithm 1

shows the different steps of the K-Fold experiment.

Algorithm 1 K-Fold method

INPUT : Database

OUTPUT : PSNR (μ,σ)

Select n = 24 random images

for k = 2 : 24 do
if 24/k is an integer then

Create k groups of 24/k images

for i = 1 : k do
Select the group i for test and other(s) for

learning

Learn D matrix with the learning group(s)

Demosaic the test group

Compute PSNR for the test group

end for
Compute the PSNR (μ,σ)

end if
end for

The limitation of this method is that we can not evaluate

for a few training images, where the number of testing images

can be too small to be representative. In our case, it would be

interesting to study the convergence of the learning procedure

for a few images. This is why we used another method to

complete this study.

C. Training with i images

The second method (called Method 2) consists of selecting i
images to train the algorithm and randomly taking 50 images

for testing the algorithm. The images for training must be

different from those for testing to avoid bias. For the first

iteration, the training is done with 1 image and then the 50
test images are demosaiced. At each iteration, the number

of training images is increased by 1, up to 12, and the

demosaicing is performed at each iteration with the same 50
images. The Algorithm 2 shows the different steps of Method

2.

Algorithm 2 Second method

INPUT : Database

OUTPUT : PSNR (μ,σ)

Select 12 images for learning

Select 50 random images for test

for i = 1 : 12 do
Learn D matrix with i images

Demosaic the 50 test images

Compute PSNR for the test group

Compute the PSNR (μ,σ)
end for

IV. RESULTS AND DISCUSSION

A. Model selection
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Fig. 3: PSNR as a function of learning images number with

Method 1. A factor of 0.05 is applied to standard deviation

for better readability.

The Figure 3 shows the average PSNRs, and standard de-

viations obtained with the Method 1 (K-Fold cross-validation

described in Subsection III-B). It can be seen that the varia-

tions in PSNRs are small for numbers of training images from
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12 to 23. This means that the model has already converged.

We can also see that the PSNR results for the blue and

green channels are close. This is due to the fact that the

blue channels are blurred as explained in the Section III-A.

The PSNRs for the green channels are supposed to be higher

than those of the blue and red channels, because the green

channels are spatially oversampled compared to the others.

This oversampling allows more information to be available to

reconstruct the data lost during mosaicing. It is clear that the

channel dependency of blur effect is actually impacting the

PSNR results, especially for algorithms that assume spatial

correlation in the image, such as LMMSE or EARI. The blur

effect acts as a low pass filter, and thus increases the spatial

correlation in the image. Blurred channels are relatively better

reconstructed than sharper channels. This helps explain the

good PSNR results for the four blue channels.
The Figure 4 shows the average PSNR values, and standard

deviations obtained with Method 2 (described in Subsec-

tion III-C). It can be seen that the PSNR values increase

monotonically throughout the iteration process from 1 to 12
learning images. The PSNR values stabilize with a relatively

low number of images. This means that the algorithm con-

verges quickly and therefore does not need a large amount

of images to perform well. It should be noted that the global

PSNR averages are different compared to Method 1. As the

scenes used for the tests are different for the two methods, the

results varies depending on the image statistics. Moreover, we

remark that if the images are of lower resolution, it will take

more images for the algorithm to converge, which validates

the dependency on the amount of data. As for Method 1, the

PSNR values of the blue channels are relatively high (close

to the oversampled green channels). This is due to the blur

present in the blue channels.
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Fig. 4: PSNR as a function of learning images with Method

2. A factor of 0.05 is applied to standard deviation for better

readability.

To summarize, we can conclude with Method 1 that with 12
images, the model has already converged, and there does not

seem to be a statistically significant difference in using more

images. With Method 2, we showed that the trend is rapidly

converging, and that only need a handful of images to train

the model.

For the comparison between the LMMSE and the EARI, we

chose the trained model with 12 images for the implementa-

tion.

B. LMMSE versus EARI

We compare the quality of the LMMSE demosaicing on the

dataset with the EARI algorithm. For LMMSE, we have kept

the trained model based on i = 12 images from the Method

2. We also do the same test with a model with i = 55 images

for comparison.

For the evaluation, we randomly select 50 images (none of

which were used for training to avoid bias). Then, these 50
images are demosaiced by both EARI and LMMSE, and the

averages and standard deviations are computed by channel.

The Table I shows the average PSNRs, and standard de-

viations for the EARI and the LMMSE. It can be seen that

the LMMSE gives better PSNR values than the EARI, which

was confirmed by a Wilcoxon signed rank test with a p-value

of 8.3742e-90, computed over the PSNR of all bands for all

images reconstructed by LMMSE (with 12 images) in front of

EARI, demonstrating the statistical significance of the result.

The PSNR results are very close between training with 12
images and 55 images. This means that from a certain number

of images (in our case 12) there is no point in learning with

more images.

It is important to note that EARI is an algorithm that does

not need to be learned, it is operational as is and will always

give the same result for a given image. An image demosaiced

with EARI will therefore always have the same PSNR. Unlike

the EARI, the LMMSE needs a learning step to demosaic

an image. This means that the demosaicing results can vary

depending on the number of images used for training and the

images themselves. For the same image, the LMMSE can give

different PSNR values.

It should be noted that we use a method which optimizes

the result for MSE, then we study the result relatively to the

PSNR, which is also based on MSE. There is a known bias

here. One way to escape bias is to use another metric for the

evaluation. At the moment, we don’t know of any other metric

that can quantify image quality, including the polarimetric

aspect.

The Figure 5 shows the S0 reference image and their

demosaiced versions with EARI and LMMSE, with a zoom

on an area of interest (a writing). S0 is a reconstructed color

image which contains the total intensity for each spectral

channel c, computed from the four polarization channels as

follows:

S0,c =
I0,c + I45,c + I90,c + I135,c

2
. (6)

It can be seen that the demosaicing performed by the

LMMSE allows a better reconstruction at the level of the

writings.
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TABLE I: Results for the experiment conducted in Section IV-B. Average μ and standard deviation σ of PSNR for EARI and

LMMSE algorithms. Best mean values by channel are highlighted in bold fonts.

EARI LMMSE LMMSE
i = 12 i = 55

μ σ μ σ μ σ

I0,R 35.96 2.42 37.12 2.50 37.02 2.53
I0,G 38.02 2.95 38.84 2.74 38.76 2.71
I0,B 38.87 3.02 40.02 2.97 40.00 2.94

I45,R 36.02 2.43 37.39 2.49 37.37 2.51
I45,G 38.61 2.96 39.68 2.74 39.64 2.71
I45,B 38.51 3.00 39.68 3.02 39.65 2.95

I90,R 36.03 2.48 37.29 2.50 37.30 2.51
I90,G 39.10 3.07 40.15 2.82 40.13 2.79
I90,B 37.87 3.07 38.72 3.07 38.70 3.02

I135,R 36.10 2.49 37.27 2.56 37.28 2.56
I135,G 38.70 2.97 39.62 2.74 39.56 2.71
I135,B 38.43 2.95 39.49 2.94 39.47 2.91

The Figure 6 shows the Degree Of Linear Polarisation

(DOLP ) images, computed by:

DOLPc =

√
S2
1,c + S2

2,c

S0,c
, (7)

where S1 is the intensity difference between the 0° and 90°
polarization images, and S2 the intensity difference between

the 45° and 135° polarization images. Only the green channels

of DOLP are shown, as all color channels are very similar.

The zoomed images highlight that the EARI creates more

artefacts than the LMMSE. Moreover, it can also be seen that

the LMMSE tends to smooth the image.

The Figure 7 shows the Angle Of Linear Polarisation

(AOLP ), computed by:

AOLPc = 0.5 arctan

(
S2,c

S1,c

)
. (8)

As with the DOLP , it can be seen that the EARI creates

more artefacts than the LMMSE and that the LMMSE tends

to smooth the image.

V. CONCLUSION

In conclusion, we observed that the LMMSE learning

process converges quickly. With Wen’s database, a handful

of images are enough to get better results than the state of the

art. We also observed that the LMMSE creates less artifacts

than EARI and allows for better demosaicing, specifically on

written content.

As future work, we could evaluate the results for random

batches of superpixels from the database rather than full

frames. In this way, we can identify if potential biases could be

introduced by image content. Moreover, it would be interesting

to compare LMMSE with deep learning-based demosaicing

methods, in terms of performance for a given amount of data.
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demosaicking methods for polarization filter array images. Sensors,
18(11), 2018.

[7] Miki Morimatsu, Yusuke Monno, Masayuki Tanaka, and Masatoshi
Okutomi. Monochrome and color polarization demosaicking using edge-
aware residual interpolation. In 2020 IEEE International Conference on
Image Processing (ICIP), pages 2571–2575. IEEE, 2020.

[8] Said Pertuz, Domenec Puig, and Miguel Angel Garcia. Analysis of
focus measure operators for shape-from-focus. Pattern Recognition,
46(5):1415–1432, 2013.

[9] Simeng Qiu, Qiang Fu, Congli Wang, and Wolfgang Heidrich. Linear
polarization demosaicking for monochrome and colour polarization focal
plane arrays. Computer Graphics Forum, 40(6):77–89, 2021.

[10] Sony. Polarization image sensor. Technical report, Polarsens, 2018.
[11] Alexandra Spote, Pierre-Jean Lapray, Jean-Baptiste Thomas, and Ivar

Farup. Joint demosaicing of colour and polarisation from filter arrays.
In Color and Imaging Conference, volume 2021, pages 288–293. Society
for Imaging Science and Technology, 2021.

[12] Sijia Wen, Yinqiang Zheng, Feng Lu, and Qinping Zhao. Joint chro-
matic and polarimetric demosaicing via sparse coding. arXiv preprint
arXiv:1912.07308, 8, 2019.

279

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 12,2023 at 19:08:26 UTC from IEEE Xplore.  Restrictions apply. 



(a) Ref S0 (b) EARI S0 (c) LMMSE S0

(d) Ref S0 zoomed (e) EARI S0 zoomed (f) LMMSE S0 zoomed

Fig. 5: (a)-(c) Visualization of the S0 images for reference image and demosaiced images with EARI and LMMSE. (d)-(f)

Zoomed versions.

(a) Ref DOLPG (b) EARI DOLPG (c) LMMSE DOLPG

(d) Ref DOLPG (e) EARI DOLPG (f) LMMSE DOLPG

Fig. 6: (a)-(c) Visualization of the DOLP images (green channel) for reference image and demosaiced images with EARI and

LMMSE. (d)-(f) Zoomed versions.

(a) Ref AOLPG (b) EARI AOLPG (c) LMMSE AOLPG

(d) Ref AOLPG (e) EARI AOLPG (f) LMMSE AOLPG

Fig. 7: (a)-(c) Visualization of the AOLP images (green channel) for reference image and demosaiced images with EARI and

LMMSE. (d)-(f) Zoomed versions.
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