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ABSTRACT

Sampling a perceptually uniform or pseudo-uniform color space is required for applications

from image processing to computational imaging. However, one can face two problems

while trying to perform a uniform sampling of such space. First, the usual cubic grid is not

perceptually uniform in most cases. Second, perceptual metrics are often not Euclidean.

We propose to overcome these problems. We apply our solution on CIELAB color space

to test its efficiency. We propose an algorithm to define a tabulated color space with regard

to a non-Euclidean color difference formula, i.e. ∆E∗

00
in CIELAB. The tabulated data are

available at http://data.couleur.org/deltaE/. Later, we propose to combine this

tabulated color space with an approximated 3D close packed hexagonal regular sampling

of CIELAB. Evaluations of the transform and of the regular sampling are performed and

compared with literature standards.

Keywords: Colorimetry; Perceptually uniform color space; Color differences; Sampling;

3D close packed hexagonal grid.
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1 Introduction

CIELAB color space (CIE, 2004) has been accepted by the CIE (International Commission

on Illumination) as a perceptual pseudo-uniform color space such that the Euclidean distance

http://data.couleur.org/deltaE/


between two specified colors in this space is proportional to the color difference between these

colors perceived by a standard observer. Although this color space has been defined only for

very well defined and limited colorimetric conditions, it has been, improperly but successfully,

used in practice in many applications in color image processing or computational color science.

However, the Euclidean metric ∆E∗

ab has been shown inappropriate, and alternative solutions

have been proposed in the last 20 years, such as ∆E∗

94, ∆E∗

CMC and ∆E∗

00 (CIE, 2004; Luo,

Cui and Rigg, 2001). These Color Difference Formulas (CDF) are known to be more accurate

considering human perception (Kim, Cho and Kim, 2001; Melgosa, Huertas and Berns, 2004;

Luo, Minchew, Kenyon and Cui, 2004), but have the major disadvantage to be not Euclidean.

This makes them difficult to use in some practical tasks, such as sampling.

Indeed, sampling a color space is a major issue in many applications in terms of hardware

complexity and speed, accounting for perception, and resulting image quality (Gentile, Alle-

bach and Walowit, 1990). Historically, a parallelepipedic grid was used for sampling CIELAB

space (Hill, Roger and Vorhagen, 1997). Such a grid is defined by a regular lattice that is

reproduced over and over in order to fill the space. In some cases, the sampling is performed

in the RGB or CMY spaces and then transformed into CIELAB, which leads to a large non-

uniformity of the final sampling due to the response compression and the chromatic adaptation

included in the transform (Mahy, Van Mellaert, Van Eycken and Oosterlinks, 1991; Trémeau,

Konik and Lozano, 1996), as shown in Figure 1. Even if the space is directly sampled using a

parallelepipedic grid, the sampling is not uniform. For instance, in the case of a cubic sampling

of step a, the distance between a sample and its closest neighbors can be either a, a
√
2 or

a
√
3, depending on the direction.

Solutions to uniform sampling might be found in 3D close packed hexagonal sampling. Such a

sampling has been used already in the field of computational color science and color imaging.

It has been used for color specification, such as Munsell re-annotation (Wyszecki, 1954) and

OSA color system arrangement (Foss, 1978; MacAdam, 1978). It has also been used specif-

ically for sampling CIELAB color space for color image quantization and analysis (Thomas

and Trémeau, 2007; Thomas, Chareyron and Trémeau, 2007; Colantoni, Thomas and Pil-

lay, 2010), for display color characterization (Stauder, Colatoni and Blonde, 2006; Stauder,

Thollot, Colantoni and Tremeau, 2007; Colantoni and Thomas, 2009), and for color space in-

vestigation (Thomas, Colantoni and Tremeau, 2013).

When it comes to non-Euclidean CDFs based sampling, a great deal of trouble is generated.

Philipp Urban et al. (Urban, Rosen, Berns and Schleicher, 2007) and Lorenzo Ridolfi et al.

(Ridolfi, Gattass and Lopes, 2010) proposed two methods to generate a tabulated version of

CIELAB, which can be used to perform Euclidean operations in this space with respect to

perceptual non-Euclidean CDFs. We initiated some preliminary works in this direction also

in our image visualization and analysis of art paintings (Colantoni et al., 2010). This article

presents a robust solution and complete analysis of such sampling strategy.

Our paper is organized as follows. First, we propose an algorithmic method to sample the

CIELAB color space with non Euclidean CDFs. A tabulated space is generated, which enable

us to use the Euclidean metric according to the chosen CDF. Then, we perform an approxi-

mated uniform sampling of the CIELAB color space, based on 3D close packed hexagonal.



(a) Regular sampling of the sRGB color

space.

(b) Transform of a regular sampling

from sRGB to CIELAB.

Figure 1: Visualization of a regular sampling of the sRGB color space and its conve rsion

into the CIELAB space. We can notice a large lack of uniformity in such a sampling.

To evaluate the method, we analyze the statistical distribution of the tabulated space and quan-

tify the accuracy of the transformation. We compare our work with Urban et al., which is the

reference work in this domain. Lastly, we analyze and discuss the properties of the 3D close

packed hexagonal grid we generate.

2 Tabulated Euclidean space embedding a non-Euclidean metric

This section considers the creation of a tabulated space, uniform with regard to non-Euclidean

CDFs. This space is defined such that an Euclidean metric can be used piecewise to approx-

imate any non-Euclidean CDF. Perceptual CDFs such as the ∆E94, ∆ECMC , ∆E00 and any

color appearance spaces are not Euclidean, referring to the CIELAB color space. Indeed,

while using these metrics in relation with the CIELAB, it is far more difficult to achieve a uni-

form sampling. The method that we propose is based on 3D grid piecewise morphing. Next

we compare our results with the method proposed by Urban et al. (Urban et al., 2007) based

also on a tabulated space.

2.1 Concept

Due to the experimental nature of the CIELAB color space and to the visual system features,

the Euclidean metric does not permit a very good quantification of color differences in this

space. To overcome this, the CIE and other standardization organisms proposed more complex

(in term of computation) CDFs: ∆E94, ∆ECMC , ∆E00. These CDFs increased the quality

of color sample difference estimation without modifying the space itself. They are typically

based on a lightness weighting function, a chroma weighting function, a hue weighting function,

an intermediate term between chroma and hue differences and a scaling factor for a∗ scale,

which mainly affects colors with low chroma. ∆E00 includes a hue rotational term to deal with

problematic blue regions.

We propose here to define a piecewise function that enables us to create a tabulated structure

based on a non-Euclidean CDF of the CIELAB color space. Thanks to this transform, it is

possible to use a piecewise Euclidean metric to approximate a non-Euclidean CDF.

In the literature, only Urban et al. and Ridolfi et al. proposed a similar approach. One algorithm



(Urban et al., 2007) is based on a local optimization of a square grid via the use of its dual in

the a∗b∗ plane. The nodes are initially placed at regular distance ∆E∗

ab. Next, these grids

are optimized by modifying the nodes alternatively toward a pseudo-uniformity considering

a given non-Euclidean metric. They set up a set of conditions in order to avoid the grid to

collapse, which is more likely to happen with ∆E00 considering ambiguity on hue values and

discontinuities, such as studied by Sharma et al. (Sharma, Wu and Dalal, 2005). This approach

is very robust and fast to converge considering the constraints on the global shape of the grid.

However, this robustness forbid it to be very accurate locally. The other algorithm (Ridolfi

et al., 2010) uses multidimensional scaling techniques to achieve such tabulated space with

∆E00. Their method gives good freedom to the distribution of the data, and includes the

problematic Gaussian curvature of the a∗b∗ plane. While these approaches consider a global

grid of a given number of data adjusted to the non-Euclidean metric, our approach considers

a local method, focusing on the volumetric aspect information. In a nutshell, we place every

point as good as it can be, one after another, rather than refining a grid. Our main objective is

to limit the error in most part of the space at the expense of the error in some very rare area.

2.2 Design of the method

We denote ∆Esmp the sampling distance used to generate the tabulated sampling based on a

generic distance, ∆Exx ∈ {∆E76, ∆E94, ∆ECMC , ∆E00}. We define also the distance ∆Exx

between 2 colors C1 and C2 as being the average of ∆Exx(C1, C2) and ∆Exx(C2, C1). By doing

this, we take into account the lack of symmetry of some perceptual CDFs such as ∆ECMC .

The natural separation of lightness and chroma attributes in the space and in the CDF’s defini-

tions allows us to split the tabulated space according to one 2D-LUT corresponding to (a∗, b∗)

plane and a 1D-LUT corresponding to the L∗ axis. The sampling transform linked to the tab-

ulated space that we propose is defined by the combination of a 1D linear interpolation with a

2D bilinear interpolation.

The two-dimensional grid corresponding to the 2D-LUT of the (a∗, b∗) chromatic plane is the

result of a diffusion process that starts from a central point of coordinate a∗ = 0 and b∗ = 0.

This process is based on pre-computed values over the axis a∗ and b∗. These axes serve as

anchor to preserve the grid from collapsing.

Stage 1: discretization of the axis according to a given sampling dista nce ∆Esmp.

Let us note that the functions δExx(a
∗), δExx(b

∗) and δExx(L
∗) (distances computed from the

L∗, a∗ or b∗ axis) are monotonous and are independent of the CDFs used. The estimation of

the next sample on the plane at a distance ∆Esmp is performed using a simple dichotomous

search. That enables us to obtain tabulated samples A+[I] and A−[I] along the positive and

negative directions of the a∗ axis; tabulated samples B+[I] and B−[I] along the positive and

negative directions of the b∗ axis, and tabulated samples L[I] along the lightness axis L∗ for a

given ∆Esmp. The synopsis of the algorithm is given in Appendix, see Algorithm 2.

Stage 2: creation of the two-dimensional grid on ( a∗, b∗) plane with a diffusion process.

The support for this 2D grid is a matrix of (a∗, b∗) coordinates, its size (N,M ) must be sufficient

to cover CIELAB destination space, so that it includes the whole gamut considered.



Figure 2: Quadrants definition in CIELAB.

For each data of the 2D grid, we compute its distance to the center of coordinates (0, 0). This

value is used to sort the points by ascending order of distances, in order to determine the

order of processing. This enables our diffusion process. The initial transform of the grid is to

include the values computed on the axis a∗ and b∗ in stage 1. The rest of the data is processed

successively, according to the stack order, considering the following constraints depending on

which quadrant it belongs to (Figure 2).

• Q1 (a∗+b
∗

+): the point C(n,m) has to be at a given distance ∆Esmp of C(n − 1,m) and

C(n,m− 1) (Figure 3(a)).

• Q2 (a∗+b
∗

−
): the point C(n,m) has to be at a given distance ∆Esmp of C(n − 1,m) and

C(n,m+ 1) (Figure 3(b)).

• Q3 (a∗
−
b∗
−
): the point C(n,m) has to be at a given distance ∆Esmp of C(n + 1,m) and

C(n,m+ 1) (Figure 3(c)).

• Q4 (a∗
−
b∗+): the point C(n,m) has to be at a given distance ∆Esmp of C(n + 1,m) and

C(n,m− 1) (Figure 3(d)).

The position of each new point is estimated from the previous data and from the axis rigid data

as follows, according to its location in the tabulated data:

• in Q1 (Figure 3(a)),

C(n,m)a = C(n− 1,m− 1)a + (A+[n]−A+[n− 1])

C(n,m)b = C(n− 1,m− 1)b + (B+[m]−B+[m− 1])

• in Q2 (Figure 3(b)),

C(n,m)a = C(n− 1,m+ 1)a + (A+[n]−A+[n− 1])

C(n,m)b = C(n− 1,m+ 1)b + (B−[m]−B−[m+ 1])

• in Q3 (Figure 3(c)),

C(n,m)a = C(n+ 1,m+ 1)a + (A−[n]−A−[n+ 1])

C(n,m)b = C(n+ 1,m+ 1)b + (B−[m]−B−[m+ 1])

• in Q4 (Figure 3(d)),

C(n,m)a = C(n+ 1,m− 1)a + (A−[n]−A−[n+ 1])

C(n,m)b = C(n+ 1,m− 1)b + (B+[m]−B+[m− 1]).



(a) Quadrant Q1 (b) Quadrant Q2

(c) Quadrant Q3 (d) Quadrant Q4

Figure 3: Data coordinates by quadrants.

Once this position is evaluated, we optimize the (a∗, b∗) coordinates of C(n,m). For the Q1

quadrant, we optimize the distances between C(n,m) and C(n − 1,m) and between C(n,m)

and C(n,m−1) in order to get as close as possible to ∆Esmp. Due to the nature of the metrics

and due to the Gaussian curvature of the plane, the result of this optimization might be an

approximation. This optimization moves repeatedly the point C(n,m) as shown in Algorithm 1.

Algorithm 1 Optimization of the position of C(n,m).
1: iter ← 0

2: repeat

3: l1← ∆Exx(C(n,m), C(n,m− 1))

4: l2← ∆Exx(C(n,m), C(n− 1,m))

5: C(n,m)a ← C(n,m)a − (C(n,m)a − C(n,m − 1)a) × (l1−∆Esmp)
1000 − (C(n,m)a − C(n −

1,m)a)× (l2−∆Esmp)
1000

6: C(n,m)b ← C(n,m)b − (C(n,m)b − C(n,m − 1)b) × (l1−∆Esmp)
1000 − (C(n,m)b − C(n −

1,m)b)× (l2−∆Esmp)
1000

7: iter ← iter + 1

8: until (iter < MAXITER) or ((l1 6= ∆Esmp) and (l2 6= ∆Esmp))

The motion of the iterative move is proportional to the remaining distance from an optimal

C(n,m). We stop this iterative process when C(n,m) is at a perfect position,

i.e. ∆Exx(C(n,m), C(n,m− 1)) = ∆Exx(C(n,m), C(n− 1,m)) = ∆Esmp, or when we reach a

maximum iteration (we used MAXITER = 20000).

We proceed in a similar way when C(n,m) is in Q2, Q3 and Q4. When the stack is empty, the



Table 1: Comparison of the data provided by Urban with our data; ∆E94, ∆ECMC , ∆E00

CDFs are used to generate tabulated spaces based on a ∆Esmp of 1. Results show that

all the created tabulated spaces are rather well uniform.
∆Exx = 1 Number of Average Average Std Dev 95 perc. Maximum Minimum

2D/3D Urb/Us Nodes segment error segment segment

2D Urban 14,019 0.877 0.123 0.055 0.208 0.993 0.764

∆E94 2D Our 11,226 1.001 0.001 0.000 0.001 1.001 0.998
3D Urban 1,299,755 0.919 0.081 0.074 0.200 1.000 0.764

3D Our 1,025,327 1.000 0.000 0.000 0.001 1.001 0.998

2D Urban 14,029 1.122 0.122 0.157 0.401 2.279 0.235

∆ECMC 2D Our 19,418 1.001 0.001 0.001 0.002 1.018 0.997
3D Urban 1,224,412 1.094 0.094 0.145 0.380 2.279 0.235

3D Our 1,712,716 1.000 0.000 0.001 0.001 1.018 0.997

2D Urban 13,274 0.931 0.069 0.125 0.281 1.906 0.510

∆E00 2D Our 13,126 1.003 0.003 0.010 0.020 1.069 0.971
3D Urban 965,939 0.960 0.040 0.101 0.221 1.906 0.510

3D Our 935,341 1.001 0.001 0.007 0.002 1.069 0.971

chromatic plane of the new space is defined from these tabulated data. The synopsis of the

algorithm is given in Appendix in algorithms 4 and 3. The lightness tabulation is straightforward.

2.3 Analysis

To evaluate the accuracy of our sampling scheme and to compare it with the sampling scheme

proposed by Urban et al. we analyze first-order statistics computed over the grid, for different

∆Esmp and different ∆Exx. The comparison is done from data provided on their website (Urban

et al., 2007). Note that the difference of number of samples computed with our tabulated space

is due to the method used, but also and mainly to the fact that their data does not cover the

entire spectrum locus, as can be seen on Figure 4 and 5. This is the case because Urban et

al. used the boundaries of the encoding CIELAB (this is reasonable since color difference

metrics are designed to close to achromatic colors; however, in practice it might be useful to

cover the entire locus). Instead, we limit our data set to the spectrum locus computed for a

D65 illumination. The spectrum locus boundaries are approximated based on the combination

of uni-modal spectral primaries shaped as rectangular functions. In the following, the terms

2D and 3D correspond, respectively, to the chromatic (a∗, b∗) plane and to the entire 3D space,

including the lightness.

Table 1 shows that, with a ∆Esmp of 1, our method generates a very accurate tabulated space

with a mean distance value of 1 and a rather small standard deviation for all tested CDFs. The

highest standard deviation is equal to 0.010 (resp. 0.157) with our 2D method (resp. Urban’s

method) with the ∆E00 CDF (resp. the ∆ECMC CDF), whereas the highest standard deviation

is equal to 0.007 (resp. 0.145) with our 3D method (resp. Urban’s method) with the ∆E00

CDF (resp. the ∆ECMC CDF). In the worst case, the maximal error is of (1.069-1) with our

method (with the ∆ECMC CDF), meanwhile it is of (2.279-1) with the Urban’s method (with also

the ∆ECMC CDF). These results are simply based on the grid’s data, with no transformation

needed.



Figure 4: Visualization of Urban’s data set in the (a∗, b∗) plane of the CIELAB color space. We

set ∆E94 = 1 to generate the tabulated space. The data are constrained to the projected spec-

trum locus boundaries. At each node (sample) corresponds eight segments. Each segment

relies two adjacent tabulated samples.

In most cases, we improve on the accuracy of the tabulated space defined by Urban’s data.

Table 1 gives only first indications, since data do not overlap the same area in the CIELAB

space. Moreover, we can note that for ∆ECMC , Urban’s method does not provide very good

results, this might be due to the lack of symmetry of this CDF. Additional local results are

provided in Figures 4 and 5, next in Figures 6 and 7. The color of the segments created is set

to black, green or red according to the corresponding error. Black is set for relative errors

of 0 to 5%, green for 5 to 10% and red when it is over 10% . Figures 5 and 7 show that our

grid is very accurate in this case, oppositely to the Urban’s method, as we can see in Figures 4

and 6. Let us also notice that Figures 6 and 7 are very interesting as they emphasize the

fundamental difference between these two methods. We can clearly see in Figures 7 and 6

that errors with our grid are concentrated in a very small area, whereas the other method

provides a more homogeneous error. This is to be compared with the results obtained by

Ridolfi et al., because their method seems to perform very well especially in this area. The

lowest error is obtained with our 3D method with the ∆E94 CDF, next with the ∆ECMC CDF

(errors are very closed to those obtained with the ∆E94 CDF) and lastly with the ∆E00 CDF.

We observe the same tendency with Urban’s data.

From now, we study the influence of the discretization step on the accuracy of the method. We

can notice in Table 2 that the increase of the method’s accuracy is inversely proportional to the

decrease of the discretization step. Once again, in Table 2, we can notice that there are more

errors with the ∆E00 CDF than with the ∆E94. The difference of accuracy between the ∆E00

CDF and the ∆E94 tends to decrease when the discretization step tends to decrease also, as

these CDFs tend to be more and more linear with the increasing of color difference.



Figure 5: Visualization of our data set in the (a∗, b∗) plane of the CIELAB color space. We set

∆E94 = 1 to generate the tabulated space. The data are constrained to the projected spectrum

locus boundaries. At each node (sample) corresponds eight segments. Each segment relies

two adjacent tabulated samples.

In order to evaluate the accuracy of the three tabulated spaces, three different experiments

have been performed. These evaluations are all based on 10 millions of pairs of samples ran-

domly selected, with pairs of samples spaced at a given distance. The selection is performed

as follow: First, 10 millions of color patches are selected randomly within the spectrum locus.

Second, for each color patch, a second color patch is selected, based on two random angles

in spherical coordinates, with a radius of distance patches ∆EP . Third, these 2 points are

transformed through our tabulated space, and the resulting distance between them in the new

space is the average of the distance computed from one to the other and vice versa.

• Evaluation A: Couples of data are generated in CIELAB∆Exx, sampled with ∆Esmp

of 0.25, 0.5 and 1. Both points are transformed to CIELAB, then the ∆Exx between

them is evaluated by the average of the distance in both directions, ∆EM . The error is

expressed as E = ∆EP −∆EM .

• Evaluation B: Data are generated in CIELAB, with ∆EP = 1. These data are trans-

formed to CIELAB∆Exx, then the Euclidean distance between them is computed (this

is equivalent to approximate ∆Exx) and compared with the ∆Exx computed directly in

CIELAB.

• Evaluation C: Data are generated in CIELAB, then transformed to CIELAB∆Exx, and

transformed back to CIELAB. Evaluation is performed on how they come back alike

with ∆E∗

ab.

Tables 3 to 8 show the results of these evaluations for three different CDFs and different tab-

ulated spaces. Depending on the accuracy wanted, different parameters would be preferred.



Figure 6: Visualization of Urban’s data set in the (a∗, b∗) plane of the CIELAB color space. We

set ∆E00 = 1 to generate the tabulated space. The data are constrained to the projected spec-

trum locus boundaries. At each node (sample) corresponds eight segments. Each segment

relies two adjacent tabulated samples.

Nonetheless, a ∆Esmp of 1 provides correct results. This suggest that a finer sampling is not

necessarily the best, since it includes more relative errors in the distribution of data. However,

this is to be balanced with the accuracy of the transform as we will show in the following.

3 Uniform CIELAB sampling with non Euclidean CDFs

In this section we use the tabulated uniform version of CIELAB color space based on a given

CDF and a 3D close packed hexagonal sampling scheme. This permits studying the accuracy

of the transform itself.

3.1 Results

Table 9 provides statistics on the uniform sampling obtained with a distance of 1 and a tabulated

space based on different ∆Esmp. Results show that the use of a small ∆Esmp reduces the

average error but increases the maximum error and vice versa. This is directly due to the

tabulation accuracy, as shown in Table 2. Figure 8 illustrates the sampling for a distance of 4.

Although this distance does not mean much in term of colorimetry, it provides a better visibility

of the error location. We can observe more errors in the bluish area.

Table 10 provides statistics for the uniform sampling of a cylinder of radius 50 centered and

aligned with the lightness axis. This makes us able to compare the efficiency of both methods

fairly since we cannot cover the spectrum locus with Urban’s data. In having a radius of 50,

we may be a bit favored as our grid is more accurate in close to achromatic area, but as a



Table 2: Comparison for different value of ∆Esmp: 0.25, 0.5 and 1.0 The comparison is

performed for 2D and 3D data with the ∆E94, ∆ECMC , ∆E00 CDFs.
∆Exx Number of Average Maximum Minimum Average Std Dev 95 perc.

2D/3D & 0.25/0.5/1 Nodes segment segment segment error in % in % in %

0.25 2D 179,892 0.2519 0.2549 0.2440 0.7646 0.4662 1.4461

3D 65,818,399 0.2512 0.2549 0.2440 0.4848 0.4820 1.3143

∆E94 0.5 2D 45,118 0.5010 0.5023 0.4968 0.1946 0.1179 0.3656

3D 8,258,326 0.5006 0.5023 0.4968 0.1236 0.1223 0.3327

1 2D 11,226 1.0005 1.0013 0.9984 0.0503 0.0290 0.0923

3D 1,025,327 1.0003 1.0013 0.9984 0.0317 0.0309 0.0846

0.25 2D 305,935 0.2528 0.2756 0.2464 1.1201 1.1940 3.1337

3D 108,079,761 0.2517 0.2756 0.2464 0.6700 1.0976 2.5127

∆ECMC 0.5 2D 77,670 0.5014 0.5232 0.4946 0.2705 0.3673 0.8133

3D 13,713,475 0.5008 0.5232 0.4946 0.1638 0.3433 0.6287

1 2D 19,418 1.0006 1.0182 0.9973 0.0563 0.0927 0.1511

3D 1,712,716 1.0003 1.0182 0.9973 0.0331 0.0866 0.1266

0.25 2D 207,211 0.2533 0.3018 0.2329 1.3320 2.7743 6.2991

3D 59,143,450 0.2518 0.3018 0.2329 0.7030 1.9108 2.5965

∆E00 0.5 2D 52,564 0.5029 0.5584 0.4779 0.5780 1.7105 3.4226

3D 7,496,169 0.5015 0.5584 0.4779 0.2952 1.1635 0.7664

1 2D 13,126 1.0028 1.0691 0.9707 0.2819 1.0307 1.9457

3D 935,341 1.0014 1.0691 0.9707 0.1384 0.6947 0.1829

Table 3: Accuracy of our method with the ∆E94 CDF for different values of ∆Esmp (Evalu-

ation A). ∆Esmp values tested are equal to 0.25, 0.5 and 1.0. The distance values (1, 2 and

4) between pairs of color patches had been chosen in order to have r easonable color

differences. The evaluation was performed from 10,000,000 pairs ra ndomly selected.
∆E94 Average Maximum Minimum Average Std Dev 95 perc.

∆E
smp Distance segment segment segment error in % in % in %

Patches

1 1.003 1.220 0.685 0.325 5.999 12.255

0.25 2 2.007 2.327 1.657 0.353 5.960 12.206

4 4.019 4.651 3.326 0.470 5.909 12.161

1 1.000 1.153 0.823 0.017 5.789 11.911

Eval A 0.5 2 2.000 2.305 1.651 0.015 5.782 11.903

4 4.005 4.611 3.314 0.134 5.747 11.848

1 0.999 1.154 0.820 0.114 5.770 11.894

1 2 1.998 2.306 1.642 0.081 5.763 11.882

4 4.002 4.606 3.309 0.039 5.728 11.820



Table 4: Accuracy of our method with the ∆E94 CDF for different values of ∆Esmp (Evalu-

ations B and C). ∆Esmp values tested are equal to 0.25, 0.5 and 1.0. The distance values

(1, 2 and 4) between pairs of color patches had been chosen in order to have reason-

able color differences. The evaluation was performed from 10,000,00 0 pairs randomly

selected.
∆E94 Average Maximum Minimum std Dev 95 perc.

∆E
smp Distance error error error

Patches (absolute) (absolute) (absolute) (absolute) (absolute)

1 0.016 0.370 0 0.017 0.049

0.25 2 0.031 0.446 0 0.032 0.098

4 0.062 0.497 0 0.062 0.193

1 0.015 0.529 0 0.019 0.048

Eval B 0.5 2 0.029 0.577 0 0.032 0.095

4 0.058 0.557 0 0.061 0.188

1 0.017 1.128 0 0.039 0.049

1 2 0.031 1.108 0 0.046 0.098

4 0.060 1.274 0 0.068 0.193

1 0.002 1.886 0 0.026 0.002

0.25 2 0.002 1.930 0 0.026 0.002

4 0.002 1.932 0 0.026 0.002

1 0.006 3.815 0 0.083 0.007

Eval C 0.5 2 0.006 3.815 0 0.083 0.007

4 0.006 3.851 0 0.084 0.007

1 0.023 7.321 0 0.232 0.015

1 2 0.023 7.321 0 0.231 0.015

4 0.023 7.318 0 0.231 0.015

Table 5: Accuracy of our method with the ∆ECMC CDF for different values of ∆Esmp

(Evaluation A). ∆Esmp values tested are equal to 0.25, 0.5 and 1.0. The distance values

(1, 2 and 4) between pairs of color patches had been chosen in order to have reason-

able color differences. The evaluation was performed from 10,000,00 0 pairs randomly

selected.
∆ECMC Average Maximum Minimum Average Std Dev 95 perc.

∆E
smp Distance segment segment segment error in % in % in %

Patches

1 1.003 1.528 0.320 0.296 8.572 18.322

0.25 2 2.006 3.061 0.634 0.275 8.516 18.183

4 4.012 6.065 1.286 0.295 8.463 18.074

1 0.998 1.463 0.257 0.215 8.767 18.738

Eval A 0.5 2 1.997 2.935 0.536 0.219 8.771 18.779

4 3.992 5.848 1.086 0.195 8.779 18.864

1 0.996 1.436 0.227 0.386 8.952 19.044

1 2 1.992 2.874 0.446 0.389 8.959 19.077

4 3.985 5.767 0.928 0.367 8.975 19.163



Table 6: Accuracy of our method with the ∆ECMC CDF for different values of ∆Esmp

(Evaluations B and C). ∆Esmp values tested are equal to 0.25, 0.5 and 1.0. The distance

values (1, 2 and 4) between pairs of color patches had been chosen in order to have

reasonable color differences. The evaluation was performed from 1 0,000,000 pairs ran-

domly selected.
∆ECMC Average Maximum Minimum std Dev 95 perc.

∆E
smp Distance error error error

Patches (absolute) (absolute) (absolute) (absolute) (absolute)

1 0.031 1.947 0 0.068 0.103

0.25 2 0.062 3.757 0 0.132 0.204

4 0.124 6.175 0 0.250 0.403

1 0.035 2.585 0 0.084 0.109

Eval B 0.5 2 0.069 4.768 0 0.165 0.214

4 0.136 7.365 0 0.314 0.427

1 0.039 3.188 0 0.102 0.118

1 2 0.075 5.521 0 0.191 0.230

4 0.145 8.106 0 0.356 0.448

1 0.001 0.938 0 0.015 0.001

0.25 2 0.001 0.938 0 0.015 0.001

4 0.001 0.938 0 0.015 0.001

1 0.004 1.891 0 0.053 0.004

Eval C 0.5 2 0.004 1.891 0 0.053 0.004

4 0.004 1.891 0 0.053 0.004

1 0.016 3.773 0 0.150 0.012

1 2 0.016 3.762 0 0.150 0.012

4 0.016 3.773 0 0.150 0.012

Table 7: Accuracy of our method with the ∆E00 CDF for different values of ∆Esmp (Evalu-

ation A). ∆Esmp values tested are equal to 0.25, 0.5 and 1.0. The distance values (1, 2 and

4) between pairs of color patches had been chosen in order to have r easonable color

differences. The evaluation was performed from 10,000,000 pairs ra ndomly selected.
∆E00 Average Maximum Minimum Average Std Dev 95 perc.

∆E
smp Distance segment segment segment error in % in % in %

Patches

1 1.002 1.673 0.054 0.211 9.811 21.449

0.25 2 2.003 3.338 0.109 0.138 9.726 21.166

4 3.999 6.650 0.225 0.034 9.580 20.786

1 0.998 1.577 0.035 0.198 9.998 21.962

Eval A 0.5 2 1.995 3.138 0.070 0.266 9.951 21.815

4 3.983 6.265 0.142 0.432 9.849 21.515

1 0.996 1.515 0.027 0.362 10.123 22.310

1 2 1.992 3.020 0.054 0.425 10.081 22.176

4 3.977 6.029 0.111 0.587 9.996 21.912



Table 8: Accuracy of our method with the ∆E00 CDF for different values of ∆Esmp (Evalu-

ations B and C). ∆Esmp values tested are equal to 0.25, 0.5 and 1.0. The distance values

(1, 2 and 4) between pairs of color patches had been chosen in order to have reason-

able color differences. The evaluation was performed from 10,000,00 0 pairs randomly

selected.
∆E00 Average Maximum Minimum std Dev 95perc.

∆E
smp Distance error error error

Patches (absolute) (absolute) (absolute) (absolute) (absolute)

1 0.026 3.960 0 0.083 0.089

0.25 2 0.051 7.585 0 0.163 0.174

4 0.101 14.320 0 0.312 0.342

1 0.029 7.153 0 0.122 0.094

Eval B 0.5 2 0.057 13.435 0 0.240 0.185

4 0.113 23.921 0 0.457 0.365

1 0.034 10.453 0 0.153 0.100

1 2 0.064 19.207 0 0.293 0.197

4 0.122 28.701 0 0.551 0.379

1 0.002 1.754 0 0.024 0.004

0.25 2 0.002 1.733 0 0.024 0.004

4 0.002 1.733 0 0.024 0.004

1 0.008 3.593 0 0.077 0.012

Eval C 0.5 2 0.008 3.593 0 0.077 0.012

4 0.008 3.604 0 0.077 0.012

1 0.025 7.074 0 0.210 0.026

1 2 0.025 7.069 0 0.210 0.026

4 0.025 7.074 0 0.210 0.026

Table 9: Evaluation of the uniform sampling of the spectrum locus based on a ∆Exx = 4

and a ∆Exx = 1.
∆Exx = 1 Number of Average Maximum Minimum Average Std Dev 95 perc.

∆E
smp Nodes segment segment segment error in % in % in %

0.25 4695117 1.001 1.250 0.653 0.098 6.114 13.171

∆E94 0.5 4734831 0.998 1.134 0.850 0.200 5.897 12.874

1 4747514 0.997 1.135 0.845 0.284 5.882 12.827

0.25 7245575 1.009 1.476 0.394 0.862 8.721 16.926

∆ECMC 0.5 7399510 1.004 1.413 0.452 0.380 8.988 18.026

1 7455161 1.002 1.388 0.413 0.239 9.200 18.373

0.25 4245726 1.000 1.624 0.322 0.025 10.288 21.609

∆E00 0.5 4327014 0.996 1.521 0.329 0.374 10.606 21.750

1 4358975 0.995 1.467 0.337 0.503 10.711 22.210



Figure 7: Visualization of our data set in the (a∗, b∗) plane of the CIELAB color space. We set

∆E00 = 1 to generate the tabulated space. The data are constrained to the projected spectrum

locus boundaries. At each node (sample) corresponds eight segments. Each segment relies

two adjacent tabulated samples.

counterpart, color differences are more accurate in this area, so it is a meaningful evaluation.

Our method outperforms Urban’s method while looking at the average of the segment’s size.

However, the maximum and minimum length of the segments are better preserved by Urban’s

grid, which outperforms our algorithm in the extreme cases. This was predictable and is due to

the fundamental differences between the two methods. Urban’s is more global and limits large

errors where the color difference formula lacks continuity and introduces much distortions. Our

method is more local and provides more accurate results in most cases but when the data are

closing the grid. This is where all the error accumulated during the optimization is expressed,

such as in Figure 7.

3.2 Analysis on the uniform sampling of CIELAB

Judd and Wyszecki(Judd and Wyszecki, 1975) talked about 10,000,000 discernible colors in-

cluded into the theoretical limits of the colorimetric visual system. Pointer and Attridge(Pointer

and Attridge, 1998) considered some restriction in the possible natural spectra (MacAdam lim-

its) and talked of about 2,279,381 colors. The natural scene analysis proposed by Linhares

et al. (Linhares, Pinto and Nascimento, 2008) talked of about 2,275,698 colors. Although the

first ones used a parallelepipedic grid and the last ones used an analysis based on ∆E∗

00 color

difference, the number of discernible colors mentioned in these two works is quite similar.

If we look at our results using ∆E∗

ab, we can find a number of discernible colors of 12,163,500

using a distance of 1 units, which is close to the number given by Judd and Wyszecki. On

another hand, the JND of 1 seems to be not very well fitted by the ∆E∗

ab formulas. If we



Figure 8: Uniform sampling of the CIELAB color space with the ∆E00 CDF.

Table 10: Comparison of Urban’s method and our method for the uniform sam pling of the

intersection between the spectrum locus and a cylinder of radius 50, based on ∆Exx =

4, 2 and 1.
∆Exx = 4 Number of Average Maximum Minimum Average Std Dev 95 perc.

method Nodes segment segment segment error in % in % in %

∆E94 Urb 48724 3.704 4.030 3.111 7.404 5.348 18.692

Us 37760 4.001 4.531 3.413 0.033 5.686 12.867

∆ECMC Urb 42713 4.416 6.866 3.478 10.397 11.398 34.496

Us 62967 3.998 5.450 1.734 0.046 9.887 23.982

∆E00 Urb 36176 3.876 6.166 2.796 3.093 5.779 14.159

Us 34426 3.971 5.733 1.521 0.724 8.586 13.716

∆Exx = 2 Number of Average Maximum Minimum Average Std Dev 95 perc.

method Nodes segment segment segment error in % in % in %

∆E94 Urb 408947 1.850 2.024 1.540 7.506 5.454 18.862

Us 321128 1.998 2.266 1.697 0.107 5.807 12.977

∆ECMC Urb 346678 2.205 3.412 1.723 10.243 11.467 34.184

Us 507136 1.999 2.751 0.845 0.042 9.921 21.925

∆E00 Urb 302682 1.941 3.541 1.364 2.934 6.312 14.487

Us 292026 1.988 2.877 0.762 0.621 8.893 14.493

∆Exx = 1 Number of Average Maximum Minimum Average Std Dev 95 perc.

method Nodes segment segment segment error in % in % in %

∆E94 Urb 3344851 0.925 1.019 0.760 7.541 5.496 18.952

Us 2634667 0.998 1.135 0.845 0.1509 5.853 13.087

∆ECMC Urb 2808670 1.103 1.723 0.855 10.256 11.516 34.376

Us 4094264 1.000 1.388 0.413 0.0186 9.927 22.171

∆E00 Urb 2487821 0.971 1.864 0.675 2.861 6.650 14.642

Us 2389836 0.994 1.448 1.448 0.579 9.062 14.779



consider, as Pointer and Linhares, a given number of about 2,300,000 discernible colors then

the JND is around 1.78 ∆E∗

ab units in average. This value would be considered as an average

JND in CIELAB when the sampling is done with the Euclidean distance. In all cases, a

variation can be tolerated due to the approximation done on the gamut boundaries and on the

pseudo-perceptual uniformity of CIELAB space over ∆E∗

ab.

With the method described in this work, we can improve the discussion. If we consider the

tabulated data, i.e. a parallelepipedic grid, we may find for a distance of 1, 1,000,000 samples

for ∆E∗

94, 1,700,000 samples for ∆E∗

CMC and 900,000 for ∆E∗

00. This is very different from the

results obtained with an hexagonal uniform sampling. With a uniform sampling, we obtained

2.6 millions samples for ∆E∗

94, while with Urban data, we ended up with 3.35 millions. For

∆E∗

CMC , we obtained 4 millions, while Urban’s data provided 2.8 millions. Finally for ∆E∗

00, we

are closer for both data set with 2.4 and 2.5 millions. This is very interesting as the number is

closed to what has been found by Pointer and Linhares. This is also surprising since with our

data, ∆E∗

94 seems to provide a similar number. However, the difference obtained with the use

of one or other data set is that large that further investigation seems to be required in order to

agree on the use of such tabulated space.

4 Conclusion

We provided a framework to generate an accurate tabulated sampling of the CIELAB color

space based on non-Euclidean color CDFs. We have compared our method with the state of

the art and shown that our method performs well compared with existing methods. It exists

other methods based on finite elements that could improve the accuracy of our method but

their computational cost is more expensive than what we proposed. Although it must be stated

that these data needs to be computed only once.

Our tabulated data are available on the author’s website as well as supplementary material.

These results may be used freely if related to reference to this work.

Possible applications include the design of color targets for device calibration and / or the

design of accurate vision tests (more accurate than the Farnsworth-Munsell 100 Hue Color

Vision Test). Especially when color space does not have the ability of constant hue, which

could limit the use of non uniformly distributed data.

5 Appendix

Considering one color on an axis (defined by a direction), the next color on this axis according

this direction will be computed by the procedure BUILDALLAXIS define in 2.

We use the same process for B+ and B− with the directions (0, 0, 1) and (0, 0,−1)

Considering that we want to create a size sizea×sizeb (defined as N×M in Stage 2 ) tabulated

grid of La∗b∗ colors, the center of this grid will be at the (na, nb) position in the corresponding

matrix (where na = sizea/2 and nb = sizeb/2) and will correspond to the a∗ = 0 and b∗ = 0

coordinate.

http://data.couleur.org/deltaE/


Algorithm 2 Axis Sampling Generation
1: procedure FINDNEXTCOLORONAXIS(in Colorstart, direction, ∆Esmp out result)
2: factor ← 0.1

3: start← Colorstart

4: repeat
5: end← direction× factor ×∆Esmp + start

6: distance← (∆Exx(start, end) + ∆Exx(end, start))/2

7: if distance ≤ ∆Esmp then
8: factor ← factor + 0.25

9: end if
10: until distance ≤ ∆Esmp

11: iter ← 0

12: done← false

13: repeat
14: med← (Colorstart + end)/2

15: distance← (∆Exx(Colorstart,med) + ∆Exx(med,Colorstart))/2

16: if |distance−∆Esmp| < eps or iter > MAXITER then
17: done← true

18: else
19: iter ← iter + 1

20: if distance > ∆Esmp then
21: end← med

22: else
23: start← med

24: end if
25: end if
26: until ! done

27: result← med

28: end procedure
29: procedure BUILDALLAXIS

30: L[0]← (0, 0, 0)

31: pos← 0

32: while L[pos] < (100 + ∆Esmp) do
33: FINDNEXTCOLORONAXIS(L[pos], (1, 0, 0), ∆Esmp, L[pos + 1])
34: pos← pos + 1

35: end while
36: A+[0]← (0, 0, 0), A

−
[0]← (0, 0, 0)

37: pos← 0

38: while A+[pos] < Amax do
39: FINDNEXTCOLORONAXIS(A+[pos], (0, 1, 0), ∆Esmp, A+[pos + 1])
40: pos← pos + 1

41: end while
42: pos← 0

43: while A
−
[pos] < −Amax do

44: FINDNEXTCOLORONAXIS(A
−
[pos], (0,−1, 0), ∆Esmp, A

−
[pos + 1])

45: pos← pos + 1

46: end while
47: end procedure



Notes : The grid values corresponding the a∗ and b∗ axis (A and B arrays in this algorithm)

are computed during BUILDALLAXIS and the initialization process of grid is done using these

values.

Algorithm 3 Grid Optimize
1: procedure OPTIMIZE(in src1, src2, ∆Esmp in/out dstOri)
2: dst← dstOri

3: iter ← 0

4: done← false

5: repeat
6: distance1← (∆Exx(src1, dst) + ∆Exx(dst, src1))/2

7: distance2← (∆Exx(src2, dst) + ∆Exx(dst, src2))/2

8: if |distance1−∆Esmp| < eps and |distance2−∆Esmp| < eps then
9: done← true

10: else
11: factor1← (distance1−∆Esmp)/1000

12: factor2← (distance2−∆Esmp)/1000

13: dst← dst− (factor1× (dst− src1) + factor2× (dst− src2))

14: iter ← iter + 1

15: end if
16: until iter < MAXITER and !done

17: end procedure
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