Sampling CIELAB color space with perceptual metrics

Philippe Colantoni ${ }^{1}$, Jean-Baptiste Thomas ${ }^{2}$ and Alain Trémeau ${ }^{3}$
${ }^{1}$ Université Jean Monnet, Centre Interdisciplinaire d'Etudes et de Recherches sur l'Expression Contemporaine, Saint-Étienne, France. philippe.colantoni@univ-st-etienne.fr ${ }^{2}$ Laboratoire Electronique, Informatique et Image, Université de Bourgogne, Dijon, France. jean-baptiste.thomas@u-bourgogne.fr
${ }^{3}$ Université Jean Monnet, Laboratoire Hubert Curien, Saint-Étienne, France. alain.tremeau@univ-st-etienne.fr

Abstract

Sampling a perceptually uniform or pseudo-uniform color space is required for applications from image processing to computational imaging. However, one can face two problems while trying to perform a uniform sampling of such space. First, the usual cubic grid is not perceptually uniform in most cases. Second, perceptual metrics are often not Euclidean. We propose to overcome these problems. We apply our solution on CIELAB color space to test its efficiency. We propose an algorithm to define a tabulated color space with regard to a non-Euclidean color difference formula, i.e. ΔE_{00}^{*} in CIELAB. The tabulated data are available at/http://data.couleur.org/deltaE/. Later, we propose to combine this tabulated color space with an approximated 3D close packed hexagonal regular sampling of CIELAB. Evaluations of the transform and of the regular sampling are performed and compared with literature standards.

Keywords: Colorimetry; Perceptually uniform color space; Color differences; Sampling; 3D close packed hexagonal grid.

2000 Mathematics Subject Classification: 06-Order, lattices, ordered algebraic structures; 68-Computer Science, P and W.

Computing Classification System: Algorithm; Theory

1 Introduction

CIELAB color space (CIE, 2004) has been accepted by the CIE (International Commission on Illumination) as a perceptual pseudo-uniform color space such that the Euclidean distance
between two specified colors in this space is proportional to the color difference between these colors perceived by a standard observer. Although this color space has been defined only for very well defined and limited colorimetric conditions, it has been, improperly but successfully, used in practice in many applications in color image processing or computational color science. However, the Euclidean metric $\Delta E_{a b}^{*}$ has been shown inappropriate, and alternative solutions have been proposed in the last 20 years, such as $\Delta E_{94}^{*}, \Delta E_{C M C}^{*}$ and ΔE_{00}^{*} (CIE, 2004; Luo, Cui and Rigg, 2001). These Color Difference Formulas (CDF) are known to be more accurate considering human perception (Kim, Cho and Kim, 2001; Melgosa, Huertas and Berns, 2004; Luo, Minchew, Kenyon and Cui, 2004), but have the major disadvantage to be not Euclidean. This makes them difficult to use in some practical tasks, such as sampling.
Indeed, sampling a color space is a major issue in many applications in terms of hardware complexity and speed, accounting for perception, and resulting image quality (Gentile, Allebach and Walowit, 1990). Historically, a parallelepipedic grid was used for sampling CIELAB space (Hill, Roger and Vorhagen, 1997). Such a grid is defined by a regular lattice that is reproduced over and over in order to fill the space. In some cases, the sampling is performed in the $R G B$ or $C M Y$ spaces and then transformed into $C I E L A B$, which leads to a large nonuniformity of the final sampling due to the response compression and the chromatic adaptation included in the transform (Mahy, Van Mellaert, Van Eycken and Oosterlinks, 1991; Trémeau, Konik and Lozano, 1996), as shown in Figure 1 . Even if the space is directly sampled using a parallelepipedic grid, the sampling is not uniform. For instance, in the case of a cubic sampling of step a, the distance between a sample and its closest neighbors can be either $a, a \sqrt{2}$ or $a \sqrt{3}$, depending on the direction.
Solutions to uniform sampling might be found in 3D close packed hexagonal sampling. Such a sampling has been used already in the field of computational color science and color imaging. It has been used for color specification, such as Munsell re-annotation (Wyszecki, 1954) and OSA color system arrangement (Foss, 1978; MacAdam, 1978). It has also been used specifically for sampling CIELAB color space for color image quantization and analysis (Thomas and Trémeau, 2007; Thomas, Chareyron and Trémeau, 2007; Colantoni, Thomas and Pillay, 2010), for display color characterization (Stauder, Colatoni and Blonde, 2006; Stauder, Thollot, Colantoni and Tremeau, 2007; Colantoni and Thomas, 2009), and for color space investigation (Thomas, Colantoni and Tremeau, 2013).
When it comes to non-Euclidean CDFs based sampling, a great deal of trouble is generated. Philipp Urban et al. (Urban, Rosen, Berns and Schleicher, 2007) and Lorenzo Ridolfi et al. (Ridolfi, Gattass and Lopes, 2010) proposed two methods to generate a tabulated version of $C I E L A B$, which can be used to perform Euclidean operations in this space with respect to perceptual non-Euclidean CDFs. We initiated some preliminary works in this direction also in our image visualization and analysis of art paintings (Colantoni et al., 2010). This article presents a robust solution and complete analysis of such sampling strategy.
Our paper is organized as follows. First, we propose an algorithmic method to sample the $C I E L A B$ color space with non Euclidean CDFs. A tabulated space is generated, which enable us to use the Euclidean metric according to the chosen CDF. Then, we perform an approximated uniform sampling of the CIELAB color space, based on 3D close packed hexagonal.

Figure 1: Visualization of a regular sampling of the sRGB color space and its conversion into the $C I E L A B$ space. We can notice a large lack of uniformity in such a sampling.

To evaluate the method, we analyze the statistical distribution of the tabulated space and quantify the accuracy of the transformation. We compare our work with Urban et al., which is the reference work in this domain. Lastly, we analyze and discuss the properties of the 3D close packed hexagonal grid we generate.

2 Tabulated Euclidean space embedding a non-Euclidean metric

This section considers the creation of a tabulated space, uniform with regard to non-Euclidean CDFs. This space is defined such that an Euclidean metric can be used piecewise to approximate any non-Euclidean CDF. Perceptual CDFs such as the $\Delta E_{94}, \Delta E_{C M C}, \Delta E_{00}$ and any color appearance spaces are not Euclidean, referring to the CIELAB color space. Indeed, while using these metrics in relation with the $C I E L A B$, it is far more difficult to achieve a uniform sampling. The method that we propose is based on 3D grid piecewise morphing. Next we compare our results with the method proposed by Urban et al. (Urban et al., 2007) based also on a tabulated space.

2.1 Concept

Due to the experimental nature of the $C I E L A B$ color space and to the visual system features, the Euclidean metric does not permit a very good quantification of color differences in this space. To overcome this, the CIE and other standardization organisms proposed more complex (in term of computation) CDFs: $\Delta E_{94}, \Delta E_{C M C}, \Delta E_{00}$. These CDFs increased the quality of color sample difference estimation without modifying the space itself. They are typically based on a lightness weighting function, a chroma weighting function, a hue weighting function, an intermediate term between chroma and hue differences and a scaling factor for a^{*} scale, which mainly affects colors with low chroma. ΔE_{00} includes a hue rotational term to deal with problematic blue regions.
We propose here to define a piecewise function that enables us to create a tabulated structure based on a non-Euclidean CDF of the CIELAB color space. Thanks to this transform, it is possible to use a piecewise Euclidean metric to approximate a non-Euclidean CDF.
In the literature, only Urban et al. and Ridolfi et al. proposed a similar approach. One algorithm
(Urban et al., 2007) is based on a local optimization of a square grid via the use of its dual in the $a^{*} b^{*}$ plane. The nodes are initially placed at regular distance $\Delta E_{a b}^{*}$. Next, these grids are optimized by modifying the nodes alternatively toward a pseudo-uniformity considering a given non-Euclidean metric. They set up a set of conditions in order to avoid the grid to collapse, which is more likely to happen with ΔE_{00} considering ambiguity on hue values and discontinuities, such as studied by Sharma et al. (Sharma, Wu and Dalal, 2005). This approach is very robust and fast to converge considering the constraints on the global shape of the grid. However, this robustness forbid it to be very accurate locally. The other algorithm (Ridolfi et al., 2010) uses multidimensional scaling techniques to achieve such tabulated space with ΔE_{00}. Their method gives good freedom to the distribution of the data, and includes the problematic Gaussian curvature of the $a^{*} b^{*}$ plane. While these approaches consider a global grid of a given number of data adjusted to the non-Euclidean metric, our approach considers a local method, focusing on the volumetric aspect information. In a nutshell, we place every point as good as it can be, one after another, rather than refining a grid. Our main objective is to limit the error in most part of the space at the expense of the error in some very rare area.

2.2 Design of the method

We denote $\Delta E^{s m p}$ the sampling distance used to generate the tabulated sampling based on a generic distance, $\Delta E_{x x} \in\left\{\Delta E_{76}, \Delta E_{94}, \Delta E_{C M C}, \Delta E_{00}\right\}$. We define also the distance $\Delta E_{x x}$ between 2 colors C_{1} and C_{2} as being the average of $\Delta E_{x x}\left(C_{1}, C_{2}\right)$ and $\Delta E_{x x}\left(C_{2}, C_{1}\right)$. By doing this, we take into account the lack of symmetry of some perceptual CDFs such as $\Delta E_{C M C}$.
The natural separation of lightness and chroma attributes in the space and in the CDF's definitions allows us to split the tabulated space according to one 2D-LUT corresponding to (a^{*}, b^{*}) plane and a 1D-LUT corresponding to the L^{*} axis. The sampling transform linked to the tabulated space that we propose is defined by the combination of a 1D linear interpolation with a 2D bilinear interpolation.
The two-dimensional grid corresponding to the 2D-LUT of the $\left(a^{*}, b^{*}\right)$ chromatic plane is the result of a diffusion process that starts from a central point of coordinate $a^{*}=0$ and $b^{*}=0$. This process is based on pre-computed values over the axis a^{*} and b^{*}. These axes serve as anchor to preserve the grid from collapsing.

Stage 1: discretization of the axis according to a given sampling distance $\Delta E^{s m p}$.
Let us note that the functions $\delta E_{x x}\left(a^{*}\right), \delta E_{x x}\left(b^{*}\right)$ and $\delta E_{x x}\left(L^{*}\right)$ (distances computed from the L^{*}, a^{*} or b^{*} axis) are monotonous and are independent of the CDFs used. The estimation of the next sample on the plane at a distance $\Delta E^{s m p}$ is performed using a simple dichotomous search. That enables us to obtain tabulated samples $A_{+}[I]$ and $A_{-}[I]$ along the positive and negative directions of the a^{*} axis; tabulated samples $B_{+}[I]$ and $B_{-}[I]$ along the positive and negative directions of the b^{*} axis, and tabulated samples $L[I]$ along the lightness axis L^{*} for a given $\Delta E^{s m p}$. The synopsis of the algorithm is given in Appendix, see Algorithm 2.

Stage 2: creation of the two-dimensional grid on (a^{*}, b^{*}) plane with a diffusion process. The support for this 2D grid is a matrix of (a^{*}, b^{*}) coordinates, its size (N, M) must be sufficient to cover CIELAB destination space, so that it includes the whole gamut considered.

Figure 2: Quadrants definition in CIELAB.

For each data of the 2D grid, we compute its distance to the center of coordinates $(0,0)$. This value is used to sort the points by ascending order of distances, in order to determine the order of processing. This enables our diffusion process. The initial transform of the grid is to include the values computed on the axis a^{*} and b^{*} in stage 1. The rest of the data is processed successively, according to the stack order, considering the following constraints depending on which quadrant it belongs to (Figure 2).

- $Q 1\left(a_{+}^{*} b_{+}^{*}\right)$: the point $C(n, m)$ has to be at a given distance $\Delta E^{s m p}$ of $C(n-1, m)$ and $C(n, m-1)$ (Figure 3(a)).
- $Q 2\left(a_{+}^{*} b_{-}^{*}\right)$: the point $C(n, m)$ has to be at a given distance $\Delta E^{s m p}$ of $C(n-1, m)$ and $C(n, m+1)$ (Figure 3(b)).
- $Q 3\left(a_{-}^{*} b_{-}^{*}\right)$: the point $C(n, m)$ has to be at a given distance $\Delta E^{s m p}$ of $C(n+1, m)$ and $C(n, m+1)$ (Figure 3(c)).
- $Q 4\left(a_{-}^{*} b_{+}^{*}\right)$: the point $C(n, m)$ has to be at a given distance $\Delta E^{s m p}$ of $C(n+1, m)$ and $C(n, m-1)$ (Figure 3(d)).

The position of each new point is estimated from the previous data and from the axis rigid data as follows, according to its location in the tabulated data:

- in Q1 (Figure 3(a)),
$C(n, m)_{a}=C(n-1, m-1)_{a}+\left(A_{+}[n]-A_{+}[n-1]\right)$
$C(n, m)_{b}=C(n-1, m-1)_{b}+\left(B_{+}[m]-B_{+}[m-1]\right)$
- in Q2 (Figure 3(b)),

$$
\begin{aligned}
& C(n, m)_{a}=C(n-1, m+1)_{a}+\left(A_{+}[n]-A_{+}[n-1]\right) \\
& C(n, m)_{b}=C(n-1, m+1)_{b}+\left(B_{-}[m]-B_{-}[m+1]\right)
\end{aligned}
$$

- in Q3 (Figure 3(C)),
$C(n, m)_{a}=C(n+1, m+1)_{a}+\left(A_{-}[n]-A_{-}[n+1]\right)$
$C(n, m)_{b}=C(n+1, m+1)_{b}+\left(B_{-}[m]-B_{-}[m+1]\right)$
- in Q4 (Figure 3(d)),
$C(n, m)_{a}=C(n+1, m-1)_{a}+\left(A_{-}[n]-A_{-}[n+1]\right)$
$C(n, m)_{b}=C(n+1, m-1)_{b}+\left(B_{+}[m]-B_{+}[m-1]\right)$.

Figure 3: Data coordinates by quadrants.

Once this position is evaluated, we optimize the $\left(a^{*}, b^{*}\right)$ coordinates of $C(n, m)$. For the $Q 1$ quadrant, we optimize the distances between $C(n, m)$ and $C(n-1, m)$ and between $C(n, m)$ and $C(n, m-1)$ in order to get as close as possible to $\Delta E^{s m p}$. Due to the nature of the metrics and due to the Gaussian curvature of the plane, the result of this optimization might be an approximation. This optimization moves repeatedly the point $C(n, m)$ as shown in Algorithm 1

```
Algorithm 1 Optimization of the position of \(C(n, m)\).
    iter \(\leftarrow 0\)
    repeat
        \(l 1 \leftarrow \Delta E_{x x}(C(n, m), C(n, m-1))\)
        \(l 2 \leftarrow \Delta E_{x x}(C(n, m), C(n-1, m))\)
        \(C(n, m)_{a} \leftarrow C(n, m)_{a}-\left(C(n, m)_{a}-C(n, m-1)_{a}\right) \times \frac{\left(l 1-\Delta E^{s m p}\right)}{1000}-\left(C(n, m)_{a}-C(n-\right.\)
    \(\left.1, m)_{a}\right) \times \frac{\left(l 2-\Delta E^{s m p}\right)}{1000}\)
        \(C(n, m)_{b} \leftarrow C(n, m)_{b}-\left(C(n, m)_{b}-C(n, m-1)_{b}\right) \times \frac{\left(l 1-\Delta E^{s m p}\right)}{1000}-\left(C(n, m)_{b}-C(n-\right.\)
    \(\left.1, m)_{b}\right) \times \frac{\left(l 2-\Delta E^{s m p}\right)}{1000}\)
        iter \(\leftarrow\) iter +1
    until \((\) iter \(<M A X I T E R)\) or \(\left(\left(l 1 \neq \Delta E^{s m p}\right)\right.\) and \(\left.\left(l 2 \neq \Delta E^{s m p}\right)\right)\)
```

The motion of the iterative move is proportional to the remaining distance from an optimal $C(n, m)$. We stop this iterative process when $C(n, m)$ is at a perfect position, i.e. $\Delta E_{x x}(C(n, m), C(n, m-1))=\Delta E_{x x}(C(n, m), C(n-1, m))=\Delta E_{s m p}$, or when we reach a maximum iteration (we used MAXITER $=20000$).
We proceed in a similar way when $C(n, m)$ is in $Q 2, Q 3$ and $Q 4$. When the stack is empty, the

Table 1: Comparison of the data provided by Urban with our data; $\Delta E_{94}, \Delta E_{C M C}, \Delta E_{00}$ CDFs are used to generate tabulated spaces based on a $\Delta E^{s m p}$ of 1. Results show that all the created tabulated spaces are rather well uniform.

$\Delta E_{x x}=1$ 2D/3D Urb/Us			Number of Nodes	Average segment	Average error	Std Dev	95 perc.	Maximum segment	Minimum segment
ΔE_{94}	2D	Urban	14,019	0.877	0.123	0.055	0.208	0.993	0.764
	2D	Our	11,226	1.001	0.001	0.000	0.001	1.001	0.998
	3D	Urban	1,299,755	0.919	0.081	0.074	0.200	1.000	0.764
	3D	Our	1,025,327	1.000	0.000	0.000	0.001	1.001	0.998
$\Delta E_{C M C}$	2D	Urban	14,029	1.122	0.122	0.157	0.401	2.279	0.235
	2D	Our	19,418	1.001	0.001	0.001	0.002	1.018	0.997
	3D	Urban	1,224,412	1.094	0.094	0.145	0.380	2.279	0.235
	3D	Our	1,712,716	1.000	0.000	0.001	0.001	1.018	0.997
ΔE_{00}	2D	Urban	13,274	0.931	0.069	0.125	0.281	1.906	0.510
	2D	Our	13,126	1.003	0.003	0.010	0.020	1.069	0.971
	3D	Urban	965,939	0.960	0.040	0.101	0.221	1.906	0.510
	3D	Our	935,341	1.001	0.001	0.007	0.002	1.069	0.971

chromatic plane of the new space is defined from these tabulated data. The synopsis of the algorithm is given in Appendix in algorithms 4 and 3. The lightness tabulation is straightforward.

2.3 Analysis

To evaluate the accuracy of our sampling scheme and to compare it with the sampling scheme proposed by Urban et al. we analyze first-order statistics computed over the grid, for different $\Delta E^{s m p}$ and different $\Delta E_{x x}$. The comparison is done from data provided on their website (Urban et al., 2007). Note that the difference of number of samples computed with our tabulated space is due to the method used, but also and mainly to the fact that their data does not cover the entire spectrum locus, as can be seen on Figure 4 and 5. This is the case because Urban et al. used the boundaries of the encoding $C I E L A B$ (this is reasonable since color difference metrics are designed to close to achromatic colors; however, in practice it might be useful to cover the entire locus). Instead, we limit our data set to the spectrum locus computed for a D65 illumination. The spectrum locus boundaries are approximated based on the combination of uni-modal spectral primaries shaped as rectangular functions. In the following, the terms 2D and 3D correspond, respectively, to the chromatic (a^{*}, b^{*}) plane and to the entire 3D space, including the lightness.
Table 1 shows that, with a $\Delta E^{s m p}$ of 1 , our method generates a very accurate tabulated space with a mean distance value of 1 and a rather small standard deviation for all tested CDFs. The highest standard deviation is equal to 0.010 (resp. 0.157) with our 2D method (resp. Urban's method) with the $\Delta E_{00} \mathrm{CDF}$ (resp. the $\Delta E_{C M C} \mathrm{CDF}$), whereas the highest standard deviation is equal to 0.007 (resp. 0.145) with our 3D method (resp. Urban's method) with the ΔE_{00} CDF (resp. the $\Delta E_{C M C} C D F$). In the worst case, the maximal error is of (1.069-1) with our method (with the $\Delta E_{C M C} C D F$), meanwhile it is of (2.279-1) with the Urban's method (with also the $\Delta E_{C M C} \mathrm{CDF}$). These results are simply based on the grid's data, with no transformation needed.

Figure 4: Visualization of Urban's data set in the $\left(a^{*}, b^{*}\right)$ plane of the CIELAB color space. We set $\Delta E_{94}=1$ to generate the tabulated space. The data are constrained to the projected spectrum locus boundaries. At each node (sample) corresponds eight segments. Each segment relies two adjacent tabulated samples.

In most cases, we improve on the accuracy of the tabulated space defined by Urban's data. Table 1 gives only first indications, since data do not overlap the same area in the CIELAB space. Moreover, we can note that for $\Delta E_{C M C}$, Urban's method does not provide very good results, this might be due to the lack of symmetry of this CDF. Additional local results are provided in Figures 4 and 5] next in Figures 6 and 7. The color of the segments created is set to black, green or red according to the corresponding error. Black is set for relative errors of 0 to 5%, green for 5 to 10% and red when it is over 10%. Figures 5 and 7 show that our grid is very accurate in this case, oppositely to the Urban's method, as we can see in Figures 4 and 6. Let us also notice that Figures 6 and 7 are very interesting as they emphasize the fundamental difference between these two methods. We can clearly see in Figures 7 and 6 that errors with our grid are concentrated in a very small area, whereas the other method provides a more homogeneous error. This is to be compared with the results obtained by Ridolfi et al., because their method seems to perform very well especially in this area. The lowest error is obtained with our 3D method with the ΔE_{94} CDF, next with the $\Delta E_{C M C}$ CDF (errors are very closed to those obtained with the $\Delta E_{94} \mathrm{CDF}$) and lastly with the $\Delta E_{00} \mathrm{CDF}$. We observe the same tendency with Urban's data.
From now, we study the influence of the discretization step on the accuracy of the method. We can notice in Table 2that the increase of the method's accuracy is inversely proportional to the decrease of the discretization step. Once again, in Table 2 we can notice that there are more errors with the ΔE_{00} CDF than with the ΔE_{94}. The difference of accuracy between the ΔE_{00} CDF and the ΔE_{94} tends to decrease when the discretization step tends to decrease also, as these CDFs tend to be more and more linear with the increasing of color difference.

Figure 5: Visualization of our data set in the (a^{*}, b^{*}) plane of the CIELAB color space. We set $\Delta E_{94}=1$ to generate the tabulated space. The data are constrained to the projected spectrum locus boundaries. At each node (sample) corresponds eight segments. Each segment relies two adjacent tabulated samples.

In order to evaluate the accuracy of the three tabulated spaces, three different experiments have been performed. These evaluations are all based on 10 millions of pairs of samples randomly selected, with pairs of samples spaced at a given distance. The selection is performed as follow: First, 10 millions of color patches are selected randomly within the spectrum locus. Second, for each color patch, a second color patch is selected, based on two random angles in spherical coordinates, with a radius of distance patches ΔE^{P}. Third, these 2 points are transformed through our tabulated space, and the resulting distance between them in the new space is the average of the distance computed from one to the other and vice versa.

- Evaluation A: Couples of data are generated in $\operatorname{CIELAB} \Delta E_{x x}$, sampled with $\Delta E^{s m p}$ of $0.25,0.5$ and 1. Both points are transformed to $C I E L A B$, then the $\Delta E_{x x}$ between them is evaluated by the average of the distance in both directions, ΔE^{M}. The error is expressed as $E=\Delta E^{P}-\Delta E^{M}$.
- Evaluation B: Data are generated in CIELAB, with $\Delta E^{P}=1$. These data are transformed to CIELAB $\Delta E_{x x}$, then the Euclidean distance between them is computed (this is equivalent to approximate $\Delta E_{x x}$) and compared with the $\Delta E_{x x}$ computed directly in CIELAB.
- Evaluation C: Data are generated in CIELAB, then transformed to CIELAB $\triangle E_{x x}$, and transformed back to CIELAB. Evaluation is performed on how they come back alike with $\Delta E_{a b}^{*}$.
Tables 3 to 8 show the results of these evaluations for three different CDFs and different tabulated spaces. Depending on the accuracy wanted, different parameters would be preferred.

Figure 6: Visualization of Urban's data set in the $\left(a^{*}, b^{*}\right)$ plane of the CIELAB color space. We set $\Delta E_{00}=1$ to generate the tabulated space. The data are constrained to the projected spectrum locus boundaries. At each node (sample) corresponds eight segments. Each segment relies two adjacent tabulated samples.

Nonetheless, a $\Delta E^{s m p}$ of 1 provides correct results. This suggest that a finer sampling is not necessarily the best, since it includes more relative errors in the distribution of data. However, this is to be balanced with the accuracy of the transform as we will show in the following.

3 Uniform $C I E L A B$ sampling with non Euclidean CDFs

In this section we use the tabulated uniform version of $C I E L A B$ color space based on a given CDF and a 3D close packed hexagonal sampling scheme. This permits studying the accuracy of the transform itself.

3.1 Results

Table 9 provides statistics on the uniform sampling obtained with a distance of 1 and a tabulated space based on different $\Delta E^{s m p}$. Results show that the use of a small $\Delta E^{s m p}$ reduces the average error but increases the maximum error and vice versa. This is directly due to the tabulation accuracy, as shown in Table 2, Figure 8illustrates the sampling for a distance of 4. Although this distance does not mean much in term of colorimetry, it provides a better visibility of the error location. We can observe more errors in the bluish area.
Table 10 provides statistics for the uniform sampling of a cylinder of radius 50 centered and aligned with the lightness axis. This makes us able to compare the efficiency of both methods fairly since we cannot cover the spectrum locus with Urban's data. In having a radius of 50, we may be a bit favored as our grid is more accurate in close to achromatic area, but as a

Table 2: Comparison for different value of $\Delta E^{s m p}$: $0.25,0.5$ and 1.0 The comparison is performed for 2D and 3D data with the $\Delta E_{94}, \Delta E_{C M C}, \Delta E_{00}$ CDFs.

$\begin{gathered} \Delta E_{x x} \\ 2 \mathrm{D} / 3 \mathrm{D} \& 0.25 / 0.5 / 1 \end{gathered}$			Number of Nodes	Average segment	Maximum segment	Minimum segment	Average error in \%	Std Dev in \%	95 perc. in \%
ΔE_{94}	0.25	2D	179,892	0.2519	0.2549	0.2440	0.7646	0.4662	1.4461
		3D	65,818,399	0.2512	0.2549	0.2440	0.4848	0.4820	1.3143
	0.5	2D	45,118	0.5010	0.5023	0.4968	0.1946	0.1179	0.3656
		3D	8,258,326	0.5006	0.5023	0.4968	0.1236	0.1223	0.3327
	1	2D	11,226	1.0005	1.0013	0.9984	0.0503	0.0290	0.0923
		3D	1,025,327	1.0003	1.0013	0.9984	0.0317	0.0309	0.0846
$\Delta E_{C M C}$	0.25	2D	305,935	0.2528	0.2756	0.2464	1.1201	1.1940	3.1337
		3D	108,079,761	0.2517	0.2756	0.2464	0.6700	1.0976	2.5127
	0.5	2D	77,670	0.5014	0.5232	0.4946	0.2705	0.3673	0.8133
		3D	13,713,475	0.5008	0.5232	0.4946	0.1638	0.3433	0.6287
	1	2D	19,418	1.0006	1.0182	0.9973	0.0563	0.0927	0.1511
		3D	1,712,716	1.0003	1.0182	0.9973	0.0331	0.0866	0.1266
ΔE_{00}	0.25	2D	207,211	0.2533	0.3018	0.2329	1.3320	2.7743	6.2991
		3D	59,143,450	0.2518	0.3018	0.2329	0.7030	1.9108	2.5965
	0.5	2D	52,564	0.5029	0.5584	0.4779	0.5780	1.7105	3.4226
		3D	7,496,169	0.5015	0.5584	0.4779	0.2952	1.1635	0.7664
	1	2D	13,126	1.0028	1.0691	0.9707	0.2819	1.0307	1.9457
		3D	935,341	1.0014	1.0691	0.9707	0.1384	0.6947	0.1829

Table 3: Accuracy of our method with the ΔE_{94} CDF for different values of $\Delta E^{s m p}$ (Evaluation A). $\Delta E^{s m p}$ values tested are equal to $0.25,0.5$ and 1.0 . The distance values (1,2 and 4) between pairs of color patches had been chosen in order to have reasonable color differences. The evaluation was performed from $10,000,000$ pairs randomly selected.

ΔE_{94}			Average segment	Maximum segment	Minimum segment	Average error in \%	Std Dev in \%	95 perc. in \%
	$\Delta E^{s m p}$	Distance Patches						
Eval A	0.25	1	1.003	1.220	0.685	0.325	5.999	12.255
		2	2.007	2.327	1.657	0.353	5.960	12.206
		4	4.019	4.651	3.326	0.470	5.909	12.161
	0.5	1	1.000	1.153	0.823	0.017	5.789	11.911
		2	2.000	2.305	1.651	0.015	5.782	11.903
		4	4.005	4.611	3.314	0.134	5.747	11.848
	1	1	0.999	1.154	0.820	0.114	5.770	11.894
		2	1.998	2.306	1.642	0.081	5.763	11.882
		4	4.002	4.606	3.309	0.039	5.728	11.820

Table 4: Accuracy of our method with the ΔE_{94} CDF for different values of $\Delta E^{s m p}$ (Evaluations B and C). $\Delta E^{s m p}$ values tested are equal to $0.25,0.5$ and 1.0. The distance values (1, 2 and 4) between pairs of color patches had been chosen in order to have reasonable color differences. The evaluation was performed from 10,000,000 pairs randomly selected.

ΔE_{94}			Average error (absolute)	Maximum error (absolute)	Minimum error (absolute)	std Dev (absolute)	95 perc. (absolute)
	$\Delta E^{s m p}$	Distance Patches					
Eval B	0.25	1	0.016	0.370	0	0.017	0.049
		2	0.031	0.446	0	0.032	0.098
		4	0.062	0.497	0	0.062	0.193
	0.5	1	0.015	0.529	0	0.019	0.048
		2	0.029	0.577	0	0.032	0.095
		4	0.058	0.557	0	0.061	0.188
	1	1	0.017	1.128	0	0.039	0.049
		2	0.031	1.108	0	0.046	0.098
		4	0.060	1.274	0	0.068	0.193
Eval C	0.25	1	0.002	1.886	0	0.026	0.002
		2	0.002	1.930	0	0.026	0.002
		4	0.002	1.932	0	0.026	0.002
	0.5	1	0.006	3.815	0	0.083	0.007
		2	0.006	3.815	0	0.083	0.007
		4	0.006	3.851	0	0.084	0.007
	1	1	0.023	7.321	0	0.232	0.015
		2	0.023	7.321	0	0.231	0.015
		4	0.023	7.318	0	0.231	0.015

Table 5: Accuracy of our method with the $\Delta E_{C M C}$ CDF for different values of $\Delta E^{s m p}$ (Evaluation A). $\Delta E^{s m p}$ values tested are equal to $0.25,0.5$ and 1.0. The distance values (1, 2 and 4) between pairs of color patches had been chosen in order to have reasonable color differences. The evaluation was performed from $\mathbf{1 0 , 0 0 0 , 0 0 0}$ pairs randomly selected.

ΔE			Average segment	Maximum segment	Minimum segment	Average error in \%	Std Dev in \%	95 perc. in \%
	$\Delta E^{s m p}$	Distance Patches						
Eval A	0.25	1	1.003	1.528	0.320	0.296	8.572	18.322
		2	2.006	3.061	0.634	0.275	8.516	18.183
		4	4.012	6.065	1.286	0.295	8.463	18.074
	0.5	1	0.998	1.463	0.257	0.215	8.767	18.738
		2	1.997	2.935	0.536	0.219	8.771	18.779
		4	3.992	5.848	1.086	0.195	8.779	18.864
	1	1	0.996	1.436	0.227	0.386	8.952	19.044
		2	1.992	2.874	0.446	0.389	8.959	19.077
		4	3.985	5.767	0.928	0.367	8.975	19.163

Table 6: Accuracy of our method with the $\Delta E_{C M C}$ CDF for different values of $\Delta E^{s m p}$ (Evaluations B and C). $\Delta E^{s m p}$ values tested are equal to $0.25,0.5$ and 1.0. The distance values (1, 2 and 4) between pairs of color patches had been chosen in order to have reasonable color differences. The evaluation was performed from 10,000,000 pairs randomly selected.

$\Delta E_{C M C}$			Average error (absolute)	Maximum error (absolute)	Minimum error (absolute)	std Dev (absolute)	95 perc. (absolute)
	$\Delta E^{s m p}$	Distance Patches					
Eval B	0.25	1	0.031	1.947	0	0.068	0.103
		2	0.062	3.757	0	0.132	0.204
		4	0.124	6.175	0	0.250	0.403
	0.5	1	0.035	2.585	0	0.084	0.109
		2	0.069	4.768	0	0.165	0.214
		4	0.136	7.365	0	0.314	0.427
	1	1	0.039	3.188	0	0.102	0.118
		2	0.075	5.521	0	0.191	0.230
		4	0.145	8.106	0	0.356	0.448
Eval C	0.25	1	0.001	0.938	0	0.015	0.001
		2	0.001	0.938	0	0.015	0.001
		4	0.001	0.938	0	0.015	0.001
	0.5	1	0.004	1.891	0	0.053	0.004
		2	0.004	1.891	0	0.053	0.004
		4	0.004	1.891	0	0.053	0.004
	1	1	0.016	3.773	0	0.150	0.012
		2	0.016	3.762	0	0.150	0.012
		4	0.016	3.773	0	0.150	0.012

Table 7: Accuracy of our method with the ΔE_{00} CDF for different values of $\Delta E^{s m p}$ (Evaluation A). $\Delta E^{s m p}$ values tested are equal to $0.25,0.5$ and 1.0. The distance values (1,2 and 4) between pairs of color patches had been chosen in order to have reasonable color differences. The evaluation was performed from $10,000,000$ pairs randomly selected.

ΔE_{00}			Average segment	Maximum segment	Minimum segment	Average error in \%	$\begin{gathered} \text { Std Dev } \\ \text { in \% } \end{gathered}$	$\begin{aligned} & 95 \text { perc. } \\ & \text { in \% } \end{aligned}$
	$\Delta E^{s m p}$	Distance Patches						
Eval A	0.25	1	1.002	1.673	0.054	0.211	9.811	21.449
		2	2.003	3.338	0.109	0.138	9.726	21.166
		4	3.999	6.650	0.225	0.034	9.580	20.786
	0.5	1	0.998	1.577	0.035	0.198	9.998	21.962
		2	1.995	3.138	0.070	0.266	9.951	21.815
		4	3.983	6.265	0.142	0.432	9.849	21.515
	1	1	0.996	1.515	0.027	0.362	10.123	22.310
		2	1.992	3.020	0.054	0.425	10.081	22.176
		4	3.977	6.029	0.111	0.587	9.996	21.912

Table 8: Accuracy of our method with the ΔE_{00} CDF for different values of $\Delta E^{s m p}$ (Evaluations B and C). $\Delta E^{s m p}$ values tested are equal to $0.25,0.5$ and 1.0. The distance values (1, 2 and 4) between pairs of color patches had been chosen in order to have reasonable color differences. The evaluation was performed from 10,000,000 pairs randomly selected.

ΔE_{00}			Average error (absolute)	Maximum error (absolute)	Minimum error (absolute)	std Dev (absolute)	95perc. (absolute)
	$\Delta E^{s m p}$	Distance Patches					
Eval B	0.25	1	0.026	3.960	0	0.083	0.089
		2	0.051	7.585	0	0.163	0.174
		4	0.101	14.320	0	0.312	0.342
	0.5	1	0.029	7.153	0	0.122	0.094
		2	0.057	13.435	0	0.240	0.185
		4	0.113	23.921	0	0.457	0.365
	1	1	0.034	10.453	0	0.153	0.100
		2	0.064	19.207	0	0.293	0.197
		4	0.122	28.701	0	0.551	0.379
Eval C	0.25	1	0.002	1.754	0	0.024	0.004
		2	0.002	1.733	0	0.024	0.004
		4	0.002	1.733	0	0.024	0.004
	0.5	1	0.008	3.593	0	0.077	0.012
		2	0.008	3.593	0	0.077	0.012
		4	0.008	3.604	0	0.077	0.012
	1	1	0.025	7.074	0	0.210	0.026
		2	0.025	7.069	0	0.210	0.026
		4	0.025	7.074	0	0.210	0.026

Table 9: Evaluation of the uniform sampling of the spectrum locus based on a $\Delta E_{x x}=4$ and a $\Delta E_{x x}=1$.

$\Delta E_{x x}=1$		Number of Nodes	Average segment	Maximum segment	Minimum segment	Average error in \%	Std Dev in \%	95 perc. in \%
	$\Delta E^{s m p}$							
ΔE_{94}	0.25	4695117	1.001	1.250	0.653	0.098	6.114	13.171
	0.5	4734831	0.998	1.134	0.850	0.200	5.897	12.874
	1	4747514	0.997	1.135	0.845	0.284	5.882	12.827
$\Delta E_{C M C}$	0.25	7245575	1.009	1.476	0.394	0.862	8.721	16.926
	0.5	7399510	1.004	1.413	0.452	0.380	8.988	18.026
	1	7455161	1.002	1.388	0.413	0.239	9.200	18.373
ΔE_{00}	0.25	4245726	1.000	1.624	0.322	0.025	10.288	21.609
	0.5	4327014	0.996	1.521	0.329	0.374	10.606	21.750
	1	4358975	0.995	1.467	0.337	0.503	10.711	22.210

Figure 7: Visualization of our data set in the (a^{*}, b^{*}) plane of the CIELAB color space. We set $\Delta E_{00}=1$ to generate the tabulated space. The data are constrained to the projected spectrum locus boundaries. At each node (sample) corresponds eight segments. Each segment relies two adjacent tabulated samples.
counterpart, color differences are more accurate in this area, so it is a meaningful evaluation. Our method outperforms Urban's method while looking at the average of the segment's size. However, the maximum and minimum length of the segments are better preserved by Urban's grid, which outperforms our algorithm in the extreme cases. This was predictable and is due to the fundamental differences between the two methods. Urban's is more global and limits large errors where the color difference formula lacks continuity and introduces much distortions. Our method is more local and provides more accurate results in most cases but when the data are closing the grid. This is where all the error accumulated during the optimization is expressed, such as in Figure 7 .

3.2 Analysis on the uniform sampling of $C I E L A B$

Judd and Wyszecki(Judd and Wyszecki, 1975) talked about 10,000,000 discernible colors included into the theoretical limits of the colorimetric visual system. Pointer and Attridge(Pointer and Attridge, 1998) considered some restriction in the possible natural spectra (MacAdam limits) and talked of about 2,279,381 colors. The natural scene analysis proposed by Linhares et al. (Linhares, Pinto and Nascimento, 2008) talked of about 2,275,698 colors. Although the first ones used a parallelepipedic grid and the last ones used an analysis based on ΔE_{00}^{*} color difference, the number of discernible colors mentioned in these two works is quite similar. If we look at our results using $\Delta E_{a b}^{*}$, we can find a number of discernible colors of 12,163,500 using a distance of 1 units, which is close to the number given by Judd and Wyszecki. On another hand, the JND of 1 seems to be not very well fitted by the $\Delta E_{a b}^{*}$ formulas. If we

Figure 8: Uniform sampling of the CIELAB color space with the $\triangle E_{00} \mathbf{C D F}$.

Table 10: Comparison of Urban's method and our method for the uniform sampling of the intersection between the spectrum locus and a cylinder of radius 50 , based on $\Delta E_{x x}=$ 4, 2 and 1 .

| $\Delta E_{x x}=4$ | | Number of |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nodes | | | Average \(\left.\begin{array}{c}Maximum

segment\end{array} $$
\begin{array}{c}\text { Minimum } \\
\text { segment }\end{array}
$$ $$
\begin{array}{c}\text { Average } \\
\text { segment } \\
\text { error in \% }\end{array}
$$ $$
\begin{array}{c}\text { Std Dev } \\
\text { in \% }\end{array}
$$ $$
\begin{array}{c}95 \text { perc. } \\
\text { in \% }\end{array}
$$\right]\)
consider, as Pointer and Linhares, a given number of about 2,300,000 discernible colors then the JND is around $1.78 \Delta E_{a b}^{*}$ units in average. This value would be considered as an average JND in CIELAB when the sampling is done with the Euclidean distance. In all cases, a variation can be tolerated due to the approximation done on the gamut boundaries and on the pseudo-perceptual uniformity of $C I E L A B$ space over $\Delta E_{a b}^{*}$.
With the method described in this work, we can improve the discussion. If we consider the tabulated data, i.e. a parallelepipedic grid, we may find for a distance of $1,1,000,000$ samples for $\Delta E_{94}^{*}, 1,700,000$ samples for $\Delta E_{C M C}^{*}$ and 900,000 for ΔE_{00}^{*}. This is very different from the results obtained with an hexagonal uniform sampling. With a uniform sampling, we obtained 2.6 millions samples for ΔE_{94}^{*}, while with Urban data, we ended up with 3.35 millions. For $\Delta E_{C M C}^{*}$, we obtained 4 millions, while Urban's data provided 2.8 millions. Finally for ΔE_{00}^{*}, we are closer for both data set with 2.4 and 2.5 millions. This is very interesting as the number is closed to what has been found by Pointer and Linhares. This is also surprising since with our data, ΔE_{94}^{*} seems to provide a similar number. However, the difference obtained with the use of one or other data set is that large that further investigation seems to be required in order to agree on the use of such tabulated space.

4 Conclusion

We provided a framework to generate an accurate tabulated sampling of the CIELAB color space based on non-Euclidean color CDFs. We have compared our method with the state of the art and shown that our method performs well compared with existing methods. It exists other methods based on finite elements that could improve the accuracy of our method but their computational cost is more expensive than what we proposed. Although it must be stated that these data needs to be computed only once.
Our tabulated data are available on the author's website as well as supplementary material. These results may be used freely if related to reference to this work.
Possible applications include the design of color targets for device calibration and / or the design of accurate vision tests (more accurate than the Farnsworth-Munsell 100 Hue Color Vision Test). Especially when color space does not have the ability of constant hue, which could limit the use of non uniformly distributed data.

5 Appendix

Considering one color on an axis (defined by a direction), the next color on this axis according this direction will be computed by the procedure BuILDALLAxis define in 2
We use the same process for B_{+}and B_{-}with the directions $(0,0,1)$ and $(0,0,-1)$
Considering that we want to create a size $\operatorname{size}_{a} \times \operatorname{size}_{b}$ (defined as $N \times M$ in Stage 2) tabulated grid of $L a^{*} b^{*}$ colors, the center of this grid will be at the (n_{a}, n_{b}) position in the corresponding matrix (where $n_{a}=\operatorname{size}_{a} / 2$ and $n_{b}=\operatorname{size}_{b} / 2$) and will correspond to the $a^{*}=0$ and $b^{*}=0$ coordinate.

```
Algorithm 2 Axis Sampling Generation
    procedure FindNextColoronaxis(in Color \({ }_{\text {start }}\), direction, \(\Delta E^{\text {smp }}\) out result)
        factor \(\leftarrow 0.1\)
        start \(\leftarrow\) Color \(_{\text {start }}\)
        repeat
            end \(\leftarrow\) direction \(\times\) factor \(\times \Delta E^{s m p}+\) start
            distance \(\leftarrow\left(\Delta E_{x x}(\right.\) start, end \()+\Delta E_{x x}(\) end, start \(\left.)\right) / 2\)
            if distance \(<\Delta E^{s m p}\) then
            factor \(\leftarrow\) factor +0.25
            end if
        until distance \(\leq \Delta E^{s m p}\)
        iter \(\leftarrow 0\)
        done \(\leftarrow\) false
        repeat
            med \(\leftarrow\left(\right.\) Color \(_{\text {start }}+\) end \() / 2\)
            distance \(\leftarrow\left(\Delta E_{x x}\left(\right.\right.\) Color \(_{\text {start }}\), med \()+\Delta E_{x x}\left(\right.\) med, Color \(\left.\left._{\text {start }}\right)\right) / 2\)
            if \(\mid\) distance \(-\Delta E^{s m p} \mid<e p s\) or iter \(>\) MAXITER then
                done \(\leftarrow\) true
            else
            iter \(\leftarrow i\) iter +1
            if distance \(>\Delta E^{s m p}\) then
                    end \(\leftarrow\) med
                else
                    start \(\leftarrow\) med
                end if
        end if
        until !done
        result \(\leftarrow\) med
    end procedure
    procedure BuILDALLAxIS
        \(L[0] \leftarrow(0,0,0)\)
        pos \(\leftarrow 0\)
        while \(L[p o s]<\left(100+\Delta E^{s m p}\right)\) do
            FindNextColoronaxis ( \(L\) [pos], \(\left.(1,0,0), \Delta E^{s m p}, L[p o s+1]\right)\)
        pos \(\leftarrow\) pos +1
    end while
    \(A_{+}[0] \leftarrow(0,0,0), A_{-}[0] \leftarrow(0,0,0)\)
    pos \(\leftarrow 0\)
    while \(A_{+}[\)pos \(]<A_{\text {max }}\) do
            FindNextColorOnAxis \(\left(A_{+}[p o s],(0,1,0), \Delta E^{s m p}, A_{+}[p o s+1]\right)\)
            pos \(\leftarrow\) pos +1
        end while
        pos \(\leftarrow 0\)
        while \(A_{-}[p o s]<-A_{\max }\) do
            FindNextColoronaxis ( \(\left.A_{-}[p o s],(0,-1,0), \Delta E^{s m p}, A_{-}[p o s+1]\right)\)
            pos \(\leftarrow\) pos +1
        end while
    end procedure
```

Notes: The grid values corresponding the a^{*} and b^{*} axis (A and B arrays in this algorithm) are computed during BUILDALLAXIS and the initialization process of grid is done using these values.

```
Algorithm 3 Grid Optimize
    procedure Optimize(in \(s r c 1, s r c 2, \Delta E^{s m p}\) in/out dstOri)
        \(d s t \leftarrow d s t O r i\)
        iter \(\leftarrow 0\)
        done \(\leftarrow\) false
        repeat
            distance \(1 \leftarrow\left(\Delta E_{x x}(s r c 1, d s t)+\Delta E_{x x}(d s t, s r c 1)\right) / 2\)
            distance \(2 \leftarrow\left(\Delta E_{x x}(s r c 2, d s t)+\Delta E_{x x}(d s t, s r c 2)\right) / 2\)
            if \(\mid\) distance \(1-\Delta E^{s m p} \mid<e p s\) and \(\mid\) distance \(2-\Delta E^{s m p} \mid<e p s\) then
                    done \(\leftarrow\) true
        else
                    factor \(1 \leftarrow\left(\right.\) distance \(\left.1-\Delta E^{s m p}\right) / 1000\)
                    factor \(2 \leftarrow\left(\right.\) distance \(\left.2-\Delta E^{s m p}\right) / 1000\)
                    \(d s t \leftarrow d s t-(\) factor \(1 \times(d s t-s r c 1)+\) factor \(2 \times(d s t-s r c 2))\)
                    iter \(\leftarrow\) iter +1
        end if
        until iter \(<\) MAXITER and!done
    end procedure
```


References

CIE 2004. 015:2004, Colorimetry, 3rd edition, Commission Internationale de l'Eclairage.
Colantoni, P. and Thomas, J.-B. 2009. A color management process for real time color reconstruction of multispectral images, in A.-B. Salberg, J. Y. Hardeberg and R. Jenssen (eds), Lecture Notes in Computer Science, Vol. 5575 of 16th Scandinavian Conference, SCIA, pp. 128-137.

Colantoni, P., Thomas, J.-B. and Pillay, R. 2010. Graph-based 3d visualization of color content in paintings, Proceedings of the 11th VAST International Symposium on Virtual Reality, Archaeology and Cultural Heritage, 22-24 September 2010, Paris, Vol. 2, pp. 25-30.

Foss, C. E. 1978. Space lattice used to sample the color space of the committee on uniform color scales of the optical society of america, J. Opt. Soc. Am. 68(11): 1616-1619.

Gentile, R. S., Allebach, J. P. and Walowit, E. 1990. Quantization of color images based on uniform color spaces, Journal of imaging technology 16(1): 11-21.

Hill, B., Roger, T. and Vorhagen, F. W. 1997. Comparative analysis of the quantization of color spaces on the basis of the cielab color-difference formula, ACM Trans. Graph. 16: 109154.

Judd, D. B. and Wyszecki, G. 1975. Color in business, science, and industry / Deane B. Judd and Gunter Wyszecki, 3d ed. edn, Wiley, New York :.

Kim, D.-H., Cho, E. K. and Kim, J. P. 2001. Evaluation of cielab-based colour-difference formulae using a new dataset, Color Research \& Application 26(5): 369-375.

Linhares, J. a. M. M., Pinto, P. D. and Nascimento, S. M. C. 2008. The number of discernible colors in natural scenes, J. Opt. Soc. Am. A 25(12): 2918-2924.

```
Algorithm 4 Grid Generation
    procedure GridGeneration
        grid is a size \({ }_{a} \times \operatorname{size}_{b}\) matrix of \(L a^{*} b^{*}\) colors
        gridDone is a size \({ }_{a} \times\) size \(_{b}\) matrix of booleans initialized at false
        sortedPlane is a size \({ }_{a} \times \operatorname{size}_{b}\) array of 2 dimensions vectors which contain all the coordinates of the grid matrix sorted by the distance to the center
    ( \(n_{a}, n_{b}\) )
    \(A\) is an \(s i z e_{a}\) array of \(L a^{*} b^{*}\) colors based of \(A_{-}\)(values before the index \(n_{a}\) ) and \(A_{+}\)(values after the index \(n_{a}\) )
    \(B\) is an size \(_{b}\) array of \(L a^{*} b^{*}\) colors based of \(B_{-}\)(values before the index \(n_{b}\) ) and \(B_{+}\)(values after the index \(n_{b}\) )
        for \(i \leftarrow 0\) to \(i<\operatorname{size}_{a}\) with \(i \leftarrow i+1\) do
            gridDone \(\left(i, n_{b}\right) \leftarrow\) true
        end for
        for \(i \leftarrow 0\) to \(i<\operatorname{size}_{b}\) with \(i \leftarrow i+1\) do
            gridDone \(\left(n_{a}, i\right) \leftarrow\) true
        end for
        for \(i \leftarrow 0\) to \(i<\operatorname{size}_{a}\) with \(i \leftarrow i+1\) do
            for \(j \leftarrow 0\) to \(j<\operatorname{size}_{b}\) with \(j \leftarrow j+1\) do
            \(\operatorname{grid}(i, j) \leftarrow A[i]+B[j]\)
        end for
    end for
    for \(i \leftarrow 0\) to \(i<\operatorname{size}_{a} \times \operatorname{size}_{b}\) with \(i \leftarrow i+1\) do
        pos \(_{i} \leftarrow\) sortedPlane \([i]_{i}\)
        pos \(_{j} \leftarrow\) sortedPlane \([i]_{j}\)
            index \(\leftarrow \operatorname{pos}_{i} \times\) size \(_{b}+\operatorname{pos}_{j}\)
            if !gridDone[index] then
            if \(\operatorname{pos}_{i}-n_{a}<0\) then
                direction \(_{a} \leftarrow-1\)
                    else
                    direction \(_{a} \leftarrow 1\)
            end i
            if \(\operatorname{pos}_{j}-n_{b}<0\) then
                    direction \(_{b} \leftarrow-1\)
            else
                    direction \(_{b} \leftarrow 1\)
            end if
            \(\operatorname{grid}\left(\operatorname{pos}_{i}, \operatorname{pos}_{j}\right) \leftarrow\left(\operatorname{grid}\left(\operatorname{pos}_{i}-\right.\right.\) direction \(\left._{a}, \operatorname{pos}_{j}\right)+\operatorname{grid}\left(\operatorname{pos}_{i}, \operatorname{pos}_{j}-\right.\) direction \(\left.\left._{b}\right)\right) / 2\)
            \(\operatorname{grid}\left(\operatorname{pos}_{i}, \operatorname{pos}_{j}\right)_{a} \leftarrow \operatorname{grid}\left(\operatorname{pos}_{i}, \operatorname{pos}_{j}\right)_{a}+A\left[\operatorname{pos}_{i}\right]_{a}-A\left[\text { pos }_{i}-\text { direction }_{a}\right]_{a}\)
            \(\operatorname{grid}\left(\text { pos }_{i}, \operatorname{pos}_{j}\right)_{b} \leftarrow \operatorname{grid}\left(\text { pos }_{i}, \operatorname{pos}_{j}\right)_{b}+B\left[\operatorname{pos}_{j}\right]_{b}-B\left[\operatorname{pos}_{j}-\text { direction }_{b}\right]_{b}\)
            \(\operatorname{OPTIMIZE}^{(g r i d}\left(\operatorname{pos}_{i}-\right.\) direction \(\left._{a}, \operatorname{pos}_{j}\right), \operatorname{grid}^{\left.\left(\operatorname{pos}_{i}, \operatorname{pos}_{j}-\text { direction }_{b}\right), \Delta E^{s m p}, \operatorname{grid}\left(\text { pos }_{i}, \operatorname{pos}_{j}\right)\right)}\)
            gridDone \(\left(\operatorname{pos}_{i}, \operatorname{pos}_{j}\right) \leftarrow\) true
        end if
    end for
    end procedure
```

Luo, M. R., Cui, G. and Rigg, B. 2001. The development of the cie 2000 colour-difference formula: Ciede2000, Color Research \& Application 26(5): 340-350.

Luo, M. R., Minchew, C., Kenyon, P. and Cui, G. 2004. Verification of CIEDE2000 using industrial data, Color and Paints, Interim meeting of the International Color Association, pp. 97-102.

MacAdam, D. L. 1978. Colorimetric data for samples of osa uniform color scales, J. Opt. Soc. Am. 68(1): 121-130.

Mahy, M., Van Mellaert, B., Van Eycken, L. and Oosterlinks, A. 1991. The influence of uniform color spaces on color image processing : a comparative study of cielab, cieluv, and atd, Journal of imaging technology 17(5): 232-243.

Melgosa, M., Huertas, R. and Berns, R. S. 2004. Relative significance of the terms in the ciede2000 and cie94 color-difference formulas, J. Opt. Soc. Am. A 21(12): 2269-2275.

Pointer, M. R. and Attridge, G. G. 1998. The number of discernible colours, Color Research \& Application 23(1): 52-54.

Ridolfi, L., Gattass, M. and Lopes, H. 2010. Investigating euclidean mappings for ciede2000 color difference formula, Color and Imaging Conference 2010(1): 327-333.

Sharma, G., Wu, W. and Dalal, E. N. 2005. The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations, Color Research \& Application 30(1): 21-30.

Stauder, J. F., Colatoni, P. F. and Blonde, L. F. 2006. Device and method for characterizing a colour device, EP1701555.

Stauder, J., Thollot, J., Colantoni, P. and Tremeau, A. 2007. Device, system and method for characterizing a colour device, European Patent WO/2007/116077, EP1845703.

Thomas, J.-B., Chareyron, G. and Trémeau, A. 2007. Image watermarking based on a color quantization process, Multimedia Content Access: Algorithms and Systems 6506(1): 650603.

Thomas, J. B., Colantoni, P. and Tremeau, A. 2013. On the uniform sampling of cielab color space and the number of discernible colors, IAPR, The fourth Computational Color Imaging Workshop, pp. 53-57.

Thomas, J.-B. and Trémeau, A. 2007. A gamut preserving color image quantization, ICIAPW '07: Proceedings of the 14th International Conference of Image Analysis and Processing - Workshops, IEEE Computer Society, Washington, DC, USA, pp. 221-226.

Trémeau, A., Konik, H. and Lozano, V. 1996. Limits of using a digital color camera for color image processing, Proceedings of the IS\&T/OSA Optics \& Imaging in the Information Age, 20-24 October 1996, Rochester, New York, pp. 150-155.

Urban, P., Rosen, M. R., Berns, R. S. and Schleicher, D. 2007. Embedding non-euclidean color spaces into euclidean color spaces with minimal isometric disagreement, J. Opt. Soc. Am. A 24(6): 1516-1528.

Wyszecki, G. 1954. A regular rhombohedral lattice sampling of munsell renotation space, Journal of the optical society of america 44(9): 725-734.

