
Journal of Imaging Science and Technology R© 62(5): 050401-1–050401-8, 2018.
c© Society for Imaging Science and Technology 2018

Demosaicing of Periodic and Random Color Filter Arrays by
Linear Anisotropic Diffusion

Jean-Baptiste Thomas and Ivar Farup
Department of Computer Science, NTNU – Norwegian University of Science and Technology, Teknologiveien 22,

2815 Gjøvik, Norway
E-mail: jean.b.thomas@ntnu.no

Abstract. The authors develop several versions of the diffusion
equation to demosaic color filter arrays of any kind. In particular, they
compare isotropic versus anisotropic and linear versus non-linear
formulations. Using these algorithms, they investigate the effect of
mosaics on the resulting demosaiced images. They perform cross
analysis on images, mosaics, and algorithms. They find that random
mosaics do not perform the best with their algorithms, but rather
pseudo-random mosaics give the best results. The Bayer mosaic
also shows equivalent results to good pseudo-random mosaics
in terms of peak signal-to-noise ratio but causes visual aliasing
artifacts. The linear anisotropic diffusion method performs the best
of the diffusion versions, at the level of state-of-the-art algorithms.
c© 2018 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2018.62.5.050401]

1. INTRODUCTION
Color image sensors usually capture images using spatio-
spectral sampling based on a mosaic of primaries called a
color filter array (CFA). It is important to reconstruct the
spatial resolution of the image in order to display or store the
data within a classical, standard, image representation (e.g., a
three-dimensional matrix). In the case of custom primaries, a
color transform to red, green, and blue (RGB) is also required
for the same reasons.

The demosaicing of CFA is essentially an interpolation
problem, which could take advantage of certain priors
on natural image statistics. Indeed, spatial and/or spectral
correlation is usually assumed for one specific object, and
object edge estimates permit us to refine the assumptions.
These aspects have led the color imaging community to
develop many solutions, well summarized in [1–5]. Most
solutions are dedicated to a single, specific mosaic, the Bayer
pattern [6], which has very deep roots in signal theory (e.g.,
in respect of Shannon theorem) and in the understanding
of the nature of color information (e.g., separability between
luminance and chroma). It is unlikely that a new algorithm
will break through independently of the optimization of the
whole imaging pipeline—see the eloquent conclusion of the
Li et al. survey [3]. We can note in particular the effect of
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illumination [7], and of specific interest for this article, the
role of the mosaic definition.

Indeed, older [8] and recent [9] studies have shown
that a pseudo-random mosaic arrangement may improve
the result of demosaicing. One of the reasons is that
this redistributes noise in several frequencies, and thus
reduces visible aliasing artifacts. Among the research in this
direction, we can note that Condat [10] proposed algorithms
to define random mosaic arrangements that exhibit blue
noise characteristics of sampling, such that two adjacent
pixels would be different primaries. Taking into account
the practical issue for manufacturing random patterns, he
also proposed a pseudo-random pattern, by tiling patterns
while preserving their randomproperties. In [11], an optimal
mosaic was proposed, but it was regular and used six
primaries. Interest in a blue noise arrangement for mosaics
comes from the model of retinal distribution of cones in
the human eye, which is sometimes related to a blue noise
type of distribution [10, 12]. In addition, according to the
spatio-spectral correlation assumed by most demosaicing
methods, specific patterns may help us to identify better
edges to guide demosaicing, at the instar of the Bayer pattern.

However, randommosaics are not very easy to demosaic.
Inverse distance weighted interpolation may be a potential
candidate, but linear interpolation is unlikely to provide a
robust result due to sparsity. Linear mean square error based
demosaicing has been used successfully to demosaic pseudo-
random patterns up to a certain size [9], but this concept
is dependent on a training data set and may not be very
accurate for large random structures. Variational models
based on the diffusion equation have been used successfully
in the demosaicing of random patterns, mostly using
total variation (TV). Condat developed a TV framework
for demosaicing [13, 14]. This is essentially non-linear
isotropic diffusion. In his work, he investigated the results
on several mosaics and showed that state-of-the-art results
can be obtained with this solution, although not the best
quantitative results. He also showed that more standard
results can be obtained with patterns other than Bayer’s.
In his model, the luminance channel mostly drives the
regularization, and chromaticity estimation may be affected.
(Note: [13] is a preprint of [14] but contains useful extra
information.) A version that includes denoising was also
presented [15]. Saito and Komatsu [16, 17] developed a
TV-based, isotropic, demosaicing algorithm for the Bayer
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pattern on the R, G, and B channels. They followed up
with an improved version that couples R and B channels to
the G channel [18, 19], which removes artifacts at edges.
They developed a more advanced coupling of the channels
in a subsequent article [20], which provides good visual
results. Variational frameworks have also been proposed for
demosaicing spectral filter arrays (SFA) [21].

All of the variational approaches listed above are
isotropic (the effective diffusion coefficient is a scalar, not a
tensor) and non-linear (the effective diffusion coefficient is
a function of the final demosaiced image). The mentioned
research evaluates the results of the proposed non-linear
isotropic algorithms on a data set versus the state of the art,
but there has been little investigation on the fundamental
modalities of the diffusion equation developed besides the
proposal. Linear and/or anisotropic methods, to the best of
our knowledge, have not been tested for demosaicing. In
addition, the fundamental characteristics of the mosaics are
not compared deeply.

In this article, we propose to develop the investigation
of several diffusion equation derivations, isotropic versus
anisotropic and linear versus non-linear, jointly with several
patterns based on random noise of several chromatic
characteristics (blue, white, pink). The results are evaluated
based on linear regression analysis and are also compared
with the state of the art using paired statistical tests. We
demonstrate that the linear anisotropic diffusion performed
on color channels and combined with the pseudo-random
mosaic identified by Amba et al. [9] gives the best visual
results with peak signal-to-noise ratio (PSNR), competitive
with the state of the art.

2. DIFFUSIONMETHODS FOR DEMOSAICING
We develop a demosaicing algorithm inspired by the works
by Condat [14] and Saito and Komatsu [20]. It follows
their approach in that a version of the diffusion equation is
used. However, instead of limiting the approach to isotropic
non-linear diffusion, wemake a general framework that gives
the flexibility to use all possible combinations of isotropic and
anisotropic, linear and non-linear diffusion.

Let � ⊂ R2 denote the image domain and M c
⊂ �

denote the subset of the image domain that is covered by the
sensor mosaic of channel c ∈ {R,G,B}. In each pixel, only
one of the channels is present, so

⋂
c M c
=∅. Most often, all

pixels are represented in one channel such that
⋃

c M c
=�,

but actually, neither of these conditions is strictly necessary
for the proposed method. The pixel values of the mosaiced
image are denoted by ucM (x) for x ∈ M c . The task of the
demosaicing algorithm is to find the values for all the pixels
in the image, uc(x) for x ∈ �, such that uc(x) = ucM (x)
for x ∈M c . In other words, we limit the treatment here to
pure demosaicing, leaving out combined demosaicing and
denoising.

A simple approach is to assume that the image channels
are smooth, i.e., the image has a strong spatial correlation.

This can be achieved, e.g., by minimizing the functional

E(u)=
∫
�

‖∇u‖2dA, (1)

where ‖ · ‖ denotes the Frobenius norm over three image
channels and two spatial dimensions of the gradient. This
leads to a constrained Poisson problem

∇
2uc = 0, x ∈� \M c (2)
uc = ucM , x ∈M c, (3)

which can be solved by gradient descent

∂uc

∂t
=∇

2uc, (4)

with symmetric boundary conditions. We discretize this
equation using a forward Euler finite difference scheme for
the time derivative, a centered finite difference scheme for
the Laplacian, and denote the final solution as uP (indicating
Poisson).

There are at least two problemswith the Poisson solution
uP . First, it will not preserve edges very well. Second, there
is no coupling between channels, so there is no guarantee
that small details and edges will occur at the same pixel
position in different color channels. In order to handle this,
we introduce the 2× 2 structure tensor of the image defined
in each position of the image [22]:

S(u)=


∑

c

(
∂uc

∂x

)2 ∑
c
∂uc

∂x
∂uc

∂y∑
c
∂uc

∂x
∂uc

∂y
∑

c

(
∂uc

∂y

)2

 . (5)

Let λ+ and λ− denote the eigenvalues of the structure
tensor. A local diffusion coefficient inspired by Perona and
Malik [23] can then be defined as

d(λ+)=
1

1+ κλ2
+

, (6)

where κ is a suitably chosen constant, and used for isotropic
diffusion,

∂uc

∂t
=∇ · (d(λ+)∇uc). (7)

We denote the solutions of this equation by ui (indicating
isotropy).

In order to obtain anisotropic diffusion, let E be
the matrix with the eigenvectors of the structure tensor
corresponding to the eigenvectors λ± as columns. The struc-
ture tensor can then be written as S = ETdiag(λ+, λ−)E.
Following Sapiro and Ringach [24], we define the diffusion
tensor as

D= ETdiag(d(λ+), d(λ−))E. (8)

The corresponding anisotropic diffusion equation is [24]

∂uc

∂t
=∇ · (D∇uc). (9)
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(a) Poisson diffusion (b) Isotropic diffusion (c) Anisotropic diffusion

Figure 1. Illustration of the effect of the behavior of the three different diffusion methods close to an edge in an image.

(a) Bayer moxel (b) Amba 1 moxel (c) Amba 2 moxel

Figure 2. Moxels of the regular and pseudo-random mosaics used.

We denote the solutions of this equation by ua (indicating
anisotropy).

As in the Poisson case, both the isotropic (7) and
anisotropic (9) diffusion equations can be solved by a forward
Euler finite difference method. The gradient and divergence
are discretized with forward and backward finite differences,
respectively. As an initial value, we use the result of the simple
Poisson demosaicing described above, uP . An illustration of
the effect of the three different diffusion schemes is shown in
Figure 1.

For the structure tensor, from which the diffusion
coefficient and diffusion tensor are defined, we have two
principally different options. Either it can be defined in terms
of the initial Poisson solution, S(uP), or it can be taken as
a function of the final demosaiced image, S(u). The former
will give rise to a linear problem, whereas the latter will give
rise to a non-linear one. Thus, in total, we now have four
principally different solutions of the demosaicing problem,
corresponding to the choices of isotropic versus anisotropic
and linear versus non-linear, respectively. In all of these
methods, channel coupling is introduced by means of the
structure tensor (5). Thus, the channels are coupled through
the Euclidean distance in the sensor RGB space, which will
include lightness, chroma, and hue differences. It should be

noted that all methods cited in the introduction would in
principle be very similar to isotropic non-linear diffusion.

3. EXPERIMENTAL PROTOCOL
We describe here the details of procedures for the mosaic
creations, selection of image set, demosaicing methods, and
parameters selected for the quantitative investigation.

3.1 Mosaics
Bayer mosaic has been selected as per reference to the state
of the art. Its mosaic element (moxel) is shown in Figure 2(a).
We also selected the best pseudo-random mosaics from
Amba et al. [9], for which moxels are shown in Fig. 2(b)
and (c). Those moxels are repeated until they fit the size
of the images. We did not investigate other regular or
pseudo-random mosaics because we decided to follow the
selection of mosaics performed by Amba et al. [9]. We
also limited the investigation to R,G,B moxels, excluding
more than three primaries or complementary filters. We,
however, selected unconstrained random mosaics because
the spatial frequency properties of the mosaics impact image
reconstruction, e.g., spatial aggregation of similar filters may
help us to better evaluate local gradients.

We decided to implement a simple noise model of
mosaic based on frequency filtering. Random mosaics have
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(a) White noise mosaic (b) Blue noise mosaic (c) Pink noise mosaic

(d) White noise mosaic (e) Blue noise mosaic (f) Pink noise mosaic

Figure 3. 100× 100 center pixels of the random mosaics. Top line: It visually seems that there are more green pixels, but the count is equivalent in
these three distributions. Little differences are observed between the blue noise and the white noise, which is confirmed by a frequency analysis. Bottom
line: Random mosaics with an oversampled green channel. We observed a sparser occurrence of red and blue pixels, which would permit, in principle,
generating a better gradient map while using the green channel.

been created by frequency filtering of a white noise of
three intensity ‘‘images’’ (we used the MATLAB function
randnd() from Marcin Konowalczyk [25]), followed by a
maximum-based selection for which a channel is sampled at
one location so that there are no empty pixels in the mosaic.
With this strategy, we generated approximated white, pink
and blue noise mosaics as shown in Figure 3(a)–(c).

We also generated an oversampled green version of those
mosaics by multiplying the intensity of the green random
image by 2 before the maximum-based selection. This leads
to a distribution of green slightly more than double that
of the other two components. Those mosaics are shown in
Fig. 3(d)–(f).

All the mosaics are generated by the same random
seed, and only once, to avoid instability of results during
the comparison, but we ensured visually that they were
representative. They are adjusted to the image from the
center, so the large part of the sampling remains the same
across images of the databases. We did a frequency analysis
similar to what was performed by Alleysson et al. [26] and
verified that the pink noisewas reasonably pink and thewhite
noise was white; however, it was really difficult to assess the
blue noise. The blue noise version we generated is very close

to a white noise, and this is verified in the results later, where
the blue and white noise mosaics exhibit similar results,
with a little advantage for the white noise. Nevertheless,
the two-dimensional blue noise generation is still an open
problem, and we accepted this instance as representative
enough for this work.

Increasing green channels or having pink noise patterns
creates chromatic blotches in which one specific channel
is sampled at the sensor resolution, which may help edge
identification while assuming strong spectral correlation.

3.2 Images
The imaging process is simulated based on thesemosaics and
on the commonly used color image data sets: Kodak [27]
and IMAX [28]. Kodak has been used for decades as the
benchmark for demosaicing fields, although some literature
says that it is not very well representative of the real world. In
particular, it does not contain very high saturation and high
intensity edges (see e.g., [3]), compared to what is achieved
by modern cameras. It is accepted that most demosaicing
would perform well on this database, but the fence part of
the lighthouse image is a very good example of the aliasing
effect. IMAX is amore recent benchmark set, which is known
to be more challenging due to higher saturation and hue
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Figure 4. Correlation between PSNR and SSIM indicates that we can use
one of them in the following. PSNRAll stands for the color PSNR description
and PSNRGray stands for a PSNR estimated on a graylevel image version
computed as a weighted linear sum of the R, G, and B channels as in
sRGB.

complexity, but also more representative of what is captured
with modern cameras. Thus, we consider these image sets to
be complementary and have used both of them.

3.3 Demosaicing
As a preliminary experiment, we ran the pure Poisson
solver (4) on all images and mosaics described above.
However, the results were clearly visually poorer than other
recent methods, so the resulting images were not included in
the final analysis below.

We also tried coupling the channels only through the
lightness channel uL computed as a weighted average of
the RGB color channels. In this case, the eigenvalues of the
structure tensor simply become λ+ = |∇uL| and λ− = 0, and
the corresponding eigenvectors will be directed parallel and
orthogonal to the gradient ∇uL, respectively. Used with the
isotropic (7) and anisotropic (9) schemes, this gave visually
quite good results. However, a statistical analysis on the
PSNR from these preliminary experiments quickly showed
that it could not compete with using the full color structure
tensor (5).

We further tried adding a blurring convolutionmask as a
preprocessing step before computing the structure tensor (5),
without any measurable effect. This is probably because
the image resulting from the first Poisson solver is already
somewhat blurred.

Thus, we decided to focus our analysis on the behavior
of the method using isotropic (7) versus anisotropic (9)
diffusion with a full RGB color structure tensor (5), linear
S(uP) versus non-linear S(u) diffusion, and various values of
κ ∈ {102, 103, 104

} across all mosaics and images described
above.

4. ANALYSIS
We analyze the behavior of the developed algorithm across
different images, mosaics, and parameters, and against a
state-of-the-art method.

Figure 5. Correlation between PSNRs of different channels indicates
that we can use only PSNRAll in the following. PSNRAll stands for the
color PSNR description and PSNRGray stands for a PSNR estimated on
a graylevel image version computed as a weighted linear sum of the R,
G, and B channels as in sRGB. PSNRR, PSNRG, and PSNRB stand for
the PSNR computed on the mentioned color channel. Similar results are
obtained for SSIM.

4.1 Quality Measure
It is common practice in the demosaicing literature to
measure the performance of the demosaicing algorithm by
comparing the demosaiced images with a ground truth by
means of PSNR. Since the PSNR does not necessarily corre-
late very well with perceptual correspondence between the
images, perceptual image difference metrics like structural
similarity (SSIM) [29] can be used. Figure 4 shows a scatter
matrix plot of PSNR and SSIM computed for all the test
images using all channels and only the luminance channel.
Since the correlation between SSIM and PSNR is much
higher than the correlation between all channels and the
luminance channel only, there is no reason to go beyond the
simpler PSNR for the following analysis.

A similar analysis between PSNR values computed
across all channels, on the luminance channel and the
individual channels, respectively, is shown in Figure 5. For
the PSNR gray versus individual channels, the correlation
reproduces the weights of the RGB to grayscale transforma-
tion. On average, the correlation is smallest with the green
channel. For some reason there is higher correlation between
red and blue than between any of them and green. This could
be due to the fact that many of the images are computed with
the double green mosaics.

Based on this analysis, we find it reasonable to use the
PSNR computed across all channels as a quality measure for
the demosaicing algorithms in the following analysis.

4.2 Mosaics
In order to compare the behavior of the algorithms for
various mosaics, we perform an ordinary least squares
regression analysis, fitting the PSNR to the mosaics across all
the images and algorithms and computing the p-values and
linear regression slopes.We observe that the Amba1, Amba2,
andBayermosaics perform the best overall, and clearly better
than all of the randommosaics. Surprisingly, the single green
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(a) Original

(b) Malvar on Bayer

(c) Anisotropic linear on Amba2

(d) Anisotropic linear on Bayer

Figure 6. Crop of lighthouse image (Kodim19). We observe that
the aliasing artifact is generated strongly by the Bayer moxel for both
demosaicing algorithms, compared to the Amba2 moxel. Malvar exhibits
some zipping visible in particular on the wooden wall above the buoy.
This area is prone to chromatic artifacts with all methods. However, edges
of the buoy seem slightly better preserved with the Bayer moxel. For the
anisotropic method on Amba2, we also observe a reddish and bluish
halo around the dark object occluding the fence on the right. This could
be explained by the predominance of red and blue filters in the moxel.

versions of the random mosaics consistently perform better
than the double green versions for all the noise types. This
may be caused by the computation of the structure tensor
from the original Poisson solution,uP , which does not benefit
from the oversampling of a specific channel for the definition
of edges. The pink noise mosaics show lower performance
than the other random mosaics.

In order to get even more refined results among the
better mosaics, we perform the paired sign test (binomial
test of the sign of the difference of the PSNRs) for pairs of
mosaics across all images and algorithms. This showed that
Amba2 is significantly better than Amba1 (p < 10−4) and
Amba2 is significantly better than Bayer (p< 10−4), whereas
there is no significant difference between Amba1 and Bayer
(p= 0.7). This analysis was also repeated for the anisotropic
diffusionmethod alone, with the same result: Amba2 is better
than Amba1 and Bayer, and there is no significant difference
between Amba1 and Bayer.

4.3 Methods
Like for the mosaics, an ordinary least squares regression
analysis is performed to analyze the behavior of themethods:
linear versus non-linear and isotropic versus anisotropic. It is
clear from the regression analysis that anisotropic diffusion
outperforms the isotropic formulation. Also, linear tends to
perform better than non-linear diffusion. These trends are
confirmed by the sign tests:

• Anisotropic performs significantly better than isotropic
diffusion across all methods, mosaics, and images
(p< 10−4). The average difference between anisotropic
and isotropic diffusion is a PSNR of 0.86 dB.
• Linear performs significantly better than non-linear

diffusion across all methods, mosaics, and images
(p < 10−4), but the effect is very small: an average
difference in PSNR of 0.08 dB.
• Linear performs significantly better than non-linear

diffusion for both isotropic diffusion and anisotropic
diffusion across all mosaics and images (p < 10−4

and p= 0.0002, respectively).

The difference between linear and non-linear is very
small but, surprisingly, in favor of linear diffusion. This
result is quite fortunate since linear diffusion is much
less computationally expensive than non-linear diffusion.
By means of ordinary least squares regression, we also
investigated whether the isotropic methods were particularly
accurate for any given mosaic, but we found no significant
cross-effects between the methods and the mosaics.

Ordinary least squares regression on PSNR versus κ
across all the diffusion methods showed a strong correlation
(p = 0.007 for the slope being different from zero) with
increasing performance, with increasing κ value. Thus, the
best results correspond to κ = 104.

4.4 Images and Database
Regression analysis on the entire PSNR result data set shows
that most of the variation in the data set comes from the
difference in the images (R2

= 0.658). Since there is such
a strong dependence on the images, it is interesting to see
if there is a big difference between the Kodak and IMAX
image sets. Regression shows that there is no significant
dependence on the data set (p= 0.148).

4.5 Comparison with State of the Art
Wecompared the proposed algorithmswith themethod from
Malvar et al. [30] on the Bayer mosaic as a representative
of the state of the art. Although this may not be the
best performing method in terms of peak performance,
it shows stable results at the level of the state of the art
and is well established (implemented in MATLAB). Since
state-of-the-art methods are usually applicable only to the
Bayer mosaic, except a few (Lukac, Condat, Amba, etc.), it
is relevant to analyze the behavior of our proposed method
on this particular mosaic. A paired sign test does not detect
a statistically significant difference between the proposed
linear anisotropic diffusion (with κ = 104) and the Malvar
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(a) Original (b) Malvar on Bayer

(c) Anisotropic linear on Amba2 (d) Anisotropic linear on Bayer

Figure 7. Crop of the first image of the IMAX data (IMAX01). Minimum
artifacts are generated by the algorithms on the edges between the white
glass and the dark holders. Yet, Malvar exhibits more zipping on these
edges compared to the linear anisotropic method. On the contrary, it
seems that the edges are a little blurred and slightly chromatic with the
linear anisotropic method. If we look at the curtain on the top left, Malvar
exhibits a strong zipping.

algorithm (p= 0.088with a PSNR difference of 0.22, in favor
of the proposed method). However, the linear anisotropic
diffusion method with the Amba2 mosaic (average PSNR of
38.99) performs significantly better thanMalvar on the Bayer
mosaic (average PSNRof 38.87), but the differences are small.

4.6 Visual Observations
Overall, we observed that the linear anisotropic method on
Amba2 performed visually better onmost images. In general,
the random noise mosaics do not give very stable results and
some regions could be very good while some exhibit strong
artifacts. We thus deduce that a carefully chosen pseudo-
random is more efficient than fully random instances. In

(a) Original (b) Malvar on Bayer

(c) Anisotropic linear on Amba2 (d) Anisotropic linear on Bayer

Figure 8. Crop of the rafting boat image (Kodim14). We observe a better
reconstruction of the text with the linear anisotropic method on Amba2
moxel. Both algorithms are equivalent on the Bayer moxel.

Figures 6–8, we illustrate some specific behavior. Captions
provide more specific analysis of the images.

5. CONCLUSION
A diffusion-based demosaicing algorithm has been devel-
oped in different versions and tested on different periodic
and randommosaics. It was found that anisotropic diffusion
works better than isotropic diffusion, and that linear worked
somewhat better than non-linear diffusion, and is also
computationally less expensive. Comparing the mosaics,
we found that the periodic mosaics performed better than
all the random mosaics with different noise types both
with and without double sampling of the green channel.
Linear anisotropic diffusion performed at the same level as
Malvar’s state-of-the-art algorithm on the Bayer mosaic, and
significantly better on the Amba2 mosaic.

Direct extensions include the use of perceptual color
metrics for the coupling of channels and psychometric
quality evaluation compared to the best state-of-the-art
methods. This class of algorithms could also be generalized to
spectral filter arrays of any dimension and anymosaic design.
Also, a global model of imaging pipeline could be derived
and include demosaicing, denoising, and super-resolution
together based on a similar formulation.
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