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The visual systems found in nature rely on capturing light under different modalities, in
terms of spectral sensitivities and polarization sensitivities. Numerous imaging
techniques are inspired by this variety, among which, the most famous is color
imaging inspired by the trichromacy theory of the human visual system. We
investigate the spectral and polarimetric properties of biological imaging systems
that will lead to the best performance on scene imaging through haze, i.e., dehazing.
We design a benchmark experiment based on modalities inspired by several visual
systems, and adapt state-of-the-art image reconstruction algorithms to those
modalities. We show the difference in performance of each studied systems and
discuss it in front of our methodology and the statistical relevance of our data.
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1 INTRODUCTION

A wide variety of visual systems can be found in nature. Those systems sense light with
different spectral sensitivities and polarization sensitivities. Presumably, those visual
systems are optimally adapted for specific conditions, e.g., some animals develop specific
sensitivities to permit navigation or prey detection (Horváth et al., 2014). It is also known
that some animals can potentially use spectral or polarization information to increase the
visibility through turbid media (Horváth et al., 2014). Airlight can reduce the visibility in a
natural environment. It comes when the atmospheric particles, e.g., water droplets, ice
crystals, dust, or smoke, are lit directly or indirectly by the Sun. Light scattering causes a
modification of the signal according to the radiative transfer theory, that in imaging causes a
decrease in contrast with distance and a loss of color fidelity (El Khoury et al., 2014; El
Khoury et al., 2018a).

The radiance of the scene captured by a camera sensor can be written like in Eq. 1,

I � ∫f(λ)s(λ)dλ , (1)

where f(λ) is the radiance, and s(λ) is the spectral sensitivity of the sensor. The radiance of the
scene is the combination of the contributions from the objects in the scene and from the
airlight present in a scene observed through a turbid media. The radiance from the scene is
proportional to the irradiance of the sensor for a given aperture and a given focal length. In our
work, when we mention radiance, it is the contribution of the radiance of the scene to the
imaging process. The total radiance results from a contribution by the object in the scene, J,
and by the airlight, A, as defined by the Koschmieder (Koschmeider, 1924) solution to the
radiative transfer equation, as in Equation (2), where α and c are the contributions to each of
the components with c � 1 − α:
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I � αJ + cA , (2)

Thus we can rewrite Eq. 1 as Eq. 3, where j(λ) is the
contribution of the object in the scene by wavelengths λ, and
a(λ) is the airlight spectral characteristics.

I � ∫(αj(λ) + (1 − α)a(λ))s(λ)dλ . (3)

To inverse the Koschmieder model, the parameters to
retrieve are the radiance due to the airlight a(λ), and the
transmittance α that defines how the light is traversing the air.
This also gives the attenuation (1 − α) of the atmosphere
largely due to scattering, and more moderately through
absorption. Without atmospheric particles, the
transmittance α � e−βd is close to 1, where β (in m−1) is
the extinction coefficient invariant with the distance d. The
computer vision community proposes several methods to
estimate those parameters (Ancuti et al., 2019) amongst
which one class is based on image statistics in intensity
(He et al., 2011), and another on the difference of
intensity between polarization modes (Schechner et al.,
2003). In those two cases, it is assumed that the density of
haze is uniform in the scene. Today’s literature proposes to
inverse this problem using machine learning techniques, e.g.
AoD-net (Li et al., 2017), Dehazenet (Cai et al., 2016), or
conditional GAN (Li et al., 2018).

In this communication, we investigate 1) whether the extra
information modalities sensed by various animals could
potentially help them in hazy/reduced-visibility conditions
and more generally in some turbid media, and 2) if so,
whether we could improve state-of-the-art image information
recovery by designing imaging systems for computer vision
applications. To this end, we design a benchmark experiment
for performance evaluation of several bio-inspired spectral and
polarimetric visual systems on image dehazing. As the
experiment is designed considering only the spectral range
and polarization sensitivity of the animal’s visual systems, the
cognitive process of the animals in performing dehazing is not
considered in this work. We rather freely design and test bio-
sensors of equivalent spatial resolutions. The imaging systems
could be physically implemented with current state-of-the-art
techniques: general filter arrays, filter wheels, line-scan, or
multiple camera set-ups.

The experimental data is captured in a hazy environment,
with a multispectral and polarization imaging system. We

merge those data and reconstruct the normalised radiance
for the different polarization angles, which allow us to
emulate any animal sensory system for which the physiology
is known. We then use and adapt state-of-the-art hazy image
reconstruction algorithms to the spectro-polarimetric
modalities. Results could help the design or co-design of
sensors for computer vision, while perhaps also give some
indications on how animal visual systems may be used to
navigate in turbid media such as fog.

We first describe the acquisition setup and the pre-processing
steps to generate the data in Section 2. Then, we simulate the bio-
inspired sensor images from the data, dehaze and visualize them
in Section 3. Finally, results and analysis are provided in Section
4, before concluding in Section 5.

2 DATA ACQUISITION AND
CONSTRUCTION

This section describes the acquisition and the pre-processing of
spectral and polarimetric images. The existing haze datasets like
O-haze (Ancuti et al., 2018a), I-haze (Ancuti et al., 2018b), NH-
Haze (Ancuti et al., 2020), CHIC (El Khoury et al., 2018b), or
Dense Haze (Ancuti et al., 2019) are all color image based. There
exists one dataset that is spectral, SHIA (El Khoury et al., 2020),
but does not cover polarization neither UV. It is therefore not
possible to obtain spectral or polarization data out of these. We
decided to capture the data ourselves from the available cameras.
We also define a pipeline (see Figure 1) that transforms the raw
captured data into a standard data representation of high
dynamic range spectral images, with 5 nm resolution in the
UV-A and visible domain, and four states of polarization.

2.1 Data Capture
We combine three cameras for the capture. Two of them are
Color Polarization Filter Array (CPFA) cameras with the IMX250
MYR sensor by SONY. Each of these two cameras is combined
with a spectral filter attached to the lens: the first one with a blue-
green BG39 filter, and the second with the yellow GG475 filter
(both manufactured by Schott), so that at the end, we obtain six
visible bands. The other one is a Polarization Filter Array (PFA)
camera with the IMX250 MZR sensor by SONY. To capture the
UV-A range of the spectrum, it is combined with a bandpass UG1
filter (manufactured by Schott) and a BG39 filter to avoid the red
transmission of the UG1 filter. Finally, the complete camera

FIGURE 1 |Data acquisition pipeline. Raw images are captured using a CPFA camera with four polarization angles, in front of spectral bandpass filters as described
in Section 2.1. Pre-processing steps (HDR, demosaicing, and registration) are described inSection 2.1, whereas spectral image reconstruction is described inSection
2.2. The dotted arrow corresponds to the connection toward Figure 3.
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system has a total of 28 channels: seven spectral channels with
four polarization channels each. The sensitivities of the cameras
are in Figure 2A, and the transmittance of the spectral filters are
in Figure 2B. The total spectral sensitivity of the system is in
Figure 2C.

We capture the outdoor scene simultaneously and with three
different exposure times. We apply the fusion HDR process
proposed by Debevec and Malik (Paul, 1997) directly on raw
images and by pixel (Lapray et al., 2017). It avoids under or over
saturated values and balances energy and noise among all
spectro-polarimetric channels. Then, to recover the full spatial
resolution, we applied the state-of-the-art demosaicing technique
dedicated to PFA/CPFA images (Morimatsu et al., 2020). Finally,
we register all the bands using the speeded up robust features
(SURF) method (Bay et al., 2006) to compensate for any
misalignment induced by field of view or optical assembly.

2.2 Spectral Reconstruction
With this seven band multispectral system, we want to be able to
simulate any physiological sensory system. We separate the UV
band from the rest and estimate the visible range radiant
information as a function of λ from the sensor integrated
values. We apply a well-established method that uses the
pseudo-inverse method (Maloney and Wandell, 1986) to
convert camera signals to spectral reflectance factors. We

choose the Xrite Macbeth ColorChecker (MCC) as a
calibration target, with 24 patches with known reflectance
properties. The reflectance of the patches are used to train the
model. We set a resolution of 5nm between 380 and 780nm,
resulting in M � 81 equally-spaced wavelengths. Assuming that
the camera system has a linear response, we compute the matrix
W as follows:

W � FtrainI
+
train , (4)

where the + superscript symbol is the pseudoinverse
operation of a non-square matrix (we used the
pinv function in Matlab, i.e. the Moore-Penrose method),
W is a 81 × 6 matrix, Itrain is a matrix of size 6 × 24 formed by
column vectors containing the captured camera
signals of the 24 patches of the calibration target, and
Ftrain is a 81 × 24 matrix representing the spectral
reflectance of patches.

Once the transformation matrixW is known, we can estimate
the spectral data p (81 × 1) from camera signals (taken with the
same lightning conditions) at each pixel position by:

p � WI , (5)

where I is a 6 × 1 vector containing the camera signals. To
evaluate the calibration precision, we apply Equation 5 to other
captured signals of another reference target (the creative reference

FIGURE 2 | (A) Normalized spectral sensitivities of the two cameras used. (B) Transmittance of the bandpass filters. (C) Total system sensitivity, which is a
combination of the camera sensitivities with the bandpass filters. We show only spectral sensitivities for the 0° polarization channels as spectral sensitivities of all
polarization channels are very similar.
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chart of the Xrite ColorChecker Passport, the one presented in
Figure 4C of (Lapray et al., 2018)). The calibration results and the
RMSE errors between the estimated and reference spectra are
very similar to those presented in Figure 7 of (Lapray et al., 2018).

From any scene captured by our camera system, we then have
spectral scene data that can be used to simulate any spectral
sensing.

3 EXPERIMENT

In this section, we first describe how we transform the spectral
data generated from the previous section into bio-inspired
sensor data. In a second time, we explain the extension of
the dehazing algorithms to multimodal images and the
visualisation procedure as color images. The process is
summarized in Figure 3.

3.1 Animal Sensitivities
The set of selected animal visual systems are summarized in
Table 1: 1) Dogs or pigs are dichromates, 2) primates are
trichromates (equivalent to the human color vision system); 3)
Papilio butterflies have polarization sensitivities for each of the
three spectral bands, 4) Cricket have three spectral bands and two
polarization orientations in the short wavelengths; 5) Zebra-fish
has four spectral bands spanning UV and color; 6) Avian has five
spectral channels.

The spectral sensitivities S of each animal are shown in
Figure 4. We aim at investigating if the visibility is enhanced
with an increasing number of channels and modalities, and
potentially identify trends that may give a better result.

For the polarization blind animals (dog/pig, primate,
zebrafish, and avian), we use the dehazing method based on
the airlight estimation from dark-channel prior (He et al., 2011),
as described later in Section 3.4.1, which extension to an arbitrary
number of bands is trivial.

Insects like crickets use UV-A for navigation so that they can
identify the position of the Sun, even in difficult environments or
cloudy days, relatively to the patches of the sky that are visible.
The cricket has a UV-A sensitive channel that combines a
polarization sensitivity in the dorsal rim area. This behavior is
partly explained in (Barta and Horváth, 2004) and (Von Frisch,

2013), where it is said that although the degree of polarization is
generally lower in the UV than in the visible (called ”UV-sky-pol
paradox”) in clear skies, the polarization of light is highest in UV
when reflected from clouds/canopies, and is the least sensitive to
“atmospheric disturbances.” Although this part of its visual
system probably does not generate a very resolved image, we
assume that the cricket can use a discrete airlight estimation based
on few partial observations. The highest spatial resolution is only
for the other spectral sensitivities in the rest of the
photoreceptors. For the cricket, we apply the polarization-
based method (Schechner et al., 2003), as described later in
Section 3.4.2, taking the same airlight estimation (in the UV-
A channel) to dehaze all the spectral bands.

Other insects use polarization sensitivity for prey or food
detection, like transparent prey where the polarization
signature difference with the background is more
pronounced than the spectral one. The butterfly has jointly
the linear polarization (with four different angles of analysis)
and colors sensitivities to detect flowers from the background
environment (Horváth et al., 2014). Contrary to the cricket, the
polarization sensitivity is for all spectral channels. For this
animal, we can apply the polarization-based method
(Schechner et al., 2003) initially proposed by the authors
without modification.

3.2 Simulation of Bio-Inspired Sensing
Each bio-inspired system is composed of N sensors (N � 2 for
dogs, N � 3 for primates, etc.), as shown in Figure 4. The N
sensors are represented as M-dimensional column vectors si
i( indexes the channel number), gathered in a M × N
matrix S.

The simulation of sensor values I′ (N × 1) pertaining to a
specific visual system shown in Figure 4, are computed using
spectral data p from Eq. 5 as:

I′ � GStp , (6)

where G � diag( 1
max(Stp)i) is a normalization matrix on sensor

values, where i goes over all the N spectral sensors.
All simulated data are spatially gathered to form an image and

applied on each visual system in Figure 4. All the simulated data
will be used later in Section 3.4 as an input for the dehazing
algorithms.

FIGURE 3 |Design of the second step of processing. From the radiance image, we simulate the sensing process, apply dehazing and evaluate the result according
to image data. An alternative color visualization pipeline permits looking at colour images and provide an alternative evaluation of the result. The dotted arrow
corresponds to the connection from Figure 1.
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The simulated spectral data will be provided online when
the paper is published. The link will be included in the final
version.

3.3 Data Visualization as Color Images
In order to visualize the data from the sensors, we propose to
convert them into color images. This is achieved by defining an
orthogonal basis of the sensor space, and projecting the data from
this space to a colorspace.

Given the previously generated spectra p with M channels,
we can find a projection of p to the subspace spanned by the N
sensors. To this end, we make an orthonormal basis of the
sensor subspace, by applying a Gram–Schmidt QR
decomposition to S:

S � QR � Q1 Q2[ ] R1

0
[ ] , (7)

whereQ is anM ×M orthogonal matrix,Q1 anM × Nmatrix with
orthonormal columns spanning the same space as the columns of
S, Q2 an M × (M − N) matrix with orthonormal columns

spanning the null space of S, R an M × N upper triangular
matrix, and R1 an N × N upper triangular matrix. To project the
individual pixel spectrum p onto the sensor subspace, and
reconstruct a pixel spectrum represented as a column vector
p′, we use:

p′ � Q1(Rt
1)−1G−1I′, (8)

note that I′ could come from either a hazy or dehazed sensor
intensity value.

Then, we can compute the corresponding CIEXYZ values
from each animal’s p′ for illustrative purpose:

X
Y
Z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Ctp′, (9)

where C (M × 3) are the CIE (1931) Color Matching Functions
(CMFs) (Wright, 1929; Guild and Petavel, 1931). Then, we
convert the CIEXYZ values to sRGB (Standard (1999)) for
visualization. The results, both for hazy and dehazed data, are
shown in Figure 5.

TABLE 1 | Summary of the visual systems. We used sensitivities presented in the literature from physiological studies of animal visual systems. Three of the animals are
sensitive to the UV, and two are sensitive to polarization.

No Visual Reference Spectral UV-A Polarization

System Channels Sensitivity Channels (linear)

1 Dog & Pig Beltran et al. (2014), Kasparson et al. (2013) 2 - 0
2 Primate Bowmaker and Dartnall, (1980) 3 - 0
3 Papilio butterfly Horváth et al. (2002) 3 - 4
4 Cricket Herzmann and Labhart, (1989) 3 + 2
5 Zebrafish Endeman et al. (2013) 4 + 0
6 Avian Hart and Vorobyev, (2005) 5 + 0

FIGURE 4 | Normalized spectral sensitivities S of each selected animals. U, V, S, M, and L refer to the ultraviolet (UV-A), violet (VS), short-wavelength (SWS),
medium-wavelength (MWS), and long-wavelength-sensitive (LWS) cones respectively. The names only indicate the approximate peak wavelength and are different
between the animals.
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FIGURE 5 | sRGB visualization (scene 1) of images before and after dehazing for each animal.
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3.4 Adaptation of Dehazing Algorithms for
Each Sensor
We adapt two algorithms from the state-of-the-art: the Dark
Channel Prior (DCP) method from (He et al., 2011); and a
polarization-based image reconstruction (Schechner et al., 2003).

3.4.1 Extension of DCP to Spectral Images
DCP was previously applied to spectral images (Martínez-
Domingo et al., 2020). Our adaptation is based on the code
provided by Matlab (imreducehaze function, “approxdcp”
option), which is the direct implementation of the algorithm
by He et al. (He et al., 2011). First, an extension of the Dark
Channel Prior is done for spectral data. Initially, the algorithm
computes the dark channel by taking the minimum over the RGB
values of a small local patches of 15 × 15 pixels. The assumption
of dehazing using dark channel is based on a statistical
observation which demonstrates that the fog-free images have
a dark channel image with very low pixel intensities. We can
assume that we have the same statistical behavior for N ≠ 3, so
that we can extend the dark channel computation over all the
available spectral channels. Nevertheless, this assumption should
be verified over a large dataset of hazy and fog-free multispectral
images when available.

Moreover, the DCP method uses guided filtering (He et al.,
2013) to refine the transmission map. Initially, the guidance
image was in RGB, so that all the three channels are used for
guidance (color statistics) for filtering the transmission map. The
guided filtering has not been generalized to the spectral case yet.
The average spectral channel should correspond quite well to a
luminance/greyscale image, so we decided to use an average
image over all spectral channels as a guidance image.

3.4.2 Adaptation of Schechner Method in Bio-Inspired
Sensors
The algorithm of Schechner et al. (2003) estimates the airlight
map by assuming that the light scattered by atmospheric particles
is partially polarized. They compute the degree of linear
polarization and assume that the induced polarization is only
due to scattering. The separation of the radiance of the object and
the airlight is done per spectral band, relatively to the amount of
polarization detected in the spectral channel.

For the butterfly case, we compute the airlight map
independently and by channel, as the polarization sensitivity is
available for the three bands. The dehazing is done per spectral
channel using the corresponding airlight map.

For the cricket, we compute the airlight only in the UV-A
channel (as cricket has only the polarization sensitivity in the UV-
A channel), and apply the algorithm to dehaze all spectral
channels using this unique airlight estimation.

4 DATA ANALYSIS

4.1 Metrics
The evaluation of results is done on images both in the sRGB
color space and by spectral channel. It is not possible in our case

to use the metrics with reference (e.g. PSNR, SSIM, CIEDE 2000)
because the ground truth does not exist. Thus, we have selected
some metrics that are without references or with the fog image as
reference.

The first metric used is FADE (D) by Choi and You (2015).
This metric is applied on color images, and is based on Natural
Scene Statistics (NSS) and fog aware statistical features. D is
computed on a single image and gives a low value for a low fog
perception.

The second metric used is by Hautière et al. (2011). It
measures the improvement in the visibility of objects present
in a scene before and after processing, using contrast descriptors.
Two parameters are given by the metric: e and �r. The rate of new
visible edges is depicted as e, whereas the restoration quality
(geometric mean ratios of visible gradients) is �r. The parameter �r
takes into account both visible and non-visible edges. Two input
images (foggy and dehazed) are needed to assess the restoration
quality. Higher e/�r values mean better performance in contrast
restoration.

4.2 Results
We captured two case study scenes. One scene is a more rural area
(taken at Mortzwiller, France), and can be described as an open
landscape, though some houses can be seen. The second scene is a
more urban context (taken at Mulhouse, France), with nevertheless
some trees. The degree of fog varies between the two scenes.

The scores computed by the metrics are shown in Tables 2, 3.

4.2.1 FADE
The hazy and dehazed sRGB images on which FADE was
computed are shown in Figures 5, 6.

The FADE metric provides different results for the color
version of the foggy images captured by different sensors.
FADE varies from 1.42 to 1.68 for scene 1, and from 1.97 to
5.53 for scene 2. The difference of range and scores of the FADE
metric is easily related to the difference in the quantity of fog
present in the scenes. The best FADE metric is always to the
images captured by the Zebrafish inspired sensor, while the worst
images according to the metric are the Butterfly and the avian.

All FADE scores improved after dehazing. Improvement for scene
1 ranges from 47.1% for the Cricket to 57% for the Butterfly. The
polarized versions did not improve as much as the unpolarized
versions. For scene 2, improvement is larger and ranges from 32.1%
for the Cricket without polarization to 81.9% for the Butterfly. For the
dehazed images, the Butterfly without polarization and the Zebrafish,
provide the best FADE scores for scene 1 and 2 respectively. The
animals that give the best relative improvement of the Dmetric after
dehazing are the Butterfly (without polarization) and the primate.

We remark that increasing the number of spectral bands for
the reconstruction of a color image does not necessarily give
better results for the FADE metric. For example, the case of the
dog gives better results than that of the avian or cricket.

For the polarization based-method, we can see that the
perception of haze is globally reduced between hazy and
dehazed images, but to a smaller degree than that without
polarization. It can be explained by the fact that the
polarization method reduces the presence of fog less than the
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DCPmethod. The estimation of the airlight using polarization for
each band (butterfly) instead of just one band (cricket) does not
appear to provide a beneficial effect.

On the color images, we can observe that all images have been
dehazed to some extent. We can also observe that the look of the
dehazed sky might impact the computation of the FADE and its
estimation of the naturalness of the color image. This might also
be the case for the color cast present in some images (i.e. Zebrafish
and Dog).

Indeed, the use of the FADE metric and of the color images for
analysis should be taken with care since we cannot separate
between the dehazing algorithm performed on the sensor
image, the technique used to generate a colored image, and the
naturalness of the image as understood by FADE from the result.

4.2.2 Hautière et al
As an example, Figure 7 shows the image output of the e and �r
indicators for the L channel in the case of the Avian inspired
sensor. We see that visible edges are mainly increased in the
horizon area, where there is actually more fog, so the proportion
of airlight is the most pronounced.

In Tables 2, 3, we can observe the results on the different
spectral bands. About UV-A sensitive systems, the quantity
of reconstructed edges is huge, and the results on e are very
different from for the visible. A part of this increase in edges
can relate to the use of a guided filter along the DCP dehazing
algorithm, which correct UV images that are more blurry
than in the visible.

If we exclude the UV-A bands and the polarization-based
method, we see a tendency to have the metrics e and �r higher at
longer wavelengths. This means that the ratios of new visible and
invisible edges are higher in this range, suggesting that the DCP
fog suppression technique might be more effective for long
wavelengths.

For the Cricket and Butterfly, we notice that the metric �r gives
a higher result for the spectral case than for the polarization case.
This is also coherent with the FADE results. This suggests that the
polarization does not bring advantage for dehazing to those
sensors, according to the way we captured the information,
the way we perform dehazing, and the metric used. We do
not infer any statement on the use the animals might make of
the polarization information to improve visibility in haze.

4.3 Discussion
From our observation however, it seems like the increase of
spectral channel number or the presence of polarization does not
improve dehazing. Two possibilities: i-animals use cognitive
models that are very different from the physical models we
used to perform dehazing, ii-All the animals considered are
having similar capacities to evolve in limited visibility, which
is neither certain or easy to demonstrate.

Zebrafish and Butterfly who have spectral bands in shorter
wavelengths are performing globally better than others for the
metrics used. This might be used in the future but will be
compensated by i-the weak magnitude of signal in Blue/UV area,
ii-the limited ability of optics to handle this signal, e.g. the blur

TABLE 2 | Evaluation results of dehazing for scene 1. The evaluation metric D (FADE (Choi and You, 2015)) is applied on sRGB images, whereas the metrics e and �r (Hautière
et al., 2011) are applied per spectral channel.

D (FADE) e/�r (Hautière et al. 2011)

Foggy Dehazed ΔD
DFoggy

U V S M L

Avian 1.68 0.96 42.9% 3.54/1.16 0.14/1.01 0.17/0.95 0.23/1.01 0.23/1.02
Butterfly w/o pol. 1.65 0.71 57.0% - - 0.20/0.87 0.20/0.94 0.25/0.96
Butterfly w/pol. 1.65 0.95 42.4% - - 0.07/1.11 0.13/1.095 0.09/1.09
Dog & Pig 1.45 0.80 44.8% - - 0.18/0.91 0.22/0.98 -
Cricket w/o pol. 1.51 0.88 41.7% 3.65/1.12 - 0.26/0.98 0.27/1.01 -
Cricket w/pol. 1.51 0.95 37.1% 3.02/1.28 - 0.20/1.12 0.17/1.07 -
Primate 1.50 0.69 54.0% - - 0.22/0.92 0.23/0.96 0.25/0.97
Zebrafish 1.42 0.82 42.2% 3.76/1.15 0.16/0.99 0.18/0.97 - 0.20/1.01

TABLE 3 | Evaluation results of dehazing for scene 2. The evaluation metric D (FADE (Choi and You, 2015)) is applied on sRGB images, whereas the metrics e and �r (Hautière
et al., 2011) are applied per spectral channel.

D (FADE) e/�r (Hautière et al. 2011)

Foggy Dehazed ΔD
DFoggy

U V S M L

Avian 5.09 1.22 76.0% 28.31/2.89 9.48/1.71 13.19/1.79 4.32/1.80 8.50/1.65
Butterfly w/o pol. 5.53 1.00 81.9% - - 12.78/1.62 7.50/1.67 9.10/1.65
Butterfly w/pol. 5.53 3.58 35.3% - - 2.26/1.53 1.00/1.33 0.80/1.31
Dog & Pig 4.84 1.32 72.7% - - 15.94/1.59 7.91/1.69 -
Cricket w/o pol. 4.20 0.93 77.9% 36.07/2.77 - 16.93/1.63 10.82/1.74 -
Cricket w/pol. 4.20 2.85 32.1% 5.46/2.75 - 1.92/1.54 1.54/1.43 -
Primate 4.13 0.85 79.4% - - 17.63/1.73 6.50/1.67 6.49/1.70
Zebrafish 1.97 0.74 62.4% 33.76/2.76 14.92/1.69 11.75/1.88 - 7.59/1.85
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FIGURE 7 | Visualizations of the output from the Hautière et al. (2011) metrics, applied on the sensor band L of the avian sensitivity.

FIGURE 6 | sRGB visualization (scene 2) of images before and after dehazing for each animal.
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induced by the optics while handling the signal UV. Moreover,
Zebrafish andButterflymight not provide the best visual results (blue
color cast in Scene two for the Zebrafish vs the Avian that gives a
more natural looking color image). In addition, the handling of UV
channels and short wavelengths would increase the complexity of the
imaging systems (noise, integration time, specific optics, etc.). We
note that the dichromate systems (Pig and Dog) provide fairly good
color images and decent dehazed versions.

Our observations are limited to a technical sensing simulation
and two scenes case study. They are also related to only some
metrics, that we know are not excellent (El Khoury et al., 2018a).
The color version is a very human-centred way to analyse those
images. However, for a multispectral sensor, this visualisation
technique will provide a good way for image visualization.

About the algorithms, we compared two instances of dehazing
methods that are based on different priors, so the comparison
might be limited. In particular, for polarization, the airlight is
estimated by band, whereas for DCP it is the same for every
channel. The way to estimate the airlight is one limiting factor for
dehazing algorithms. Also, the use of the physical models based
dehazing methods might not provide the best performance. This
technical framework can provide a test bed for future alternative
solutions and algorithms.

We can say little on how animals really use this information. The
method and tool that we presented in this paper could however be
beneficial to support research within the field of animal vision.

5 CONCLUSION

In this work, we capture spectral data from a hazy scene, and
compute a radiance image as a basis.We then design an experiment
to simulate data captured from bio-inspired simulated sensors,
having the spectral and polarization sensitivities of six animals and
a process to visualize the data as color images. We extend two
dehazing techniques to be applied to images with two to five
spectral channels and some varied level of polarization sensing.

The dehazed images are compared based on both a spectral
approach and a color approach. The bio-inspired sensors behave
very differently both in their nature and in performance.
Zebrafish, Butterfly, and Primate sensors seem to provide
better dehazing results in our experiment.

Despite of the good performance of the aforementioned
sensors, we want to moderate the impact of the observations:
i-the statistical significance of the scenes used, in terms of metrics
and quantity of test images, ii-the transfer to color images that
might also reduce the impact of the number of channels (spectral
+ polarization), iii-it would be difficult for a manufacturer to

create a camera that resemble to Zebrafish or Butterfly visual
systems for general purpose. Future technical works should
investigate the statistical significance of our observations.

Generally, our evaluation pipeline can be re-used for many
other types of image processing beside dehazing (image
quality evaluation, saliency detection, object recognition,
etc.). Independent parts of this work can also be reused as-
is by diverse technical fields (medical imaging, remote
sensing, etc.). The extension of the dehazing methods to
both spectral bands and polarization will work for many
setups. The color visualization framework can be used to
look at information as color images from in any spectral
acquisition.

The research field interested in animal vision might use our
proposed framework to verify or validate some hypotheses related
to animal vision in turbid media. The impact of this work on
ecological or physiological sciences is yet to be discussed with
domain experts.

DATA AVAILABILITY STATEMENT

The simulated spectral data is provided online (Lapray, 2021).

AUTHOR CONTRIBUTIONS

Conceptualization, JT, IF, and PL; Data curation, PL; Formal
analysis, IF, JT and PL; Methodology, IF, JT and PL; Software, PL;
Validation, PL, JT. and IF; Writing, review and editing, PL, JT.
and IF. All authors have read and agreed to the published version
of the manuscript.

FUNDING

This work was supported by the ANR JCJC SPIASI project, grant
number ANR-18-CE10-0005 of the French Agence Nationale de
la Recherche, and by the Research Council of Norway over the
project “Individualized Color Vision-based Image Optimization,”
grant number 287 209.

ACKNOWLEDGMENTS

The authors want to thank Joël Lambert for the design and
manufacture of the camera mount.

REFERENCES

Ancuti, C. O., Ancuti, C., Timofte, R., and De Vleeschouwer, C. (2018). “O-haze: a
Dehazing Benchmark with Real Hazy and Haze-free Outdoor Images,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, Salt Lake City, UT, June 18–22, 2018, 754–762.
doi:10.1109/cvprw.2018.00119

Ancuti, C., Ancuti, C. O., Timofte, R., and De Vleeschouwer, C. (2018). “I-haze: a
Dehazing Benchmarkwith Real Hazy andHaze-free Indoor Images,” in International
Conference on Advanced Concepts for Intelligent Vision Systems, Poitiers, France,
24–27 September (Springer), 620–631. doi:10.1007/978-3-030-01449-0_52

Ancuti, C. O., Ancuti, C., Sbert, M., and Timofte, R. (2019). “Dense-haze: A
Benchmark for Image Dehazing with Dense-Haze and Haze-free Images,” in
2019 IEEE International Conference on Image Processing (ICIP), Taipei,
Taiwan, September 22–25, 2019, 1014–1018. doi:10.1109/icip.2019.8803046

Frontiers in Computer Science | www.frontiersin.org January 2022 | Volume 3 | Article 73714410

Lapray et al. Bio-Inspired Multimodal Imaging in Reduced Visibility

https://doi.org/10.1109/cvprw.2018.00119
https://doi.org/10.1007/978-3-030-01449-0_52
https://doi.org/10.1109/icip.2019.8803046
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Ancuti, C. O., Ancuti, C., and Timofte, R. (2020). “Nh-haze: An Image Dehazing
Benchmark with Non-homogeneous Hazy and Haze-free Images,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, Seattle, WA, June 14–19, 2020, 444–445. doi:10.1109/
cvprw50498.2020.00230

Barta, A., andHorváth,G. (2004).Why Is it Advantageous forAnimals toDetect Celestial
Polarization in the Ultraviolet? Skylight Polarization under Clouds and Canopies Is
Strongest in the Uv. J. Theor. Biol. 226 (4), 429–437. doi:10.1016/j.jtbi.2003.09.017

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). “Surf: Speeded up Robust
Features,” in European conference on computer vision, Graz, Austria, May
7–13 (Springer), 404–417.

Beltran, W. A., Cideciyan, A. V., Guziewicz, K. E., Iwabe, S., Swider, M., Scott, E.
M., et al. (2014). Canine Retina Has a Primate Fovea-like Bouquet of Cone
Photoreceptors Which Is Affected by Inherited Macular Degenerations. PloS
one 9 (3), e90390. doi:10.1371/journal.pone.0090390

Bowmaker, J. K., and Dartnall, H. J. (1980). Visual Pigments of Rods and Cones in a
Human Retina. J. Physiol. 298 (1), 501–511. doi:10.1113/
jphysiol.1980.sp013097

Cai, B., Xu, X., Jia, K., Qing, C., and Tao, D. (2016). Dehazenet: An End-To-End
System for Single Image Haze Removal. IEEE Trans. Image Process. 25 (11),
5187–5198. doi:10.1109/tip.2016.2598681

Choi, L. K., and You, J., and (2015). Referenceless Prediction of Perceptual Fog
Density and Perceptual Image Defogging. IEEE Trans. Image Process. 24 (11),
3888–3901. doi:10.1109/tip.2015.2456502

El Khoury, J., Thomas, J-B., and Mansouri, A. (2014). “Does Dehazing Model
Preserve Color Information,” in 2014 Tenth International Conference on
Signal-Image Technology and Internet-Based Systems, Marrakech, Morocco,
November 23–27, 606–613.

El Khoury, J., Moan, S. L., Thomas, J.-B., and Mansouri, A. (2018). Color and
Sharpness Assessment of Single Image Dehazing.Multimed Tools Appl. 77 (12),
15409–15430. doi:10.1007/s11042-017-5122-y

El Khoury, J., Thomas, J.-B., and Mansouri, A. (2018). A Database with Reference
for Image Dehazing Evaluation. J Imaging Sci. Technol. 62 (1), 105031–1050313.
doi:10.2352/j.imagingsci.technol.2018.62.1.010503

El Khoury, J., Thomas, J.-B., and Mansouri, A. (2020). “A Spectral Hazy Image
Database,” in Image and Signal Processing. Editors A El Moataz, D. Mammass,
A Mansouri, and F. Nouboud (Springer International Publishing), 44–53.
doi:10.1007/978-3-030-51935-3_5

Endeman, D., Klaassen, L. J., and Kamermans, M. (2013). Action Spectra of
Zebrafish Cone Photoreceptors. PLoS One 8 (7), e68540. doi:10.1371/
journal.pone.0068540

Guild, J., and Petavel, J. E. (1931). The Colorimetric Properties of the Spectrum.
Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. a Math. or Phys. Char. 230
(681-693), 149–187.

Hart, N. S., and Vorobyev, M. (2005). Modelling Oil Droplet Absorption Spectra
and Spectral Sensitivities of Bird Cone Photoreceptors. J. Comp. Physiol. A. 191
(4), 381–392. doi:10.1007/s00359-004-0595-3

Hautière, N., Tarel, J.-P., Aubert, D., and Dumont, É. (2011). Blind Contrast
Enhancement Assessment by Gradient Ratioing at Visible Edges. Image Anal.
Stereol. 27 (2), 87–95. doi:10.5566/ias.v27.p87-95

He, K., Sun, J., and Tang, X. (2011). Single Image Haze Removal Using Dark
Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 33 (12), 2341–2353.
doi:10.1109/tpami.2010.168

He, K., Sun, J., and Tang, X. (2013). Guided Image Filtering. IEEE Trans. Pattern
Anal. Mach. Intell. 35 (6), 1397–1409. doi:10.1109/tpami.2012.213

Herzmann, D., and Labhart, T. (1989). Spectral Sensitivity and Absolute Threshold
of Polarization Vision in Crickets: a Behavioral Study. J. Comp. Physiol. 165 (3),
315–319. doi:10.1007/bf00619350

Horváth, G., Gál, J., Labhart, T., and Wehner, R. (2002). Does Reflection
Polarization by Plants Influence Colour Perception in Insects? Polarimetric
Measurements Applied to a Polarization-Sensitive Model Retina of papilio
Butterflies. J. Exp. Biol. 205 (21), 3281–3298.

Horváth, G., Lerner, A., and Shashar, N. (2014). Polarized Light and Polarization
Vision in Animal Sciences, Vol. 2. Berlin: Springer.

Kasparson, A. A., Badridze, J., and Maximov, V. V. (2013). Colour Cues Proved to
Be More Informative for Dogs Than Brightness. Proc. R. Soc. B. 280 (1766),
20131356. doi:10.1098/rspb.2013.1356

Koschmeider, H. (1924). Theorie der horizontalen sichtweite. Beitrage zur Physik
der freien Atmosphare, 33–53.

Lapray, P. J., Thomas, J-B., and Gouton, P. (2017). High Dynamic Range Spectral
Imaging Pipeline for Multispectral Filter Array Cameras. Sensors (Basel) 17 (6),
1281. doi:10.3390/s17061281

Lapray, P-J., Gendre, L., Foulonneau, A., and Bigué, L. (2018). “Database of
Polarimetric and Multispectral Images in the Visible and Nir Regions,” in
Unconventional Optical Imaging (International Society for Optics and
Photonics), Vol. 10677, 1067738.

Lapray, P.-J., Thomas, J.-B., and Farup, I. (2021). Simulated data: Bio-inspired
multimodal imaging in reduced visibility. doi:10.6084/m9.figshare.14854170.v1

Li, B., Peng, X.,Wang, Z., Xu, J., and Feng, D. (2017). “Aod-net: All-In-OneDehazing
Network,” in 2017 IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, October 22–29, 2017, 4780–4788. doi:10.1109/iccv.2017.511

Li, R., Pan, J., Li, Z., and Tang, J. (2018). “Single Image Dehazing via Conditional
Generative Adversarial Network,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, June
18–23, 2018. doi:10.1109/cvpr.2018.00856

Maloney, L. T., and Wandell, B. A. (1986). Color Constancy: a Method for
Recovering Surface Spectral Reflectance. J. Opt. Soc. Am. A. 3 (1), 29–33.
doi:10.1364/josaa.3.000029

Martínez-Domingo, M. Á., Valero, E. M., Nieves, J. L., Molina-Fuentes, P. J.,
Romero, J., and Hernández-Andrés, J. (2020). Single Image Dehazing
Algorithm Analysis with Hyperspectral Images in the Visible Range. Sensors
20 (22), 6690. doi:10.3390/s20226690

Morimatsu, M., Monno, Y., Tanaka, M., and Okutomi, M. (2020). “Monochrome
and Color Polarization Demosaicking Using Edge-Aware Residual
Interpolation,” in 2020 IEEE International Conference on Image Processing
(ICIP), Abu Dhabi, United Arab Emirates, October 25–28, 2020, 2571–2575.
doi:10.1109/icip40778.2020.9191085

Paul, E. (1997). “Debevec and JitendraMalik. RecoveringHighDynamic Range Radiance
Maps from Photographs,” in Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’97, Los Angeles,
CA, August 3–8, 1997 (USA: ACM Press/Addison-Wesley Publishing Co), 369–378.

Schechner, Y. Y., Narasimhan, S. G., and Nayar, S. K. (2003). Polarization-based
Vision through Haze. Appl. Opt. 42 (3), 511–525. doi:10.1364/ao.42.000511

Standard (1999). Multimedia Systems and Equipment - Colour Measurement and
Management - Part 2-1: Colour Management - Default Rgb Colour Space - Srgb.
Geneva, CH: International Electrotechnical Commission.

Von Frisch, K. (2013). The Dance Language and Orientation of Bees. Cambridge,
Mass: Harvard University Press.

Wright, W. D. (1929). A Re-determination of the Trichromatic Coefficients of the
Spectral Colours. Trans. Opt. Soc. 30 (4), 141–164. doi:10.1088/1475-4878/30/4/301

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Lapray, Thomas and Farup. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Computer Science | www.frontiersin.org January 2022 | Volume 3 | Article 73714411

Lapray et al. Bio-Inspired Multimodal Imaging in Reduced Visibility

https://doi.org/10.1109/cvprw50498.2020.00230
https://doi.org/10.1109/cvprw50498.2020.00230
https://doi.org/10.1016/j.jtbi.2003.09.017
https://doi.org/10.1371/journal.pone.0090390
https://doi.org/10.1113/jphysiol.1980.sp013097
https://doi.org/10.1113/jphysiol.1980.sp013097
https://doi.org/10.1109/tip.2016.2598681
https://doi.org/10.1109/tip.2015.2456502
https://doi.org/10.1007/s11042-017-5122-y
https://doi.org/10.2352/j.imagingsci.technol.2018.62.1.010503
https://doi.org/10.1007/978-3-030-51935-3_5
https://doi.org/10.1371/journal.pone.0068540
https://doi.org/10.1371/journal.pone.0068540
https://doi.org/10.1007/s00359-004-0595-3
https://doi.org/10.5566/ias.v27.p87-95
https://doi.org/10.1109/tpami.2010.168
https://doi.org/10.1109/tpami.2012.213
https://doi.org/10.1007/bf00619350
https://doi.org/10.1098/rspb.2013.1356
https://doi.org/10.3390/s17061281
https://doi.org/10.6084/m9.figshare.14854170.v1
https://doi.org/10.1109/iccv.2017.511
https://doi.org/10.1109/cvpr.2018.00856
https://doi.org/10.1364/josaa.3.000029
https://doi.org/10.3390/s20226690
https://doi.org/10.1109/icip40778.2020.9191085
https://doi.org/10.1364/ao.42.000511
https://doi.org/10.1088/1475-4878/30/4/301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	Bio-Inspired Multimodal Imaging in Reduced Visibility
	1 Introduction
	2 Data Acquisition and Construction
	2.1 Data Capture
	2.2 Spectral Reconstruction

	3 Experiment
	3.1 Animal Sensitivities
	3.2 Simulation of Bio-Inspired Sensing
	3.3 Data Visualization as Color Images
	3.4 Adaptation of Dehazing Algorithms for Each Sensor
	3.4.1 Extension of DCP to Spectral Images
	3.4.2 Adaptation of Schechner Method in Bio-Inspired Sensors


	4 Data Analysis
	4.1 Metrics
	4.2 Results
	4.2.1 FADE
	4.2.2 Hautière et al

	4.3 Discussion

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


