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Abstract. Sparkle from snow is a common phenomenon in Nature
but not well studied in the literature. We perform a statistical study
on digital snow images captured in-situ to analyze sparkle events
by using contrast and density of sparkle spots descriptors. The
method for measuring sparkles by Ferrero et al. is adapted, tested,
and verified to the case of snow. The dataset is divided into three
categories representing the type of snow acquired: dense snow,
fresh snow, and old snow. Our analysis highlights the link between
the sparkle of snow, the nature of snow and its grain structure.
Sparkle could thus be a feature used for snow classification.
c© 2022 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.5.050404]

1. INTRODUCTION
Snow is not only a nice and cold white surface, but
also a complex material with a specific structure. In
Nature, one may have a richer experience, such as various
chromatic phenomena happening on the snow surface when
illumination and observation conditions are met. This paper
focuses on one of those particular visual phenomena: the
sparkle of snow.

Snow is a complex material and its perception calls
on several external factors. More specifically, snow is made
of grains whose structure can be represented by two main
quantities as defined by Fierz et al. [1]: the snow grain shape
which describes the morphological form of snow grains, and
the snow grain size. Studies have been conducted to identify
shape factor and study the influence of the grain shape on
the quantity of light in snow media and are reported in the
literature [2, 3], others have used close-range imaging or
remote sensing to obtain estimates of snow grain sizes [4–7].

To our knowledge, the sparkle effect generated by snow
has not been covered specifically in any academic work. Yet
it is possible to find work on the generation of snow sparkle.
There have been few attempts in the computer graphics area
with Wang et al. [8]. They worked on a stochastic model to
simulate sparkle spots in real-time for virtual snow scenes
used in the video game industry. Other references such as
Jakob et al. [9] or Wang et al. [10] mention the case of snow
in their work, and they test their rendering model with this
natural material. However, none of those rendering models
for sparkle are physically-based and therefore do not take
into consideration the nature of the snow material and its
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complexity due to various parameters such as temperature,
pressure, snow grain shape and snow grain size.

In ASTM E284-17 Standard Terminology of Appear-
ance [11], sparkle is defined as ‘‘the aspect of the appearance
of a material that seems to emit or reveal tiny bright points
of light that are strikingly brighter than their immediate
vicinity and are made more apparent when a minimum of
one of the contributors (observer, specimen, light source)
is moved’’. This definition can be referenced as the visual
sparkle which can be experienced by a human observer.
However, the sparkle considered in this article would be close
to an imaging sparkle as it is observed through the scope of
a digital camera. The term imaging sparkle refers to a pixel
source whose values are maxima and higher to pixel values
of its near surrounding. Thus, sparkle is considered as a pixel
point and not an accumulation of pixels. Moreover, even
though the visual and imaging sparkle are defined differently,
they are linked. Assessing the presence of visual sparkle on a
scene would likely lead to the detection of imaging sparkle.

Sparkle, as a texture effect, has been described in detail
in variousmodels in the case ofmetallic paintings or surfaces.
One of the first models introduced was done by Ershov
et al. [12] where they presented a computational procedure
to obtain sparkle texture for image rendering. Anothermodel
introduced by Kitaguchi et al. [13] used digital images taken
under various exposure times to reconstruct a HDR image
and make an estimate of sparkle points. In the literature,
two models can be described: models which generate visible
sparkle on images [9, 14], and models analyzing images to
measure the sparkle present on them [13, 15].

The model proposed by Ferrero et al. [15] has been
chosen for its easy computational implementation and the
use of the in-situ images of the dataset. The paper introduces
a model for graininess and sparkle, both considered as
texture effects. These effects are then linked to parameters
of the optical system used for recording or capturing, the
illumination and observation conditions, and the coating
parameters of surfaces studied. This model concludes by
introducing two variables to study when it comes to
characterizing sparkle. First, the contrast of sparkle spots
is considered and is related to specular reflectance of the
flakes and their size, and to the diffuse reflectance of coatings.
The second variable is the density of sparkle spots, which is
correlated to the orientation distribution of flakes and their
flatness.

Following this model, Ferrero et al. developed a
procedure to measure quantities of well-defined sparkle
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measurands [15], with experimental results obtained from
combinations of several illuminations and viewing geome-
tries. This work also presents four descriptors characterizing
sparkle distributions and correlated to visual attributes:

• the maximum contrast value of sparkle spots to ensure
the Human Visual System is able to distinguish sparkle
spots from the background,
• the maximum density of sparkle spots,
• the visibility inconstancy linked to the variation of con-
trast values due to illumination and viewing geometries,
• the anisotropy referring to the variation of density of
sparkle with illumination and viewing conditions.

While these four descriptors can be linked to visual
attributes, the last two of them are tightly correlated with
illumination and viewing conditions, meaning they will vary
from scene to scene as the environment changes.

Ferrero et al. pursued their work on sparkle with two
other studies. Measurements of sparkle were performed
on several samples with different coatings, illumination
and viewing conditions at various institutes [16]. They
used similar indicators (visibility and density of sparkle
spots) to describe those texture events, and the algorithm
used for detection and estimation of those indicators was
presented. In this work, they also identified two potential
sources of errors while characterizing the sparkle: inadequate
illumination and collection of solid angles, and a wrong
aperture size chosen on the optical tool used for observing
the sparkle spots. Finally, their work [17] highlights the
method they developed over the years, few measurement
scales for sparkle and graininess and their correlation with
subjective evaluations.

This article presents a dataset of digital snow images
which are all acquired in-situ and show visual sparkle events
on them. Then, a statistical study of sparkle spots on this
dataset is conducted by following themethod of Ferrero et al.,
and using the indicators provided by it. The results of this
study are used to discuss the potential correlation between
the sparkle spots on snow and the snow grain structure
with descriptors such as the snow grain shape and the snow
grain size. The goal is to verify if the method developed by
Ferrero et al. can be used for the case of snow. Results of
these statistical studies lead to designing a precise acquisition
protocol to identify the snow grain shape, and make links
between sparkle events and snow grain classification.

The article first introduces the methodology used for
the acquisition of images, a description review of the
dataset, and the preprocessing applied to the images before
dealing with the algorithm of sparkle detection. The second
section provides the results computed, the observations and
interpretations, and their links to the snow structure. The last
part concludes the article and presents future works.

2. METHODOLOGY
2.1 Dataset and Acquisition of Images
The dataset is composed of 492 images in total and can be
divided with the following distribution: 452 images were ac-

Table I. Description of snow content of the dataset.

Dates of acquisition Types of snow Number of images

02.06.2022–02.08.2022 Dense snow 263
02.15.2022 Fresh snow 47
03.18.2022–04.11.2022 Old snow 182

quired during daytime and with uncontrolled illumination,
and 40 images were captured at night with a torchlight as
a source of illumination. All images were registered in RGB
RAW format and their size is 3936× 2624 pixels. Table I is
presenting the different types of snow composing the dataset
and the dates of acquisition for images. Figure 1 is displaying
some examples of images composing the dataset.

Acquisitions were performed between February 2022
and April 2022 in Norway, where our department is located.
A major aspect of this dataset is that all images used
were taken outside in uncontrolled conditions. It means
the snow was left untouched with appropriate temperature
and pressure conditions, and it was not changed due to a
move in a cold room inside. Snow metamorphism [1] is a
phenomenon causing snow to change based on external and
mechanical properties. Thus, having kept snow in its natural
state is a strength of this dataset. Acquisitions were made
with a Nikon D610 DSLR camera, producing RGB images.
Combined with this camera was a Sigma DG Macro lens
with focal lengths varying from 28 mm to 300 mm and
aperture between f/3.5 and f/6.3. The camera was mounted
on a tripod and was oriented to observe the scene such as the
two configurations shown in Figure 2.

Illumination and viewing conditions also vary for
images within the dataset. 310 images were acquired with
an elevation angle of 30◦ for the camera, and 182 images
were captured with the camera facing orthogonally to the
scene (i.e. an elevation angle of 0◦). Setups used could be
similar to a Reflectance Transformation Imaging (RTI) setup.
Here, RTI was not possible due to lack of tools to go outside
in the snow to perform such acquisitions. Also, the setup
used offered more flexibility to test the algorithm proposed
by the work of Ferrero et al [16]. For 452 images, the sun
was the light source used as images were captured during
daytime. All day images were acquired under a clear sky
without clouds, meaning the sun had direct illumination on
the scene. Images were taken at different exposure times to
cope with strong direct illumination of some setups to avoid
having oversaturated images.

In the study of sparkle, azimuth angles for incidence
of light sources are commonly used as parameters. For
this dataset, it was possible to estimate those angles of
incidence by looking at shadows cast on some of the images,
or by taking pictures of the setup with the light source
visible. Hence, most angles of incidence are estimated and
not precisely measured, so their uncertainty could be high.
We moderate this choice by conducting a statistical study
on a large dataset of images to smooth these potential
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Figure 1. Examples of images in the dataset studied taken under direct illumination with different exposure times.

Figure 2. Two setups used for acquisition of snow images.

uncertainties. 3D lidar scans were made during the image
acquisition process. And some images contain shadows cast
on them, and for most of the scenes, global pictures were

taken to ensure the presence of the sun in them. As a
consequence, it is possible to have estimates of azimuth
angles of the sun for those images. Furthermore, since those
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Figure 3. Repartition of incident angles for light sources in the same
reference system for all images in the dataset.

images were taken from locations close to each other, and
with the knowledge of 3D point clouds, all images have been
replaced in the same reference system so that azimuth angles
can be used for analysis and are not tied to the camera system.
Regarding the 40 images captured at night, the azimuth angle
of the torchlight was controlled and is known. Those images
are separated from the others for the analysis as they were
not acquired in the same geographic location, and then it is
not possible to replace them in the same reference system.
Figure 3 shows the distribution of angles put in the same
reference system across the dataset of images.

2.2 Preprocessing of Images
Preprocessing of images is performed according to Ferrero
et al. method [16]. It consists of capturing an object’s image
with knownproperties such as reflectance or luminance, then
use that known information to compute a ratio in order to
estimate the unknown reflectance or luminance of the rest
of the scene or other objects. All of that is possible assuming
the linearity of the camera, which is made in the case of this
study as well. The most commonly used objects for these
calibrations are white calibration tiles, which are considered
Lambertian and with known reflective properties.

The case of snow is more challenging. In the visible
range, snow is commonly white, and its reflective properties
are higher than the traditional calibration tilesmanufactured.
The reason is mainly due to scattering and subsurface
scattering phenomena occurring near the snow surface, so
that the amount of light reflected is large. Since snow is the
main target of this statistical study, the preprocessing needs to
be refined because the difference between the sparkle (high
pixel values or saturated pixels) and the snow (white, so
high pixel values) is too narrow. In order to perform a white

balance on the images, the Gray World assumption [18] is
performed. Images from our dataset are RGB images. Then,
the green channel is taken as the reference and the ratios
computed are

R=
R
G
;B=

B
G

(1)

to compute the assumption. Then, those 3 channels R,G,B
are averaged following Eq. (2)

I =
R+G+B

3
(2)

to obtain an image of intensities I that is used to compute
sparkle algorithms later described.

2.3 Sparkle Detection and Estimation
Algorithms for the detection of sparkle and its study were
developed by Ferrero et al. along several articles [14–17].
These methods were originally designed for the use of
goniometric measuring tools to ensure precise values for
azimuth angles and more control over illumination and
viewing conditions, but can be applied to the study case
we built (with higher uncertainties). The requirements
are: digital images with apparent sparkle coming from
the material studied, information on azimuth angles of
incident light and reference for the calibration. The following
description of steps of the algorithm is coming from Ferrero
et al. [16].

The first step is to calibrate images obtained to get
luminance factors β for each pixel of the images. As men-
tioned previously, the case of snow is slightly more delicate
than using traditional white calibration tiles. Therefore, after
applying the Gray World assumption, luminance factors are
computed for each image of the dataset (as referred in [16]).
Each image of the collection is large with size of 3936× 2624
pixels. Then, in an attempt to reduce computational time,
smaller areas are selected from original images. Patches were
selected from the center of the image to ensure amaximumof
focused snow on patches and no artefacts visible that are not
snow related (presence of a colour checker as seen in Fig. 1).
A parameter shw controls the half-width size of the patches
and can be modified to reduce or expand the area for the
sparkle algorithm. Once the patches are selected, a procedure
to detect sparkles spots is applied and follows those steps:

(1) Find the pixel with the highest value of luminance factor
βsp.

(2) Once this pixel is found, a small elementary area is
selected centered around that pixel with size controlled
by a parameter called lhw described later.

(3) All pixels in this area surrounding the sparkle spot
are averaged and give the luminance factor of the
background βbg of the sparkle spot. Luminance factors
of the sparkle and the background are stored separately
to be used later in the analysis.

(4) Pixels from the elementary area are fixed to 0.
(5) Steps (1)–(4) are iterated with the new image until all

pixel values reach 0. When computing step (2) with the
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selection of the elementary area, pixel values already put
at zero are not considered in the computation of the
average. Also, if more than two thirds of pixels in the
elementary area is at 0, the area is not considered, put
to zero and the algorithm goes to the next maximum of
the image.

The choice of the size of elementary area lhw is to be
discussed as it cannot be chosen small for physical meaning,
but not too large as well. Otherwise, there is a risk of avoiding
some relevant sparkle spots if the distance between two
consecutive spots is smaller than lhw . An impact study on the
choice of shw and lhw has been conducted and is presented in
a later part. Results of this procedure gives luminance factors
of sparkle spots and luminance factors for backgrounds of
elementary areas.

Ferrero et al. introduced three indicators to quantify
sparkle distribution of metallic samples [15, 17], and these
same quantities can be applied in the case of snow. The
first indicator is an illumination contrast Csp which can
be computed by illuminance or luminance factors. The
illumination contrast of a sparkle spot can be defined for an
elementary area by

Csp =
βsp−βbg

βbg
(3)

with βsp and βbg luminance factors previously computed.
The second indicator is called ensemble contrast of sparkle
spots CE and is defined as the median value of all contrasts
of sparkle spots that are above a threshold value Cth. For
this study case of snow, this quantity Cth is evaluated for
each patch as the middle of the total range of contrast value
computed in the image and follows the definition given by
Eq. (4)

Cth =
Csp,max+Csp,min

2
. (4)

The third and last indicator introduced is the density
of sparkle spots dsp which represents the number of sparkle
spots in the area considered with contrast values Csp higher
than the threshold value Cth. This value is given in mm−2.
As one could expect, this value is linked to the choice of
shw so it is important to choose an area of study large
enough to provide a stable statistic for this metric. Among
those three indicators presented, only two of them, being
the ensemble contrast of sparkle spots CE and the density
of sparkle spots dsp, are used as metrics in this study. The
contrast of sparkle spots Csp is indirectly used in the two
metrics cited previously.

3. RESULTS
Four descriptors are given in the literature to describe
sparkle events happening at the surface of a material: the
contrast of sparkle spots, the density of sparkle spots, and
their variations due to illumination and viewing conditions.
Moreover, with the use of an algorithm to detect sparkle
events in digital images, two parameters are introduced:

the half-width size shw for the patch selection and the
half-width size of the elementary area lhw . Therefore, a study
is conducted to decide on the choice of both parameters
shw and lhw . Once those two parameters for the algorithm
are selected, results can be computed. In the dataset, several
illumination angles are available as mentioned in Fig. 3.
Furthermore, one snow scene was captured from two points
of view. Another aspect to study is the type of snow because
the age of snow is impacting the size of the snow grain,
and images were acquired at different dates, under various
illumination conditions (i.e. daylight and artificial light at
night).

3.1 Study of the Algorithm’s Parameters
To adapt the algorithm to the case of this snow dataset,
two parameters are introduced: shw and lhw . In their articles,
Ferrero et al. suggested choosing a patch size large enough
to ensure materials for the statistics, and the choice of the
elementary area lhw was decided to reproduce the circular
area visible by a human observer at a distance of 40 cm from
the scene in their case. However, they do not provide the
values they actually used. Therefore, several values of shw and
lhw are chosen in a given range, and the algorithm is run on
part of the dataset to test the influence of those parameters
on the resulted contrast and density values.

The patch half-width size is chosen among the following
values: 80, 100, 120, 150, and 200 pixels. The range for the
elementary area is: 11, 13, 15, 17, and 19 pixels. The algorithm
was run 25 times to cover all scenarios on a small part
of the dataset to avoid long computation time. Only two
scenes from the dataset are considered for showing the results
displayed in Figure 4 for the first scene and in Figure 5
for the second scene. Units of the parameters are given in
pixels to have a common unit for all images of the dataset.
Although the pixel unit could be linked to the resolution of
the camera, acquisition setups for all images of the dataset are
different. As mentioned, the dataset is composed of images
taken with different setups of acquisition. Then, the first
images (chronologically speaking) were taken with a setup
which has evolved. We do not have the required information
for those images to compute the ratio that would link the
pixel size to an international unit size such as the meter
(or centimeter). To avoid having inhomogeneous data, we
therefore chose to not include it here, but it is considered for
future works.

From Figs. 4(b) and 5(b), one can notice a variation of
density values with the choice of lhw as the linear regression
plots are parallel but not superimposed. The smaller this lhw
value gets, the larger the density, as it is possible to detect
more sparkle spots and have fewer overlaps. However, if lhw
gets too small, it does not hold a physical meaning as pointed
by Ferrero et al. when they chose it. Similarly, by observing
results from Figs. 4(c) and 5(c), contrast values are impacted
by the choice of the size of the patch observed shw . Expanding
the size of the patch opens the possibility to detect other
sparkle spots and so increases the contrast values as estimated
by the algorithm. However, large values of shw influence the
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Figure 4. Scatter plots with trend curves resulting from a linear regression; (a) and (b) are obtained by fixing shw = 150 pixels and varying lhw ; (c) and
(d) are obtained by varying shw and fixing lhw = 15 pixels.

computational time of the algorithm. As a consequence, a
trade-off is made in the choice of the size of the elementary
area. Ultimately, the values of shw = 150 pixels and lhw = 15
pixels are chosen and fixed for the rest of the analysis for the
dataset.

3.2 Influence of the Type of Illumination
This part tackles the variation in the estimated contrast
and density distributions depending on the illumination
conditions. One aspect to remind is that day illumination
is symbolizing the sunlight, i.e. there was no control
over the quantity of light nor the incident angle on the
scene. In this study, all images were taken under direct
illumination. As mentioned by Kirchner et al. [19], being
under direct (no clouds) or diffuse (cloudy overcast sky)
illumination highly influences the type of sparkle seen on
materials. Azimuth angles for incident light are estimated as
explained previously. Regarding night illumination, images
were acquired under a torchlight powerful enough to
produce sparkle on the snow surface. The algorithm is run on
both subsets (day andnight) of the dataset to provide contrast
and density distributions of sparkle spots.

Figure 6(a) and (b) represent the scatter between the
density of sparkle spots (x-axis) and the contrast of sparkle
spots (y-axis) respectively for day illumination and night
illumination. One thing to note is that the scales for density
values are different. The maximum density under daylight is
2.5 mm−2 while the maximum density under torchlight at
night is close to 0.02 mm−2 so a factor of 100 between them.
Even though the gap is important, it is relevant to notice that
the shape of the scatter clouds looks similar in both cases,
and could either be an inverse proportionality function or
a decreasing exponential. Our goal is not to estimate this
correlation. However, one can note that high contrast values
are mostly achieved with small values of densities, while low
contrast values are spread in the range of density values. The
impact of illumination on density values is massive. High
density means there are more sparkle events happening on
the surface considered. Under sunlight, it is less surprising
to see those high density values. Even though the daylight
setups are uncontrolled, the behaviour between contrast and
density values remains stable between both illumination
modes considered. For the rest of the analysis, the night
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Figure 5. Same configuration as Fig. 4 for another scene observed.

subset is excluded, as it does not hold a lot of images and
contains only one type of snow.

3.3 Influence of the Elevation Angle of the Camera
In the description of the acquisition of data, two configura-
tions for the position of the camera are mentioned, such as
shown in Fig. 2. Therefore, a small study is conducted by
separating images taken in the two configurations to check
the influence of the elevation angle on the result of contrast
and density for sparkle spots.

Figure 7 shows the results obtained for those subsets. For
both, the trend for a decreasing exponential or an inverse
proportionality function can be observed, even though
the scales for contrast and density values are not similar.
Since results between the two subsets are quite similar, the
distinction on the elevation of the camera is not maintained
for the rest of the study.However, the elevation information is
to be considered if an experiment is designed to try to identify
snow grain shapes.

3.4 Influence of Type of Snow Observed
Table I is already presenting the different types of snow
composing the dataset and the repartition between images.

The reason why the type of snow is important in this study
is the link between the type of snow, the age of snow and
the grain structure. The age of snow is directly linked to
the morphology of the snow grain [1]. When a snow grain
is freshly fallen, its size is rather small. Over time and with
increasing temperature, it expands and therefore both his
size and shape are evolving. Therefore, the older the snow,
the bigger the grains with less complex shapes. The shape
and size of snow grains should have an interaction with how
sparkle events are emitted. Therefore, the aim of this part is
to see whether the sparkle spots seen on images are varying
with the type of snow.

First, all images used to obtain the results in this part
are images taken from the day illumination subset. As stated
in Table I, there is a total of 452 images used for the results
displayed in Figures 8 and 9. Even though the fresh snow label
is in Fig. 8, we chose to add Fig. 9 for a better readability
due to smaller scales. Then, as they are now, an accurate
description can be made related to the type of snow.

From Fig. 8, the difference made between dense snow
(in black) and old snow (in blue) is related to the melting
process. Dense snow is an accumulation of fallen snow
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Figure 6. Scatter plots between density of sparkle spots and contrast of
sparkle spots for day illumination subset (a) and night illumination subset
(b).

Figure 7. Scatter plot between density of sparkle spots and contrast of
sparkle spots for subset of elevation angle of the camera for 0◦ (black
dots) and 30◦ (blue stars).

grains that could have been accumulated for a long time,
hence they could be qualified as old. However, ambient
temperature is cold enough to maintain the current state
of snow grains. Most of the time, those grains get refrozen
due to colder temperature and the wind. For the case of old
snow, temperatures are getting above zero degree and then
grains are expanding and the transformation from solid to
liquid starts. As it can be observed in Fig. 8 with black dots,
dense snow tends to produce sparkle with high densities

Figure 8. Scatter plot between density of sparkle spots and contrast of
sparkle spots for all snow subsets.

Figure 9. Scatter plot between density of sparkle spots and contrast of
sparkle spots for fresh snow subset.

while maintaining contrast values which could be qualified
as average. For dense snow as defined here, there are more
sparkle spots visible and observable on snow surface even
though they remain homogeneous. In the context of old
snow, the observation seems to be opposite, as shown in
Fig. 8 with blue stars. As opposed to dense snow, older snow
whose melting process has started tends to produce sparkle
spots with high contrast values and low densities. So, sparkle
events may be more visible and shinier on old snow, but
they are less likely to happen, or they would be less packed
together. Regarding the fresh snow, as illustrated by Fig. 9,
it does not involve high contrast values nor density values.
Actually, fresh snow is described as snow grains falling on
the ground and accumulating quickly. The structure of fresh
layer of snow on the surface is not really well-formed, and so
fresh snow is less likely to generate sparkles on its surface.
However, this conclusion needs to be slightly balanced by
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Figure 10. Images from the same snow scene but observed from two points of view.

the small number of images available, only 47 according to
Table I.

As a consequence, it is more difficult to see sparkle
spots which correlates with low values both for contrast and
density: sparkle events are less likely to happen on fresh snow
as the snow grains are too small (under 50 µm) and not
well-formed. As opposed to fresh snow, dense snow (with
snow grain of size around 500 µm and 1 mm) produces a
lot of visible sparkles spots and old snow (snow grains above
4–5 mm) generates less sparkle events, but they are more
intense.

3.5 One Snow Scene from Two Points of View
Some images from the dataset capture the same scene but
observed from two different positions. An example of such
a scene is displayed in Figure 10.

Then, all images from this particular scene are gathered
and studied for their contrast and density of sparkle spots.
Since all images are coming from the dense snow subset,
performing the analysis on the variation of illumination and
viewing conditions on a similar scene may provide some
information related to the geometry and the shape of snow
grains.

Figures 11 and 12 display the results obtained for the
contrast and density of sparkle spots for this study case. These
results are presented differently from the previous ones.Here,
it is more interesting to focus on the variations of contrast
and density due to different viewing conditions. The camera
is looking at the same scene under two perspectives. Hence,
snow grains remain constant in the scene, but their effect
vary with the viewing conditions. Both radial plots in Figs. 11
and 12 are results correlated to the estimated azimuth angle
of the sun on images. On the left image of Fig. 10 (chosen as
a reference for the reference system), one can notice shadows
cast from the tripod of the camera. Using these shadows, the
angle is estimated to 30◦ and then 210◦ for its counterpart.
The angles displayed on the radial plots are the relative
azimuth angle between the camera and the light source.

Focusing on the radial scatter plots, the interesting
aspect to notice is that contrast and density values do
not vary much even though sparkle spots are observed
from a different viewing angle. This statement is also
supported by looking to the shapes of contrast and density
distributions. Even though the number of images used (66)
is not large enough to make statistical estimations, the

shapes of unimodal distributions can be distinguished. More
accurately, distributions seem to have a centered value and
other values dispatched around it. It can be interpreted as
it follows: contrast and density values accumulate towards
one average value in a range controlled by a small standard
deviation.

A reason why such results can be observed could
be correlated to the randomness of the distribution of
snow grains onto the snow sample considered. Due to this
randomness, potential effects due to geometry of snow grains
would be averaged and therefore have less impact. However,
if we assume the distribution could be estimated, another
reason would then be the shape of the snow grains. In
fact, it could even give information on the shape. If one
assumes a spherical shape for a grain, then such a grain
would reflect light the same way in all possible directions.
Then, regardless of the viewing conditions, sparkle spots
would have a small variation and could remain stable while
the camera rotates around the scene. Due to the lack of
number of viewing positions for this scene, it is impossible
to conclude accurately on the type of the shape. However,
it opens possibilities for designing an acquisition protocol
to do so. By selecting one single snow scene and fixing the
illumination conditions, several captures can be performed
at various positions around the scene. Then, similar radial
scatter plots can be obtained, and by observing potential
symmetries, one might conclude on the nature of the grain
shape.

4. CONCLUSION
In this article, multiple statistical studies on sparkle from
snow are computed on a dataset of images acquired in-situ.
The dataset covers various types of snow and several
illumination and viewing conditions. Two indicators are
considered in this study: contrast values and density values
of sparkle spots. The dataset was mainly divided in three
subsets correlated to the type of snow. By observing those
three clusters of the dataset, we show it is possible to link the
results of the sparkle to the structure of snow.

Fresh snow is composed of very small and fine grains
whose crystal structure has yet to be formed. As such,
the likelihood of observing sparkle events on fresh snow
is very low. Dense snow is defined by snow grains fully
formed, with varying shapes and sizes less than a millimeter.
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Figure 11. (Left) Contrast of sparkle spots distribution. (Right) Variation of contrast depending on viewing conditions.

Figure 12. (Left) Density of sparkle spots distribution. (Right) Variation of density depending on viewing conditions.

J. Imaging Sci. Technol. 050404-10 Sept.-Oct. 2022



Nguyen, Thomas, and Farup: Statistical analysis of sparkle in snow images

Most importantly, dense snow is observed in a cold
environment. So, when illumination conditions are met,
one can experience numerous homogeneous sparkle events
occurring on the surface of dense snow. Finally, old snow
is mainly dense snow in a warmer environment so that the
melting process has started. Snow grains are then expanding
and sparkles are observable in a smaller number but may be
more intense as well.

Results and interpretations between sparkle events and
the snow open possibilities for future work. Although it
has been extensively used for car paintings and metallic
materials, the method to detect and estimate the sparkle
on snow has been tested and proved, and it can be linked
to the snow structure. From this observation, we consider
conducting an experiment of a larger scale that aims to relate
more precisely the grain size and shape to the indicators of
sparkle. This experiment should enable the use of sparkle
measurement as a powerful tool to classify snow grains.
Other possibilities for applying such a method could be to
study the glint effect on water surface from sea or rivers,
or to estimate dust particles sizes when taking underwater
pictures.
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