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We propose a series of modifications to the Barten contrast sensitivity function model for peripheral vision based
on anatomical and psychophysical studies. These modifications result in a luminance pattern detection model
that could quantitatively describe the extent of veridical pattern resolution and the aliasing zone. We evaluated
our model against psychophysical measurements in peripheral vision. Our numerical assessment shows that the
modified Barten leads to lower estimate errors than its original version. © 2022 Optica Publishing Group under the

terms of theOptica Open Access Publishing Agreement
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1. INTRODUCTION

The visual area beyond the fovea is often referred to as peripheral
vision. It is well known that human vision is sharp in the fovea,
and acuity falls off in the periphery due to optical and neural
factors [1]. One way to effectively characterize the capabilities
and limitations of spatial vision in the periphery is to measure
contrast detection thresholds as a function of eccentricity.

Psychophysical experiments have demonstrated that the least
physical contrast required to detect a visual target varies with the
target’s spatial frequency [2]. This minimum physical contrast
is termed the contrast detection threshold, and its reciprocal
is called contrast sensitivity. If we plot contrast sensitivity as a
function of the target’s spatial frequency, the resulting profile
would be the contrast sensitivity function (CSF) [3].

CSF could be measured for various psychophysical tasks,
including detection [4] and orientation discrimination [5] of
sinusoidal grating patterns. It has been shown that contrast sen-
sitivity for detection and orientation discrimination is almost
equal for gratings with spatial frequencies below the retinal
Nyquist sampling limit [6]. However, beyond this limit, the ori-
entation discrimination task (resolution) becomes impossible,
while contrast detection remains possible over an aliased range
of frequencies. Perception of high-frequency visual stimuli in
the periphery is prone to aliasing since, unlike the fovea, the
frequency content of optical images reaching the retina could
exceed the Nyquist frequency of neural sampling elements [7].
In this study, we aim to derive a model of contrast threshold for
detection in peripheral vision that is able to describe the limits of
aliased and veridical perception over the frequency spectrum.

Various researchers have measured the peripheral CSF during
the last decades [4,5,8–22]. In a typical experiment for periph-
eral contrast measurements, a sinusoidal grating is shown at
various eccentricities to an observer whose attention is fixed

on a point. Conventionally, the presentation time of stimuli
is limited to ensure that an observer does not find the time to
make unintentional eye movements towards stimuli (see [4]).
Chwesiuk and Mantiuk have recently suggested an alternative
approach implementing an eye tracker to control gaze position
[23]. This method has shown similar results and benefits from
more convenience for observers.

Most studies measured contrast thresholds in normal viewing
conditions; however, Hilz and Covanius employed interference
fringes to bypass the eye’s optics and primarily focused on the
neural arrangement of the retina [17]. A common feature of
the resulting curves measured either way is the decline of cutoff
frequencies caused by decreased neural sampling elements in
higher eccentricities [1,24].

Models of the CSF are helpful for a variety of applications.
They can effectively estimate the perceptibility of images to an
individual or standard observer [25]. In imaging science, various
image and video compression methods exploit models of the
foveal CSF to configure quantization charts [26,27]. However,
in immersive gaze-contingent displays where eye tracking is
possible and visual content is served to extensive degrees of
the retina, implementing a foveal model of the CSF for all
eccentricities is not computationally efficient [28]. Therefore,
an accurate model of the peripheral CSF is beneficial for the
development and enhancement of immersive gaze-contingent
displays.

This study aims to modify Barten’s peripheral CSF model
and evaluate the results against psychophysical measurements.
Section 2 provides an overview of the CSF models for peripheral
vision. Section 3 discusses the neural substrate for luminance
pattern perception and analyzes the assumptions made in the
Barten CSF model regarding this subject. Section 4 proposes
a series of modifications to the Barten CSF according to the
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findings of anatomical and psychophysical studies. Section 5
elaborates on the methodologies used to evaluate the CSF mod-
els. Section 6 provides the results and discussion. Conclusions
are presented in Section 7. An implementation of the CSF
models in MATLAB is provided in Code 1, Ref. [29].

2. BACKGROUND

Several models of CSF are available in the literature [25,30–
36]. There is often some sort of trade-off between the level of
complexity and computational efficiency of the models. Simple
models are more desirable; however, they do not necessarily pro-
vide the most accurate estimations of contrast thresholds [37].
Among the existing models, just a few account for peripheral
contrast thresholds [28,30,33,36].

Daly implemented a multi-parameter model of contrast sen-
sitivity in his image fidelity algorithm [33]. The model is a func-
tion of spatial frequency u in cycles per degree, orientation θ in
degrees, light adaptation levels l in cd/m2, image size i2 in deg2,
lens accommodation due to distance d in meters, and eccentric-
ity e in visual degrees:

S(u, θ, l , i2, d , e )

= P (e )×min

[
S
(

u
bwa , bwe , bwθ

, l , i2

)
, S(u, l , i2)

]
,

(1)

where S is sensitivity, and P (e ) corresponds to the absolute peak
of the sensitivity curve and is a function of eccentricity [38]. The
parameters bwa , bwe , and bwθ scale bandwidth as a function of
lens accommodation, eccentricity, and orientation, respectively:

P (e )= 250×

(
1

1+ ke

)
, (2)

bwa = 0.856× d0.14, (3)

bwe =
1

1+ ke
, (4)

bwθ =
(

1− ob
2

)
× cos(4θ)+

1+ ob
2

, (5)

where k = 0.24 and ob = 0.7.
The sensitivity is defined as a function of frequency, light

adaptation, and image size:

S(u, l , i2)= ((3.23× (u2i2)−0.3)5 + 1)−0.2

× A1εu exp(−B1εu)
√

1+ 0.06× exp(B1εu),
(6)

A1 = 0.801×

(
1+

0.7

l

)−0.2

, (7)

B1 = 0.3×

(
1+

100

l

)0.15

, (8)

where ε equals 0.9 for achromatic CSF. The first half of Eq. (6)
deals with sensitivity changes as a function of image size, while

the second half deals with sensitivity and bandwidth changes as a
function of light adaptation and is based on an earlier empirical
model proposed by Barten [39].

Barten [30] and Rovamo et al. [31] have proposed analytical
CSF models based on the principles of signal detection theory.
Both models assume that contrast sensitivity is determined
mainly by the modulation transfer function (MTF) of the
eye, lateral inhibition, and internal noise of the visual system.
Rovamo et al. focused on the effect of the grating area and spa-
tial integration, while Barten provided a more comprehensive
treatment of other factors, including eccentricity.

The following expression forms the basis for the Barten CSF
model:

S(u)=
1

mt(u)
=

Mopt(u)

2k
×

√√√√ X Y T

8ph +
80

M2
lat(u)

, (9)

where u is spatial frequency expressed in cycles per degree, S(u)
is the CSF, mt(u) is the modulation threshold, Mopt(u) is the
optical MTF of the eye, k is a constant similar to signal-to-noise
ratio, X , Y , and T are spatial and temporal dimensions of the
object,8ph is the photon noise,80 is the neural noise, and Mlat

is the MTF of the lateral inhibition process.
To extend Barten’s CSF model to peripheral vision, it might

be sufficient to adapt each parameter of Eq. (9) based on
eccentricity. The actual factor mediating CSF variation with
eccentricity is spatial integration over the receptive field area of
ganglion cells [4,8,19]. It is well known that the density of recep-
tive fields declines in the retinal periphery, while the receptive
field area increases with eccentricity [1]. However, the density
of receptive fields and receptive field area are two independent
features of a cell mosaic, and their product is called the coverage
factor [40]. Barten presumed that the variation of the param-
eters with eccentricity is caused mainly by density variation of
on-center M ganglion cells over the retina. Relying on density,
rather than receptive field area, as the primary variable of interest
could be justified by making an additional assumption that
the coverage factor of the target subgroup of ganglion cells is
constant and equal to one across the retina. A coverage factor
of one corresponds to no gap or overlap among the mosaic of
the cells. A coverage factor above one implies overlap among
neighboring cells, while a coverage factor below one describes
a mosaic cell that contains gaps [41]. Barten proposed the fol-
lowing approximation formula for average density variation of
on-center M ganglion cells in all four hemifields:

NM−on = FM−on × Ng 0 ×

(
0.85

1+
(

e
0.45

)2 +
0.15

1+ ( e
e g
)

2

)
,

(10)
where NM−on is the density of on-center M cells, FM−on is
the fraction of retinal ganglion cells that are M type and have
on-center receptive fields (assumed to be the constant value
of 0.05 according to primate data [42]), Ng 0 is the density of
total retinal ganglion cells in the fovea, e is the eccentricity in
visual degrees, and e g is a constant equal to 3.3 deg. It is well
established that the density of retinal ganglion cell bodies is zero
in the fovea due to the Henle effect [43]. Therefore, the value
Ng 0 represents the number of foveal receptive fields associated
with displaced central ganglion cell bodies.

https://github.com/alibzr/ModifiedBarten


1652 Vol. 39, No. 9 / September 2022 / Journal of the Optical Society of America A Research Article

According to Barten, the optical MTF aims to describe not
only the filtering characteristics of the lens, but also the effects of
stray light in the ocular media, diffraction in the retina, and dis-
crete structure of the photoreceptors. Based on the central limit
theorem, the combined effect of several lowpass MTFs could be
characterized by a Gaussian function [44]. Therefore, Barten
assumed that the optical MTF of the eye can be approximated by

Mopt(u)= exp(−2πσ 2u2), (11)

where σ is the standard deviation of the point spread function
(PSF) resulting from the convolution of several other PSFs,
each describing the various stages of filtering mentioned above
(assuming linearity). If PSFs are entirely positive and normal-
ized to unit volume, then the variance of their convolution is
equal to the sum of the variances of each individual spread func-
tion [45]. Therefore, σ could be computed from the following
expressions:

σ0 =

√
σ 2

00 + σ
2
ret (12)

and

σ =

√
σ 2

0 + (Cabd)2, (13)

where σret is the standard deviation of the spread function
caused by the discrete structure of the retina, σ00 is the standard
deviation of a PSF describing the remaining parts of σ0, Cab is a
constant describing the increase ofσ at increasing pupil size, and
d is the pupil diameter in mm. The quantity σret is a function of
NM−on based on the following expression:

σret =
1√

7.2
√

3 NM−on

. (14)

Neural noise, which is assumed to be generated from the
statistical variation of the signals in nerve fibers conveying visual
information to the visual cortex, is calculated from

80(e )=800 ×
NM−on(0)

NM−on
, (15)

where800 is the value of neural noise at foveal vision.
The MTF of the lateral inhibition process, which attenuates

sensitivity at low frequencies, is empirically described by the fol-
lowing approximation formula:

Mlat(u)=

√
1− e

−

(
u

u0(e )

)2

, (16)

where u0 is the spatial frequency that lateral inhibition ceases as
a function of eccentricity. From an analysis of peripheral CSF
measurement, it might be assumed that u0 is described by the
following equation:

u0(e )= u0(0) .

(
NM−on(0)

NM−on

)0.5

×

(
0.85

1+
(

e
4

)2 +
0.13

1+
(

e
20

)2 + 0.02

)−0.5

, (17)

where u0(0) is the spatial frequency at which lateral inhibition
ceases in the fovea. The second term characterizes the effect of
an increased receptive field diameter at higher eccentricities, and
the third term induces the effect of decreasing the number of
ganglion cells engaging in the lateral inhibition process.

According to the definition implemented in Barten’s model,
quantum efficiency of the eye is defined as the mean number of
photons causing activation of cones divided by the total number
of photons entering the pupil. The following approximation
formula might be used to describe the variation of quantum
efficiency by eccentricity:

η(e )= η0

(
0.4

1+
(

e
7

)2 +
0.48

1+
(

e
20

)2 + 0.12

)
, (18)

whereη0 denotes quantum efficiency in the fovea.
The human eye seems to have limited ability to integrate

signals over temporal and spatial dimensions and compare them
with noise. For integration time of the eye, Schade proposed a
value of 0.1 s for almost all luminance levels [2]. It is assumed
here that the presentation time of the stimuli is longer than the
integration time of the eye; therefore, T equals 0.1 s. Barten
did not adapt T based on eccentricity. However, the following
equations hold for spatial dimensions:

X =
(

1

X 2
0

+
1

X 2
max
+
(0.5X 0)

2
+ 4e 2

(0.5X 0)
2
+ e 2

u2

N2
max

)−0.5

(19)

and

Y =
(

1

Y 2
0

+
1

Y 2
max
+

(0.5X 0)
2

(0.5X 0)
2
+ e 2

u2

N2
max

)−0.5

, (20)

where X 0 and Y0 are dimensions of the object, X max and Ymax

are maximum integration areas of the eye, and Nmax is the
maximum number of cycles that the human eye can perform
integration over. It is assumed that X max and Ymax are a function
of eccentricity based on the following approximation formula:

X max(e )= Ymax(e )= X max(0)

(
0.85

1+
(

e
4

)2 +
0.15

1+
(

e
12

)2

)−0.5

,

(21)
where X max(0) denotes the maximum integration area in
the fovea. The typical values for the parameters in Barten’s
peripheral CSF model are given in Table 1.

The performance of a CSF model is often evaluated based
on how accurately it can estimate experimental contrast thresh-
olds [28,30,32,46]. Barten provided a qualitative graphical
evaluation of his CSF model against experimental datasets
available at the time [30]. However, there is a problem with the
way the model was evaluated. Whenever resulting curves from

Table 1. Typical Values for Parameters and Constants
Used in Barten CSF Model [30]

Parameter Value Parameter Value Parameter Value

k 3.0 T[sec] 0.1 η00 0.03
σ0[arc min] 0.5 X max(0)[deg] 12 800[sec deg2

] 3× 10−8

Cab[
arc min

mm ] 0.08 Nmax[cycles] 15 u0(0)[
cycles
deg ] 7
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the model were compared with a specific experimental dataset,
ganglion cell density values were manually manipulated to give
the best fit to high-frequency data points at each eccentricity.

3. NEURAL SUBSTRATE FOR ACHROMATIC
CONTRAST SENSITIVITY FUNCTION

Barten’s model is based on various assumptions regarding the
optical performance of the eye and the anatomical structure of
the retinal cells. Most of these assumptions lead to a reasonable
estimation of the contrast thresholds; nonetheless, some aspects
might need reconsideration to achieve more accurate results.
This section will first discuss the role of ganglion cells on periph-
eral contrast sensitivity in Barten’s model and then present a
body of evidence that suggests potential modifications to the
model.

It is well established that the number of retinal ganglion cells
decreases as a function of eccentricity in para-foveal regions [1].
Barten postulated that the density variation of ganglion cells
plays the most crucial role in the variation of contrast sensitivity
with eccentricity [30]. Correspondingly, to extend his model
of CSF to higher eccentricities, he adapted each parameter of
the foveal model based on the density variation of ganglion cells
[see Eqs. (9)–(21)]. As mentioned earlier, ganglion cell density
influences the actual factor of importance, spatial summation
[4,8,19], only indirectly because of the link between density
and receptive field area (assuming a constant coverage factor).
Furthermore, it is assumed that only on-center M ganglion cells,
corresponding to 0.05% of the total population, are responsible
for the luminance channel. However, there is a lack of consensus
on the relevant type of ganglion cells for the luminance channel
in the literature (for a review, see [47]).

Various retinal ganglion cells relay visual signals in parallel
neural pathways from the retina to the lateral geniculate nucleus
(LGN). Each cell type is distributed throughout the retina
and forms an independent network of sampling elements.
Therefore, the overall activity of each network forms a distinct
representation of the visual world [48]. For the primate retina,
80% of the ganglion cells are identified as midget cells terminat-
ing in parvocellular layers of LGN, forming the P pathway; 10%
are Parasol cells (M cells) terminating in magnocellular layers,
forming the M pathway, and others belong to the K pathway
[42]. The parvocellular and magnocellular pathways maintain
their crisp anatomical separation until the striate cortex and
remain somewhat segregated in higher levels as well [49].

A widespread hypothesis in vision science associates sub-
cortical pathways with distinct visual functions [50]. These
suggestions are based on lesion studies or the clustering of
physiological and anatomical features in the three main visual
pathways [51]. However, the cumulative evidence from physio-
logical and anatomical studies has failed to associate a single
subcortical pathway with the luminance pattern perception and
subsequently achromatic contrast sensitivity.

Physiological studies often promote the view that M cells are a
favorable origin of the luminance channel [47,52,53], especially
at low-contrast levels near the perceptual detection thresholds
[54]. However, these reports lack any consideration of retinal
sampling and the fact that contrast of the under-sampled pat-
terns remains detectable beyond the Nyquist limit, as proven
by the perceptual visibility of aliasing in the peripheral retina

[55]. For the human CSFs measured in this older literature,
no data were obtained for gratings beyond the retinal Nyquist
limits established by Wilkinson et al. [56]. Similarly, contrast
sensitivities less than 10 that are most relevant to aliased percepts
were not reported.

Anatomical studies have suggested that the M cell mosaic is
not dense enough to support the resolving ability of macaque or
human observers for high-frequency luminance patterns [47].
On the other hand, the Nyquist frequency of the P mosaic in
human and macaque retinas closely follows veridical measures
of acuity, rendering the P pathway as a favorable origin for fine
luminance pattern resolution [56–60]. Moreover, spatial sum-
mation over M cells’ relatively large receptive fields substantially
attenuates their responses for spatial frequencies above the
Nyquist limit. Only P cells have receptive fields small enough to
continue signaling the presence of spatial contrast at high spatial
frequencies beyond the Nyquist limit of their own array.

To reconcile the findings related to the neural origin of the
achromatic CSF, the best strategy might be to take a step back
and resist the desire to associate a single pathway for luminance
pattern vision. In this view, both M and P pathways may con-
tribute to the detection of luminance gratings. The high-gain
M cells are well suited for detecting luminance patterns at low
to medium spatial frequencies, while the condensed mosaic of P
cells provides required sampling elements for resolution of high-
frequency patterns up to the Nyquist limit and maintaining
detection of percepts in the aliasing zone [54,61]. Such notion is
in concert with lesion studies of primates (for a review, see [49]),
where localized lesions of magnocellular layers in LGN resulted
in a loss of sensitivity in lower spatial frequencies, and localized
lesions of parvocellular layers in LGN caused loss of sensitivity
in higher spatial frequencies.

4. MODIFIED BARTEN CSF FOR PATTERN
DETECTION AND RESOLUTION

Although Barten did not address this controversy and solely
associated M cells with the achromatic CSF (he was possibly
motivated by the parallel neural pathways hypothesis), the
modular nature of his model provides the means for reflect-
ing the composite contribution of M and P cells. To obtain a
hybrid CSF model for pattern detection, it might be sufficient
to modify the optical MTF of the eye, which mediates the
high-frequency region of the CSF curve.

Thibos et al. measured the maximum spatial frequency
for the resolution and detection of luminance patterns using
interference fringes. From the quantitative comparison of their
data with morphology and physiology of retinal cells, it was
concluded that pattern resolution is limited by the spacing of
primate P cells, while the size of individual cones limits pattern
detection [55,57].

A. Pattern Detection

To model limits of pattern detection, including aliasing per-
cepts, we may rely on the radius of cones as the main parameter
of interest to determine the σret value in Eq. (12). If we assume
a hexagonal array of cone sampling throughout the retina, the
distance between two neighboring rows of cones is given by
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s =
1

2

√
3d , (22)

where d is the center-to-center distance of the cones. We
acknowledge that a hexagonal arrangement for cone sampling
is valid only for the central retina, where rods are less present,
and cones are tightly packed. However, we assume a virtual hex-
agonal array of cones in higher eccentricities with the condition
d = 2rc , where rc is the cone radius. The spacing in this virtual
hexagonal array is determined by the radius of individual cones
rather than their population density. This assumption enables
us to account for the findings of Thibos et al. [57] without
adding further complexity to the model. According to Barten,
the parameter σret is determined by the size of the elementary
area that performs spatial summation and delivers information
to the brain. In the virtual hexagonal array, rows of cones form
the line-spread function (LSF) that determines the effect of the
neural structure on the optical MTF of the eye. The half-width
of the LSF is equal to the row spacing of the cones (see Fig. 4.7
in [30]). From the geometrical configuration of the virtual
hexagonal array, it can be derived that

σret =
rc
√

18/5
. (23)

Thibos et al. estimated variation of the cone radius as a func-
tion of eccentricity based on measurements of Polyak [62] by the
following function (line equation extracted from Fig. 3 in [57]
using WebPlotDigitizer software [63]):

rc = 0.45/30e + 0.25, (24)

where e is eccentricity in visual degrees. Similarly, Jonas et
al. [64] reported a value of 0.33 arcmin for the cone radius at
the fovea and 1 arcmin in the outer retinal regions. We do not
account for possible asymmetries between the radii of cones
in different meridians. Finally, by substituting Eq. (14) with
Eq. (23) a modified CSF curve is obtained capable of predicting
limits of pattern detection.

B. Limits of Pattern Resolution and the Extent of
Aliasing Zone

To model the limits of veridical pattern resolution, we may rely
on the density variation of P cells as the main parameter of inter-
est [56]. Watson proposed a formula for the density distribution
of human midget (P) receptive fields as a function of eccentric-
ity [60]. We favor this formula over that of Barten [Eq. (10)]
since it accounts for the density asymmetry of ganglion cells in
the principal meridians, offers an improved treatment of the
Henle effect building upon the study of Drasdo et al. [43], and
can be extended for arbitrary retinal locations. The following
expression describes the density of midget (P) receptive fields:

dmf(r , k)= 2dc (0)

(
1+

r
rm

)−1

×

[
ak

(
1+

r
r2,k

)−2

+ (1− ak)e
−

r
re ,k

]
, (25)

where r is eccentricity expressed in visual degrees, k is an index
indicating the principal meridian, dc (0) is the foveal density of

Table 2. Parameter Values for Eq. (25), Adapted from
Watson [60]

Parameters

Meridians k a r2 re

Temporal 1 0.9851 1.058 22.14
Superior 2 0.9935 1.035 16.35
Nasal 3 0.9729 1.084 7.633
Inferior 4 0.9660 0.9932 12.13

cones, rm is the eccentricity at which midget (P) cells comprise
half of the total population of ganglion cells, r2,k is the eccen-
tricity in meridian k at which density is decreased by a factor of
four, ak is a weighting factor, and re ,k is the scale factor of the
exponential in meridian k. Table 2 reports numerical values for
parameters in each of the four meridians.

The midget (P) ganglion cells can be divided into two distinct
cell types, based on how deep their dendrites stratify in the inner
plexiform layer (IPL). One type stratifies in the inner portion
of IPL, and the other type stratifies in the outer portion of IPL,
corresponding to ON and OFF cells identified physiologically.
It is expected that each of these cell types establishes two inde-
pendent mosaics of cell bodies across the retina with a coverage
factor of one [59,65]. Watson’s formula provides an estimation
for the combined population of ON and OFF P cells. In the
derivation process of the formula, it was assumed that ON and
OFF cells each comprise half of the total population, neglecting
reports of asymmetry.

Wilkinson et al. measured the bandwidth of veridical resolu-
tion by using monochromatic interference fringes to stimulate
various locations of the retina with high-contrast sinusoidal
gratings. From a quantitative comparison of their results to the
density of ganglion cells, it was concluded that Nyquist limits
imposed by 50% of P cells in Watson’s formula are in close
agreement with pattern resolution limits obtained beyond the
parafoveal region [56]. Assuming a hexagonal arrangement for
the P cells over the retina, the upper limit of veridical pattern
resolution and the onset of the aliasing zone is derived by the
following expression [60]:

N =

√
0.5dmf (r , k)

2
√

3
, (26)

where N is the Nyquist frequency obtained from 50% of P cells.
It has been reported that sensitivity for contrast resolution falls
abruptly near the veridical limit [7]. Therefore, we will demon-
strate sensitivity fall-off at the Nyquist limits with vertical lines
in our modified model.

C. Neural Noise in Peripheral Vision

Neural noise is assumed to rise from the statistical fluctuation
of the signals in the nerve fibers transporting luminance infor-
mation to the brain. Barten relied on the following expression to
model variation of neural noise in periphery [30]:

80 = σ
21x1y1t =

σ 21t
NM−on

, (27)
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where 1x1y is the retinal angular area covered by one nerve
fiber, and1t is the integration time of the human visual system.
1x1y has been replaced by 1/Ng , where NM−on is the density
of the on-center M cells. In this formula, σ is the relative stand-
ard deviation of the signal carried by an individual nerve fiber to
the brain. If σ and1t are assumed to not vary with eccentricity,
this expression implies that the spectral density of neural noise
changes inversely proportionally to the density of ganglion cells.
This means that the spectral density of the neural noise can be
modeled as a function of eccentricity by Eq. (15). However, we
have two main concerns regarding the validity of the assump-
tions made in the derivation process explained above. First, as
discussed in the previous section, both M and P cells are likely
to be responsible for luminance perception; therefore, one may
not solely rely on the density variation of the on-center M cells in
estimating the neural noise parameter. Second, replacing1x1y
with 1/Ng is valid only when the coverage factor is constant
through the retina and equal to one. Although there has been
evidence for a coverage factor of constant one for P cells [59],
such conditions do not hold for M cells. Yamada et al. reported
a variation in the coverage factor of M cells from central to mid
periphery [66]. These concerns cast doubt on the validity of
estimations made by Eq. (15) for neural noise.

Daly showed that a cortical magnification model could suf-
ficiently estimate normalized peak sensitivity across the visual
field [38]. Since variation of peak sensitivity is mediated mainly
by the neural noise parameter in the Barten CSF, it may also be
concluded that a cortical magnification model can sufficiently
estimate the variation of the neural noise across the visual field.
Subsequently, we propose the following expression for neural
noise (k = 0.24):

80 =800 × (1+ ke ). (28)

Note that our modification is motivated mainly by compar-
ing the resulting curves from the Barten CSF to the empirical
measurements of contrast sensitivity in peripheral regions
[8,18].

5. METHODS

A. Experimental Data for Evaluation

Thibos et al. performed several experiments to characterize
aliasing in peripheral vision [7]. They measured psychometric
functions for resolution and detection tasks in several eccen-
tricities. Moreover, CSFs for detection and resolution were
measured at 30 deg of eccentricity on the horizontal meridian
of the nasal visual field. The stimulus was a stationary sinusoidal
grating with a mean luminance of 80 cd/m2 generated on a
calibrated monitor. Subjects observed the stimulus through a
circular aperture of the same mean luminance. The diameter
of the gratings varied from 0.67 deg (foveal), 1.33 deg (10 deg
of eccentricity), to 2.67 deg (20 or 30 deg eccentricity). Three
subjects participated in the experiments. Peripheral refractive
errors were carefully corrected. Data points were collected from
figures of the original paper using WebPlotDigitizer software
[63].

B. Parameters and Constants in Daly’s CSF Model

According to Daly [33], the absolute peak of contrast sensitivity
curves [parameter P in Eq. (1)] varies from observer to observer.
From an investigation of experimentally measured CSF for a
large population of observers [67], a value of 250 was suggested
for the general implementation of the model. We did not fit the
parameter values in the model to the evaluation data points and
relied on the typical values reported in the original paper.

C. Parameters and Constants in Barten’s CSF Model

According to Barten [30], when the CSF model is compared
to experimental measurement, σ0, η00, and k might need to
be optimized based on trial and error to attain the best fit with
measurements. σ0 seems to influence the high-spatial-frequency
section of the curve, η00 seems to influence middle spatial
frequencies, and k seems to influence low spatial frequencies.
However, we do not fit these parameters to the evaluation data
points and rely on the typical values reported in Table 1.

D. Performance Measure

The standard error of the estimate is used to measure the typical
size of model prediction errors across all frequencies in the units
of contrast sensitivity. The standard error of the estimate for a
sample of data is calculated by the following expression [68]:

σest =

√∑(
Y − Ŷ

)2

N − 2
, (29)

where Y is actual (experimental) data points, Ŷ is fitted (model)
values, and N is the number of samples.

6. RESULTS

A. Graphical Comparison of the CSF Models

Figure 1 compares Daly’s, original Barten, and modified Barten
CSFs for eccentricities ranging from zero to 30 visual degrees.
All models are set to binocular mode, and the resolution limit is
derived from taking the average of nasal and temporal Nyquist
limits estimated by Watson’s 50% model.

1. Original BartenCSFagainstModifiedBartenCSF

In the fovea, original and modified versions of Barten’s CSFs
overlay entirely. However, two significant distinctions appear
between the resulting curves in higher eccentricities. First, the
modified version maintains higher sensitivity values than the
original version. Second, the modified version sustains a higher
bandwidth than the original version. The first effect is believed
to arise from the modification introduced to the neural noise
term through Eq. (28), and the second effect is rooted in the
modification applied to the optical MTF through Eqs. (23) and
(24). Note that gray vertical lines predict limits to the pattern
resolution. These lines are obtained by taking into account
50% of P cells in Watson’s mathematical formula. In the fovea,
the gray line exceeds the cutoff frequency of both curves. This
prediction agrees with previous studies reporting that pattern
detection and resolution in the fovea are limited by the filtering
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Fig. 1. Comparison among Daly’s, original Barten, and modified Barten CSF models for zero to 30 eccentricities in binocular mode. The blue, red
dashed, and magenta dashed-dotted lines denote sensitivity values derived from modified Barten, original Barten and Daly’s CSF, respectively. The
vertical gray lines show the resolution limits imposed by the Nyquist frequency of P cells when half of their population is considered. While two mod-
els overlap entirely in the fovea, the modified version sustains a higher sensitivity and bandwidth in higher eccentricities. The area between the cut-
off frequency of the modified Barten and the resolution limit denotes the aliasing zone. The parameters in both original and modified versions were
adjusted based on the typical values reported in Table 1. The luminance and field diameter constants are set to 150 candela per square meter and five
visual degrees, respectively.

effect of optical aberrations and diffraction rather than retinal
sampling [69,70]. In higher eccentricities, however, the gray
lines are shifted below the cutoff frequency values obtained from
modified Barten. The visual stimuli with frequencies higher
than the resolution limit are predicted to remain detectable but
would be perceived with aliasing artifacts. The area between the
resolution limit and cutoff frequency of modified Barten is an
estimation of the aliasing zone. The cutoff frequencies derived
from the original Barten are consistently below the gray lines.

2. Daly’sCSFagainstOriginal andModifiedBarten

In the fovea, Daly’s CSF has a lower peak sensitivity than
other models; however, their cutoff frequencies are very close.
In the peripheral vision, the peak sensitivity values result-
ing from Daly’s and the modified version of the Barten CSF
match closely. This is not the case with the original Barten. The
cutoff frequency of Daly’s CSF in higher eccentricities consis-
tently exceeds the predicted retinal Nyquist limits by Watson’s
mathematical formula.

3. Evaluation against PsychophysicalMeasurements

Figure 2 compares Daly’s, original Barten, and modified Barten
CSFs against psychophysical measurements of the pattern
resolution and detection by Thibos et al. in 30 visual degrees
of eccentricity [7]. The luminance and diameter for all mod-
els are set to 80 cd/m2 and 2.67 deg, respectively. Original
and modified versions of the Barten CSF are set to monocular

Fig. 2. Comparison of the Daly’s, original Barten, and modified
Barten CSF against psychophysical measurements of pattern detection
and resolution by Thibos et al. [7]. The blue, red dashed, and magenta
dashed-dotted lines denote modified Barten, original Barten, and Daly
CSF, respectively. The purple squares and green diamonds correspond
to the pattern detection and resolution measurements, respectively.
The modified Barten CSF can follow extended data points through the
aliasing zone.

mode. These parameter values are chosen to simulate the view-
ing conditions under which the psychophysical experiment
was done.

Two main features in the measurements of Thibos et al. are
of primary importance to us: first, the limit of pattern resolu-
tion beyond which observers start to report aliased percepts;
second, the extended tail of pattern detection below 10 units of
contrast sensitivity through the aliasing zone. As evident from
the figure, the modified Barten CSF can somewhat describe
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Table 3. Standard Error of Estimate of CSF Models
for Detection and Resolution in 30 deg of Eccentricity

CSF Model

Standard Error of the
Estimate for Detection

Data Points

Standard Error of the
Estimate for Resolution

Data Points

Original Barten 16.45 28.15
Modified Barten 8.59 —
Daly 10.55 11.93

both features. The mismatch between the cutoff frequency of
the modified Barten and the detection task might be due to
the asymmetries in the radii of cones between principal retinal
meridians. Another possibility is that the typical value reported
for the maximum number of cycles in Table 1 is underestimated.
Barten observed an extensive range of values for this parameter
after fitting the model to several foveal datasets (Nmax = 5 to
Nmax = 25) [30]. However, he proposed Nmax = 15 for a typical
usage of the model. Higher values could improve the perform-
ance of the modified Barten CSF; however, we relied on the
typical value for the sake of a fair comparison between different
models.

The original implementation of the Barten CSF underesti-
mates sensitivity values by a large margin and fails to estimate
both resolution and detection data points. This effect is due
mainly to the neural noise term implemented in the model that
leads to very low contrast sensitivities in the periphery.

Daly’s CSF follows the resolution data points in the high-
sensitivity region; however, it fails to follow either detection or
resolution data points in the low-sensitivity region. We expected
such behavior from Daly’s CSF since peak sensitivity values
and bandwidth are both scaled based on a spatial scale model
[71]. Obtaining peripheral CSF for detection based on scaling is
shown to be inaccurate since the shapes of foveal and peripheral
CSF curves do not match [7]. None of the CSF models can pre-
dict the sensitivity attenuation seen in the range of 1 to 2 cpds.
The sensitivity attenuation due to the lateral inhibition in the
CSF models is usually observed below 1 cpd.

The standard errors of the estimate resulting from the CSF
models in 30 deg of eccentricity are reported in Table 3. This
measure describes how accurate each model was in estimating
the psychophysical measurements. Note that we do not report
the standard error of the estimate for the modified Barten in
the resolution task. This is because the modified Barten is not
supposed to predict the sensitivity fall-off at the retinal Nyquist
limit in the resolution task by definition.

In agreement with the graphical comparison, the standard
error of the estimate demonstrates that the modified Barten CSF
results in the lowest estimate error for the detection task. The
resolution limit predicted by the Nyquist frequency of 50% of
P cells in the nasal visual field of the right eye (2.05 cpd) is lower
than the resolution limit reported by Thibos et al. (3.2 cpd)
or Wilkinson et al. (3.67 cpd) at the same retinal location.
Additional psychophysical measurements in other eccen-
tricities are required for further investigation of the model’s
performance.

7. CONCLUSION

A series of modifications was introduced to the Barten CSF
model for peripheral vision. These modifications include the
change of optical MTF, and neural noise term. The limit of pat-
tern resolution and the aliasing zone were also modeled based on
a mathematical density distribution formula for P ganglion cells.
Our numerical and graphical comparison to the psychophysical
measurement of sensitivity curves in the periphery shows that
out of the CSF models investigated, the modified Barten results
in the lowest error of the estimate for the detection task. The
main advantage of our model is its ability to model the limit of
pattern resolution and the extended tail of pattern detection
through the aliasing zone.
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Data availability. Data underlying the results presented in this paper are
available in [7,56,57]. Resulting data from CSF models are accessible through
the MATLAB codes provided in Code 1, Ref. [29].
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