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Abstract: Scene recognition is the task of identifying the environment shown in an image. Spectral
filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral
images is usually performed after demosaicing the raw image. Along with adding latency, this makes
the classification algorithm limited by the artifacts produced by the demosaicing process. This work
explores scene recognition performed on raw spectral filter array images using convolutional neural
networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral
filter array camera. The classification is performed using a model constructed based on the pretrained
Places-CNN. This model utilizes all nine channels of spectral information in the images. A label
mapping scheme is also applied to classify the new dataset. Experiments are conducted with different
pre-processing steps applied on the raw images and the results are compared. Higher-resolution
images are found to perform better even if they contain mosaic patterns.

Keywords: spectral filter array; scene recognition; convolutional neural networks

1. Introduction

Scene recognition is a challenging computer vision task that entails classifying an
image into various scene categories based on the present visual information [1]. In contrast
to object recognition, it requires modeling of the entire context in the image, including object
presence, spatial location, illumination condition, viewing angle, distance, and scale [1,2]. It
has applications in autonomous driving, robotics [3,4], video surveillance [5–7], augmented
reality [8], and image retrieval [9,10]. It is a difficult task for the machine due to the large
interclass similarities and intraclass variations present in different scene categories such as
book store, library, and archive, all having similar objects present in the image and having
similar layouts and ambient conditions [2].

In this work, the problem of scene recognition in raw spectral filter array (SFA) images
is investigated using convolutional neural networks (CNN). The goal is to assess the effec-
tiveness of using raw SFA images for this task. Usual spectral imaging acquisition setups
consist of either capturing images in different spectral bands by cycling through multiple
optical filters or by capturing the whole multispectral range using diffraction gratings,
but one line at a time. Both of these approaches have a limitation of high acquisition time
depending on the number of spectral bands or image size. They are also prone to artifacts
due to movement during acquisition. Spectral filter array (SFA) technology [11] solves
both of these problems by capturing the multispectral image in a single exposure at the
expense of spatial resolution. It is similar to the color filter array (CFA) in RGB cameras. It
is based on a single sensor overlayed with a Bayer-like pattern of different spectral filters
with different spectral sensitivities over each pixel. The number of spectral bands used
depends on the design of the SFA pattern. Demosaicing must be performed to reconstruct
the full-resolution multispectral image, lowering the spatial resolution compared to other
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spectral imaging methods. Demosaicing is an ill-posed problem, where interpolation is
required to reconstruct the missing intensity values for each pixel. It also introduces es-
timated values that might be incorrect, which requires extra processing to rectify. This
rectification process is scene-specific and requires identification of the targeted scene before-
hand. To avoid these problems, in this work, scene recognition is performed on SFA images
without demosaicing them. This speeds up the acquisition time even further because no
pre-processing step is applied, and this also enables exploitation of spectral bands for scene
classification. Furthermore, a large and diverse raw SFA dataset for scene recognition is
introduced, and finally CNN models are investigated to perform scene recognition in raw
SFA images.

One of the earliest works in scene recognition is by Szummer and Picard [12]. They
classified scene images into indoor or outdoor categories based on low-level image fea-
tures. They used the Ohta color space and multi-resolution simultaneous autoregressive
model [13] to represent color and texture information. They computed these features on
sub-blocks of the input image and then classified them; finally, they combined the classifi-
cation result from each sub-block to obtain a final prediction using the K-nearest neighbor
model. The approach was tested on a fairly small dataset of 1300 images and only for
binary classification. Oliva and Torralba [14] proposed the Spatial Envelope representation
for general scene classification. It is a global feature representation of the scene image.
It describes a scene using five perceptual properties: naturalness, openness, roughness,
ruggedness, and expansion. The classification prediction is performed using K-nearest
neighbors. The authors also assembled a large dataset consisting of 8100 images over
4000 categories of natural scenes and 3500 categories of urban scenes. The Spatial Envelope
representation does not consider local object information, making it sensitive to occlusions
and spatial variations [1]. To overcome this, the Bag-of-Visual-Words (BoVW) framework
was introduced in which local feature descriptors are extracted from the image. Then,
the feature descriptors are quantified in terms of visual words. The image can now be
classified on the basis of the frequency of occurrence of these visual words. Fei-Fei and
Perona [15] proposed an approach where the scene image is first represented as a bag
of codewords, then a probabilistic Bayesian hierarchical model is learned for each class.
The model can learn to categorize the local regions of the image in an unsupervised way. It
requires only the ground truth categories of the images for training. The model showed
limitations in classifying complex indoor scenes because the BoVW approach does not take
into account the spatial relationship of local features. To improve on this, Lazebnik et al. [16]
proposed Spatial Pyramids. They repeatedly subdivided the image and computed the
histogram of the local image features over the subregions. This hierarchical multiscale
representation is a generalized form of the BoVW framework capturing spatial information.
However, it is not invariant to geometric variation.

The recognition of outdoor scenes is easier than the recognition of indoor scenes.
Indoor scene recognition is more difficult because of high inter-class variability present
in the images, such as images of library, archive, and book store look similar. Quattoni
and Torralba [17] tackled improving performance in indoor scene classification tasks. They
devised a prototype-based model that combines global and local discriminative features.
The model is based on the idea that images containing similar objects must have similar
labels and that the presence of some objects in a scene is more important than that of
others for determining the scene label. The authors created prototype images by annotating
discriminative regions of interest in those images. Then, spatial pyramids were used extract
features from query image, and the features were compared with the prototype regions of
interest for similarity.

Until recently, approaches to recognizing scenes have relied on handcrafted features
and classical machine learning models such as support vector machines [18] and K-nearest
neighbors. Krizhevsky et al. [19] demonstrated the feasibility and superior performance of
using deep convolutional neural networks (CNNs) in the large-scale image classification
task, ushering in a new era in computer vision. It allows for end-to-end learning of the
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classification task. The CNN model is composed of a set of convolution layers and then an-
other set of fully connected layers. The convolution layers extract features from the dataset,
while the fully connected layers perform the classification. The entire network is tasked
with minimizing the loss function using gradient descent, enabling it to automatically learn
to extract useful discriminative features and perform classification. Deep learning models
outperform classical methods by a large margin; however, they require large datasets and
more time for training.

Zhou et al. [20] used the CNN model for scene recognition and also introduced a new
large-scale scene recognition dataset called Places [21] with 10 million images. The Places-
CNN model achieved state-of-the-art performance on existing benchmark datasets and on
the new Places dataset. After this, many variants of deep learning models have been used
for scene recognition tasks, improving performance, and pushing the state of the art forward.
Some notable works include DAG-CNN [22], which uses a hierarchical CNN model to
improve the extraction of local feature and gradient flow, and GAP-CNN [23], which
replaces fully connected layers with global average pooling layers, biasing the model to
attend to class-specific regions of the scene and reduce the number of learnable parameters.

Most of the work in scene recognition uses RGB images. The performance of scene
recognition algorithms can be improved by exploiting additional spectral bands. Brown
and Süsstrunk [24] proposed an extension of the Scale-Invariant Feature Transform [25]
descriptor for multispectral images for scene recognition. Xiao et al. [26] extended the CEN-
TRIST [27] descriptor to use multispectral images for scene recognition by capturing joint
channel information from the RGB and NIR channels. Recently, Sevo and Avramović [28]
used the convolutional neural network (CNN) on multispectral images of scenes to predict
the scene label. However, in all of these works, one point to note is that the dataset consists
of images with only four channels, RGB+NIR. Additionally, Elezabi et al. [29] collected a
dataset of raw SFA images of textures to perform texture classification using CNNs and also
investigated the impact of different illumination and exposure variations on performance.

To the best of our knowledge, there is no dataset of raw spectral filter array images
of indoor and outdoor scenes. Also, to the best of our knowledge, there has been no prior
work solving task of scene recognition in raw SFA images using CNNs.

This paper is organized as follows. Section 2 covers the details of the novel raw SFA
dataset. Section 3 introduces our architecture to solve scene recognition in raw SFA images
based on CNNs. The results are presented in Section 4, and finally the conclusions are
presented in Section 5.

2. Dataset

A novel dataset consisting of raw SFA images of indoor and outdoor scenes was
collected, entitled CID:Places. The dataset was collected using the SILIOS CMS-C SFA
camera [30]. It captures nine bands ranging from 430 nm to 700 nm with a resolution of
1280 × 1024. Figure 1 shows the arrangement of the SFA pattern along with the spectral
bands of the sensor. The dataset is comprised of various indoor and outdoor scenes. All
images are 8-bit raw and mosaiced. Each image has a label indicating whether it is an
indoor or an outdoor scene, as well as the specific scene category. In total, it has 402 raw SFA
images, of which 201 are indoor scenes and the other 201 are outdoor scenes. It consists of
24 specific scene categories that are shown together with the number of images in Figure 2.
Figure 3a shows a random sample of outdoor images, and Figure 3b shows a random
sample of indoor images.
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Figure 1. Arrangement of spectral bands in SFA pattern of SILIOS CMS-C sensor as well as
transmission and wavelengths of spectral bands of each filter. Reproduced from [29–31].

Figure 2. All scene categories and their sizes in our raw SFA scene recognition dataset. Blue color
means outdoor scene and orange color means indoor scene.

(a) (b)
Figure 3. Random sample of indoor and outdoor datasets. (a) Outdoor raw SFA images. (b) Indoor
raw SFA images.

The SILIOS CMS-C camera was mounted on a Joby GorillaPod 5K tripod. To capture
the scenes, a 12.5 mm lens with a widest aperture of f/1.3 was used. The camera was
connected to a Windows laptop with the IDS uEye Cockpit [32] program running. Two
people were needed to carry out the captures. One person framed the picture, monitored
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the histogram, modified the parameters, triggered the capture on the laptop, and the other
person held the camera setup. All images were captured in 8-bit sensor raw using the
uEye Cockpit 2023 software. It allows for live view of what the camera is seeing along
with the image histogram. It also performs live auto-exposure to properly expose the
images, although in some extreme lighting situations the lens aperture and focus were
manually adjusted.

In the dataset, the classroom category is the largest indoor class, and the smallest are
laundromat and staircase. On the other hand, parking lot is the largest outdoor class and soccer
field is the smallest. Very few images are found in the construction site, soccer field, laundromat,
staircase, and storage room classes due to the limited encounters with these scenes during
acquisition trips. The dataset was collected on and around a university campus.

Images of library, office, and restaurant classes were captured under varying lighting
conditions. These classes have high dynamic range conditions with daylight entering
through the windows, while the camera is exposed to the indoor light level. The dataset
also contains images captured at night in artificial lighting. Examples of these images are
shown in Figure 4.

Figure 4. Examples of similar scenes taken during day time and night time. Top row corresponds to
images taken at night under artificial lighting and bottom row corresponds to images taken during
the day time.

The category naming scheme of the Places dataset [21] was followed, with the bike
stand class being an exception, as it is not present in the Places dataset. This scheme was
chosen for its convenience in training Places-CNN with this dataset, given that Places is a
widely recognized large-scale scene recognition dataset.

3. Methodology

This section covers the details of the proposed method for classifying scenes in raw
SFA images. The proposed model is based on Places-CNN [20]. The model is not trained on
the raw SFA dataset; instead, the pretrained weights of the Places-CNN are used. For details
of the Places-CNN training methodology, we refer to [20]. Places-CNN is trained on RGB
images of the Places dataset [21] so it cannot be used readily with the raw SFA images,
which consist of one channel. We introduce a three-pathway network which accepts
three pseudo-RGB images, performs inference on each image independently, and finally
combines the Softmax probability scores. The three RGB images are obtained from the
9-band raw SFA image. This scheme enables full utilization of the spectral information.
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Considering the raw SFA to be a grayscale image reformulates the problem and shifts the
multispectral aspect to be implicit in the model. It also makes the model applicable to any
nine-channel multispectral camera. We selected three bands from the 3 × 3 filter array to
create a 3-channel pixel in the pseudo-RGB image. Figure 5 shows the selected bands that
form the pseudo-RGB pixels in each of the three pseudo-RGB images. These bands were
selected based on their wavelengths that correspond to the red, green, and blue colors in
the visible wavelength range. One exception is that the panchromatic band is assigned to
the B channel in the pseudo-RGB 3 image. It was assigned because it was left over after all
other bands were selected. Figure 6 shows an example of these three pseudo-RGB images.
These pseudo-RGB images have a resolution of 427 × 342, while the original raw SFA
is 1280 × 1024.

Figure 5. Selected bands that form pseudo-RGB pixel in each pseudo-RGB image.

(a) (b) (c)
Figure 6. Example Pseudo-RGB images. (a): Pseudo-RGB 1. (b): Pseudo-RGB 2. (c): Pseudo-RGB 3.

The proposed model illustrated in Figure 7 takes three input images with three chan-
nels, the inference on each image is performed independently by a pretrained 11 million
parameter Places-CNN network, and finally the prediction is calculated by combining the
softmax probabilities of all three networks and selecting the class with the highest score.
The Places-CNN architecture is a residual network with skip connections [33] consisting of
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18 residual layers. All three networks have shared weights and return a 365 length vector of
Softmax probabilities corresponding to each class of the Places dataset. The three resulting
probability vectors are summed element-wise and then divided by three to normalize back
to the 0 to 1 range. Then, this normalized vector is sorted in descending order, and the
highest scoring class is picked.

Figure 7. Proposed methodology with Three-Pathway Network.

The Places dataset on which Places-CNN is trained contains 365 fine-grained classes.
It includes specific classes such as apartment building, office building, hospital, etc. Our dataset
has 24 general classes, including those that do not exist in Places (bike stand). Therefore,
it encapsulates all buildings in the building class that does not exist in the Places dataset.
To solve this mismatch, a label mapping is performed before combining the scores. So, all
specific classes are replaced with general classes that exist inside our dataset, and their
scores are summed. All Places dataset labels are analyzed, and the visually and semantically
similar classes are mapped to the general class label in our dataset. Figure 8 shows all the
label mappings from the Places dataset labels to the labels of our dataset.
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Indoor vs. outdoor binary classification is also performed. The Places dataset assigns
an additional indoor/outdoor label to the scene class label. After inference, to predict
whether the image is of an indoor scene or an outdoor scene, the first 10 largest scores
and their corresponding classes are taken and a majority vote of indoor/outdoor labels
determines the resulting category.

Figure 8. Mapping of Places dataset labels to our raw SFA dataset (CID:Places) labels.

4. Results

In this section, experiments are performed to assess the effectiveness of using pre-
trained Places-CNN and the proposed three-pathway network for scene recognition in raw
SFA images. Accuracy and F1 scores are considered for both indoor vs. outdoor classifica-
tion and scene classification. Six models with different configurations are compared. Class
activation maps returned by Places-CNN are also examined to explain the judgments.
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The details of the configurations compared are as follows:

Config 1: Raw SFA image as input to Places-CNN. The raw SFA image is a single
channel image with the mosaic patterns indicating the 9 bands. It is treated as
a grayscale image. The single channel is duplicated along the z-axis to obtain
a three-channel image. It is sent to the unmodified pretrained Places-CNN
for inference.

Config 2: Pseudo-RGB 1 image as Input to Places-CNN. The first pseudo-RGB image
constructed by selecting band 699 nm as R, 545 nm as G, and 425 nm as B as
shown in Figure 5 is sent as input to Places-CNN for inference and metrics
are computed.

Config 3: Pseudo-RGB 2 image as Input to Places-CNN. The second pseudo-RGB image
is used as input to the unmodified Places-CNN.

Config 4: Pseudo-RGB 3 image as Input to Places-CNN. The third pseudo-RGB image is
used as input.

Config 5: Grayscale image as Input to Places-CNN. The middle panchromatic channel
is taken and a three-channel grayscale image is produced by duplicating the
value three times along the z-axis. The size is similar to that of the pseudo-RGB
images, and the mosaic pattern seen in Configuration 1 is absent. Figure 9
shows an example grayscale image.

Config 6: Three Pseudo-RGB images as Input to Three-pathway Network. The pro-
posed method is as follows: three pseudo-RGBs are constructed and sent to the
three inputs of the three-pathway network to perform inference on each image
independently, and then the results are combined.

Figure 9. Example grayscale image.

Indoor vs. outdoor accuracies and F1 scores are presented in Table 1. All configurations
performed very well, achieving almost perfect accuracy. Configuration 1 where we input
the raw SFA image performed the best; we can see from Figure 10a that it made only
3 errors. Configuration 4 performed the worst; in Figure 10b, we can see that it incorrectly
predicted 14 outdoor scenes as indoor. Finally, Configuration 6, the proposed method,
misclassified 5 images as outdoor, as seen in Figure 10c. Overall, the performance of all
approaches is very similar.

The performance metrics for the scene recognition task are shown in Table 2. Config-
uration 1 has the best accuracy, while Configuration 6 has the highest F1 score. Since the
dataset for scene recognition is imbalanced, unlike for indoor vs. outdoor classification,
the F1 score is the more useful metric here. Figure 11 shows the confusion matrix for Con-
figuration 6 which is the proposed method. Confusion matrices for other configurations
are available in Appendix A. Overall, the performance is not good, with the best F1 score of
0.63 and an accuracy of 0.59, and there is a big difference compared to indoor vs. outdoor
classification performance.
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Table 1. Accuracy and F1 scores on the indoor vs. outdoor task. The red text indicates the highest values.

Configuration Accuracy F1 Score

1: Raw SFA 0.99 0.9901
2: Pseudo-RGB 1 0.9826 0.9829
3: Pseudo-RGB 2 0.9876 0.9877
4: Pseudo-RGB 3 0.9652 0.9663
5: Grayscale 0.9801 0.9804
6: Three-pathway 0.9876 0.9874

(a) (b) (c)
Figure 10. Confusion matrices of the indoor vs outdoor classification task. (a): Confusion matrix of
Configuration 1. (b): Confusion matrix of Configuration 4. (c): Confusion matrix of Configuration 6.

Table 2. Accuracy and F1 scores on the scene recognition task. The red text indicates the highest values.

Configuration Accuracy F1 Score

1: Raw SFA 0.5995 0.6313
2: Pseudo-RGB 1 0.5547 0.6202
3: Pseudo-RGB 2 0.5572 0.6193
4: Pseudo-RGB 3 0.5224 0.569
5: Grayscale 0.5697 0.6064
6: Three-pathway 0.5771 0.6354

The model struggles with classes that are related to each other. The parking lot is the
most misclassified category. It is confused with the building category. In the dataset, there
are many parking lots next to or in front of buildings. The parking lot is also confused with
the junkyard. Both categories contain images of cars parked in a line. Similarly, the office is
confused with the conference room, the restaurant with the classroom because both have
arranged tables and chairs, and the residential neighborhood with the building. The model
struggles to distinguish subtle details; for example, the junkyard has cars that are not in
good condition, or the restaurants usually have tablecloths and other decorations on the
tables while classrooms do not.

Two main reasons for the disparity in performance of both tasks is that the indoor vs.
outdoor classification decision is taken with a majority vote of the top 10 scores, while for
scene recognition only the top 1 score is considered. Configuration 6 performs better on the
more difficult scene recognition task, demonstrating a better bias–variance trade-off based
on the F1 score. This is because it combines the decision of three networks. Another reason
is that the model is not trained on our dataset, and thus the input is out of distribution
for it. Configuration 4 has the worst performance due to the panchromatic channel set
to the blue channel, resulting in the most color-incorrect image compared to the other
pseudo-RGB images.
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Figure 11. Confusion matrix of Configuration 6 on the scene recognition task.

Further analyzing the configurations, we generate class activation maps from the
model. The class activation map is a heat map that indicates which area of the image the
model found to be the most discriminating or helpful in its classification. We analyzed
class activation maps for two correct classifications and two incorrect classifications, one
for the indoor case and one for the outdoor case. Figure 12 shows the class activation
maps for an image of a building that was correctly classified by all configurations. All
configurations focus on the different parts of the building in the image, which explains their
correct predictions. A similar pattern is seen in Figure 13 where the models focus on the
display, the cubicles, and the bottom of the revolving chairs to correctly predict the image
belonging to the office class. Then, we considered misclassification cases. In Figure 14, the
image of the parking lot is misclassified as a building. The class activation maps indicate
that the models paid attention to the building in the background rather than the cars parked
in front. Finally, Figure 15 shows class activation heat maps of an image of an auditorium
incorrectly classified. The models focused on the top right of the image, where the staircase
and its railing are along with some tables. The misclassifications for this image were varied.
Configurations 1, 4 and 6 were classified as jail cell, Configurations 2 and 3 as bowling alley,
and Configuration 5 as staircase. The class activation maps did not explain the reason for
these predictions. Class activation maps provided some insight into the behavior of neural
networks but not the entire explanation. Neural networks remain difficult to explain.
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(a) (b) (c)

(d) (e) (f)
Figure 12. Class activation maps of a building image correctly classified by all configurations. (a) Con-
figuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4. (e) Configuration 5.
(f) Configuration 6.

(a) (b) (c)

(d) (e) (f)
Figure 13. Class activation maps of an office image correctly classified by all configurations. (a) Con-
figuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4. (e) Configuration 5.
(f) Configuration 6.

As mentioned earlier, the scene recognition prediction is based on the class with the
largest softmax score, while the indoor vs. outdoor classification considers the majority
class in the top 10 largest scoring labels. Increasing the top k scores used for the decision
improves performance. We considered the example of misclassification shown in Figure 14
where the model predicted the building class instead of parking lot. The image has the
building in the background, while the parking lot is in the foreground. This image can be
correctly classified as both building and parking lot.
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(a) (b) (c)

(d) (e) (f)
Figure 14. Class activation maps of a parking lot image incorrectly classified as building by all con-
figurations. (a) Configuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4.
(e) Configuration 5. (f) Configuration 6.

(a) (b) (c)

(d) (e) (f)
Figure 15. Class activation maps of an auditorium image incorrectly classified as jail cell by Con-
figurations 1, 4 and 6, as bowling alley by Configurations 2 and 3, as staircase by Configuration 5.
(a) Configuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4. (e) Configuration 5.
(f) Configuration 6.

Table 3 presents the results in which the top k = 1, 2, 3, 5, and 10 scores were considered
and if the correct label was present, the image was marked as correctly classified. As the
considered top k scores increase, performance also increases. At the top k = 10, the same
level of performance is reached as the indoor vs. outdoor classification. For the top k = 10,
Configuration 1 is the best performing configuration, while Configuration 6 is the third best.
Figure 16 compares the improvements in accuracy and the F1 score as K increases. There is
an improvement of approximately 10% when increasing k by one. The improvement slows
to approximately 5% after the top k = 3 and higher. Converting the objective to multi-label
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classification improves performance. However, it is important to emphasize that this is not
needed if the model is trained on the dataset as the highest scoring category is most likely
to be the correct one. Reasons for not retraining the model are discussed in Section 5.

Table 3. Top K scene recognition accuracy and F1 score. If the label is present in the top k predictions,
then the classification is correct. The red text indicates the highest values.

Configuration Top K Accuracy F1 Score

1: Raw SFA

1 0.5995 0.6313
3 0.7761 0.8043
5 0.8408 0.8602
10 0.8955 0.909

2: Pseudo-RGB 1

1 0.5547 0.6202
3 0.7438 0.7897
5 0.8109 0.842
10 0.8731 0.8946

3: Pseudo-RGB 2

1 0.5572 0.6193
3 0.7562 0.7976
5 0.8159 0.8391
10 0.8607 0.8847

4: Pseudo-RGB 3

1 0.5224 0.569
3 0.7463 0.7785
5 0.8085 0.8328
10 0.8582 0.8763

5: Grayscale

1 0.5697 0.6064
3 0.7463 0.7735
5 0.8408 0.8614
10 0.8806 0.8958

6: Three-pathway

1 0.5771 0.6354
3 0.7711 0.8058
5 0.8433 0.8674
10 0.8706 0.8914

For scene recognition, Configuration 1 performs best overall. In Configuration 1,
the raw SFA image is duplicated along the z-axis to convert to three channels and input
to a pretrained Places-CNN model. The image has a resolution of 1280 × 1024 while
the image in all other configurations is smaller at 427 × 342. However, the image in
Configuration 1 has mosaic artifacts, whereas the images in other configurations do not.
Comparing Configuration 1 and Configuration 5, Configuration 1 still performs better.
In Configuration 5, the image is a grayscale image constructed from the panchromatic
channel duplicated along the z-axis three times. Both images are grayscale (Configuration 1
raw SFA is treated as grayscale), and the difference is in resolution and mosaic artifacts.
Table 4 shows the results when the resolution of the grayscale image (Configuration 5) is
increased from 427 × 342 to 1280 × 1024 and is compared with Configuration 1. It also
shows the result when the resolution of the images in Configuration 1 is decreased to match
the images in Configuration 5 (427 × 342). Increasing the resolution of Configuration 5
improves the results slightly, but does not match what is achieved by Configuration 1.
Decreasing the resolution of Configuration 1 decreases the results slightly, but not enough,
to match the metrics obtained by Configuration 5. More experimentation is required to
know why Configuration 1 which has mosaic artifacts works best. Increasing the resolution
of images in Configuration 5 improves performance, and decresing the resolution of images
in Configuration 1 degrades performance. Resizing images to a bigger size results in blurry
images as the process interpolates more pixels. So, if the images in Configuration 5 have a
native resolution of 1280 × 1024, they will be sharper and might match the better results of
simply using a raw SFA image. The model benefits from the higher resolution of the raw
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SFA image enough that the noise of mosaic pattern does not cause the performance to be
worse than the configurations where the images are smaller.

Further comparisons were made with the selection of other channels to construct a
grayscale image. Only one channel was selected from the nine bands and duplicated on
the z-axis to form a three-channel pixel. The results were similar and can be found in
Appendix B.

Configuration 6, which is the proposed model, surpassed Configuration 1 with raw
SFA at K = 1, 3, and 5. It was the best performing model at these values of K. The model
utilizes the raw SFA image by constructing three pseudo-RGB images and performing
inference independently. The results of the three forward passes were combined, and the
prediction was chosen. This introduced robustness and reduced noise in the predictions,
leading to better results.

Table 4. Comparison of scene recognition accuracy and F1 score of Configurations 1, 5, 1 resized to
427 × 342, and 5 resized to 1280 × 1024. The red text indicates the highest values.

Configuration K Acccuracy F1 Score

1: Raw SFA

1 0.5995 0.6313
3 0.7761 0.8043
5 0.8408 0.8602
10 0.8955 0.909

1: Raw SFA (resized to 427 × 342)

1 0.5945 0.6257
3 0.7711 0.7958
5 0.8408 0.8602
10 0.8955 0.909

5: Grayscale

1 0.5697 0.6064
3 0.7463 0.7735
5 0.8408 0.8614
10 0.8806 0.8958

5: Grayscale (resized to 1280 × 1024)

1 0.5697 0.6068
3 0.7488 0.7763
5 0.8458 0.8671
10 0.8781 0.8933

Figure 16. Cont.
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Figure 16. Top K accuracies and F1 scores for each configuration.

5. Conclusions

The aim of this work was to assess the effectiveness of using raw spectral filter array
imaging for scene recognition. To achieve this, a raw SFA scene dataset was acquired using
the SILIOS CMS-C spectral camera and labeled with indoor/outdoor class, as well as scene
class following the labels in the Places dataset.

The pretrained Places-CNN was used as the convolution neural network model for
scene recognition and indoor vs. outdoor classification. It was trained on the Places dataset
with 10 million images and 365 classes. Six configurations (type of input; Configuration 6
also has a different architecture) and variations were evaluated, one of which was a novel
architecture that utilized the individual bands of the spectral filter array by separating
them into individual images. All models achieved F1 scores above 90% on the indoor vs.
outdoor classification task. F1 scores were not good on the multi-class scene recognition
task with the proposed model achieving the best score of 63%. Further experiments were
carried out to improve performance on the scene recognition task by considering the top K
prediction scores for the decision. When K = 10, the scene recognition F1 scores reached
90% for all models.

Experiments were conducted to explain the good performance of Configuration 1.
In Configuration 1, the raw SFA image is treated as a grayscale image. The pixels are
duplicated along the z-axis to form a three-channel image because Places-CNN requires a
three-channel image as input. It retains all the spectral information in the image, albeit with
redundancy. The raw SFA image contains the mosaic pattern; however, it has the highest
resolution of all the other configurations. In Configuration 5, the middle panchromatic
channel is selected and duplicated over the z-axis to form a grayscale image. These two
Configurations are compared because there are visual similarities to explain the affect
of presence of mosaic pattern and resolution. It is found that higher resolution leads to
better predictions.

Places-CNN was used pretrained on the Places dataset. It was not trained on our
custom raw SFA dataset, that is why scene recognition performance was limited when
considering only the highest scoring label in the prediction. However, it was not below 50%
accuracy, indicating that due to its large-scale training it has the ability to extract relevant
features and discriminate them. Places-CNN was not fine-tuned on our dataset because our
dataset is highly imbalanced with some classes, such as the laundromat that contains only
one image. Fine-tuning on it results in high accuracies and overfitting. The dataset contains
402 images; more images need to be collected to make training a neural network viable.
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The pseudo-RGB images were constructed from the selection of the spectral bands
from the raw SFA image. More experimentation can be performed to optimize the selection
of the bands. Another comparison which was not conducted was with a demosaiced RGB
image of the same scenes.

In this work, the role of illuminations was not explored. Further investigation can
be carried out to determine whether correcting the illumination in the raw SFA captures
has an impact. Higher resolution was found to have a positive impact on performance
regardless of mosaic patterns. Further experiments can be conducted to explain this
behavior. The Places-CNN model was not trained on the raw SFA dataset. A logical next
step is to collect more data and fine-tune the model on it. Additionally, smaller architectures
can be explored, such as Mobilenet [34], to make deployment on edge devices possible for
real-time applications.
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Appendix A. Scene Recognition Confusion Matrices for Other Configs

Scene recognition task confusion matrices for Configurations 1, 2, 3, 4, and 5 are
presented in Figures A1–A5.

https://colourlab.no/cid
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Figure A1. Confusion matrix of Configuration 1 on the scene recognition task.

Figure A2. Confusion matrix of Configuration 2 on the scene recognition task.
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Figure A3. Confusion matrix of Configuration 3 on the scene recognition task.

Figure A4. Confusion matrix of Configuration 4 on the scene recognition task.
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Figure A5. Confusion matrix of Configuration 5 on the scene recognition task.

Appendix B. Quantitative Results with Grayscale Constructed by Selecting other Bands

Table A1. Comparison of scene recognition accuracy and F1 score for grayscale images constructed
by considering different spectral bands. K = 1 for configurations. Red text indicates the best value in
the column.

Configuration Acccuracy F1 Score

Grayscale (699 nm) 0.5597 0.5896
Grayscale (656 nm) 0.5572 0.5874
Grayscale (614 nm) 0.5572 0.5972
Grayscale (425 nm) 0.5746 0.6069
Grayscale (PAN) 0.5697 0.6064
Grayscale (573 nm) 0.5597 0.6015
Grayscale (465 nm) 0.5696 0.5976
Grayscale (505 nm) 0.5696 0.5989
Grayscale (545 nm) 0.5672 0.6089
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