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Abstract

Appearance characterizes visual features of objects and materials. It is a multi-
plex psychovisual phenomenon that is usually broken into several appearance at-
tributes for simplification of its measurement and communication, and for study-
ing its nature. Color, texture, gloss, and translucency are considered the major
appearance attributes. Significant research work has been done in metrology for
accurate instrumental measurement of optical properties of materials, and consid-
erable advances have been made in computer graphics, permitting the generation
of highly photorealistic visual stimuli. Nevertheless, the knowledge remains lim-
ited on how humans perceive appearance, how we behave to assess appearance,
what factors impact our perception, how different attributes interact with each
other, and all in all how optical properties relate with their perceptual counter-
parts.

In this thesis, we explore various aspects of appearance perception with a
focus on the appearance of translucent objects. For this purpose, we conducted
a series of social and psychophysical experiments with real and synthetic visual
stimuli. Elucidating appearance perception of translucent objects has implications
for industrial, academic and artistic applications alike.

In the initial stage of the study, we organized a social experiment in order
to collect qualitative observations on the process of appearance assessment, con-
struct a qualitative model of material appearance and generate relevant research
hypotheses. The hypotheses have been analyzed in context of the state-of-the-art.

Afterwards, we tested the most interesting hypotheses quantitatively, in order
to assess their generalization prospects. The experimental results have provided
indications in support of the hypotheses. We have observed that translucency of
an object impacts perception of glossiness, while detection of translucency differ-
ence depends on geometric thickness of the objects and optical thickness of the
materials they are made of. Additionally, we examined a potential role of several
cues in translucency perception that are present in the image detected by either
a camera or a human observer. We found that blurriness of the image and the
presence of caustics can impact apparent translucency.

Finally, we conducted a comprehensive survey on translucency perception, ad-
vancing the state-of-the-art with our findings, and outlining unanswered questions
for future research.
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Sammendrag

Utseende karakteriserer visuelle egenskaper ved gjenstander og materialer. Det
er et mangfoldig psykovisuelt fenomen som vanligvis blir brutt ned til flere ut-
seendeattributter, for å forenkle dets måling og kommunikasjon, og studering av
dets natur. Farge, tekstur, glans og gjennomskinnelighet anses som de viktigste
utseendeattributtene. Det er gjort betydelig forskningsarbeid innen metrologi for
nøyaktig instrumentell måling av materialers optiske egenskaper, og betydelige
fremskritt innen datagrafikk som tillater generering av meget fotorealistiske vi-
suelle stimuli. Likevel er kunnskapen fortsatt begrenset om hvordan mennesker
oppfatter utseende, hvordan vi oppfører oss for å vurdere utseende, hvilke fak-
torer som påvirker vår oppfatning, hvordan forskjellige attributter innvirker på
hverandre, og alt i alt hvordan optiske egenskaper relateres til deres perseptuelle
motstykker.

I denne avhandlingen utforsker vi ulike persepsjonsaspekter med fokus på ut-
seendet til gjennomskinnelige objekter. For dette formålet gjennomførte vi en se-
rie sosiale og psykofysiske eksperimenter med ekte og syntetiske visuelle stimuli.
Kunnskap om uteseende til gjennomskinnelige gjenstander har implikasjoner for
både industrielle, akademiske og kunstneriske anvendelser.

I den innledende fasen av studien gjennomførte vi et sosialt eksperiment for å
samle kvalitative observasjoner om prosessen med utseendevurdering, konstruere
en kvalitativ modell for materialutseende og frembringe relevante forskningshy-
poteser. Hypotesene er analysert i sammenheng med kunnskapsfronten.

Etterpå testet vi de mest interessante hypotesene kvantitativt, for å vurdere
deres muligheter for generalisering. De eksperimentelle resultatene har gitt in-
dikasjoner til støtte for hypotesene. Vi har observert at et objekts gjennom-
skinnelighet påvirker oppfatningen av glans, mens deteksjon av gjennomskin-
nelighetsforskjeller avhenger av gjenstandenes geometriske tykkelse og materi-
alene de er laget av sin optiske tetthet. I tillegg har vi undersøkt rollen til flere
potensielle perseptuelle indikatorer for gjennomskinnelighet, som kan finnes i
bilder som er registrert enten av et kamera eller av en menneskelig observator.
Vi har funnet at bildeuskarphet og kaustikk kan påvirke oppfattelsen av gjennom-
skinnelighet.

Til slutt gjennomførte vi en omfattende undersøkelse om perseptuell gjennom-
skinnelighet, oppdaterte kunnskapsfronten med våre funn, og skisserte ubesvarte
spørsmål for fremtidig forskning.
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Chapter 1

Introduction

1.1 Motivation

Vision is one of the fundamental senses human beings rely on for interpreting their
surrounding. Appearance is a visual sensation attributing particular properties to
surrounding objects and materials. Based on how they look, we can tell whether
food is fresh or spoiled, whether a sidewalk is slippery or not, or whether a cup is
made of soft and elastic plastic or rigid and fragile glass. We are surprisingly good
at assessing appearance and deducing material properties from it. The sensation
of appearance impacts a broad range of our behaviors, from performing simple
daily routines to making choices between lavish consumer products. Therefore,
understanding how to acquire, reproduce and communicate appearance has con-
siderable implications for academia, industry and arts alike.

Appearance is a result of light interacting with different objects and ma-
terials in a scene. While instrumental measurement (hard metrology) (Pointer
(2003) and Choudhury (2014)) and digital modeling of optical material prop-
erties (Dorsey et al. (2010)) have advanced considerably, the physical material
properties remain poor predictors of what humans perceive, as our understand-
ing of how our visual system perceives appearance remains limited. This gave rise
to the development of soft metrology – an attempt of finding a correlation between
objective measures and subjective human responses, where the paramount goal
is to come up with a measurement scale which will predict subjective response
based on objectively measurable quantities (Pointer (2003), Eugène (2008), and
Leloup et al. (2014)).

Appearance is a complex psychovisual phenomenon. In order to simplify quan-
tification and studying its nature, appearance is usually broken into distinct ap-
pearance attributes, color, gloss, translucency and texture being usually the most
significant and prevalent ones (CIE (2006) and Eugène (2008)). Color is undeni-
ably the most salient, as well as the most studied appearance attribute. Color sci-
ence has a long history and the mechanisms of color perception are relatively well
understood. However, the same cannot be said about other appearance attributes.
Appearance research has emerged from and can be considered an extension of

1
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color science (Sole et al. (2019)). Translucency is among the most understudied
albeit significant attributes of appearance (Anderson (2011)). We interact with
translucent objects and materials on a daily basis, which in addition to food, bev-
erages, countless plastic, glass, wax and paper products, also includes our own
skin. Translucency helps us distinguish fresh juicy food from dry spoiled ones (Di
Cicco et al. (2020b)), metals from glass, or human skin from plastic dummies.
Proper reproduction of the appearance of translucent objects is critical in many
fields, such as 3D printing (Brunton et al. (2018) and Urban et al. (2019)), cultural
heritage (Kaltenbach (2012) and Barry (2011)), architecture (Murray (2013) and
Kaltenbach (2012)) (see Figure 1.1), computer graphics (Frisvad et al. (2020) and
Nunes et al. (2019)), cosmetology (Giancola and Schlossman (2015) and Emmert
(1996)), aesthetic dentistry (Liu et al. (2010) and Lopes Filho et al. (2012)), food
industry (Hutchings (1977) and Hutchings (2011)) and visual arts (Wijntjes et al.
(2020), Di Cicco et al. (2020a), and Di Cicco et al. (2020b)) – making research
on translucent objects and materials largely interdisciplinary. The standards for
measuring particular optical properties, such as the extinction coefficient, clar-
ity or haze, might differ among industries (Pointer (2003), Dorsey et al. (2010),
and Frisvad et al. (2020)), but they all suffer from the common problem – phys-
ical measurements are poor predictors of what humans perceive. Furthermore,
measurements are conducted for small sets of materials, objects and illumination
conditions, and little is known how appearance varies in the complex and dynamic
environment we usually interact with the objects and materials in. The research
on translucency perception will help us identify these links between the physical
and the perceptual properties, which is relevant for all above-mentioned fields.
In the industries, where the visual appearance of the products has enormous sig-
nificance, such as the industries of food, fashion, cosmetics, electronics and other
accessories, understanding how the appearance of translucent objects is perceived
by the customers will enable the manufacturers predict, produce and replicate the
desired appealing looks. In arts and cultural heritage, understanding perception
will not only facilitate designing, but also the conservation, restoration, archiv-
ing and cross-media reproduction processes. The development of the perception-
aware material mixing or rendering algorithms in the rapidly emerging fields of
3D printing and computer graphics, respectively, will make it possible to gener-
ate more realistic visual effects in more cost-effective ways. Understanding visual
perception of translucent materials in the dynamic and varying environment will
be especially important in the extended reality applications - e.g. for achieving the
realistic telepresence.

Translucency implies that light penetrates the material, propagates through it
and emerges from a different part of it. Therefore, image structure detected at the
human retina can result from an infinite number of combinations between surface
reflection and subsurface transport of light. While disentangling these contribu-
tions and understanding the complex process of light and matter interaction is an
ill-posed problem, the human visual system (HVS) manages to deduce the prop-
erties of translucent objects in a surprisingly consistent and robust manner (An-
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derson (2011) and Fleming and Bülthoff (2005)). The exact mechanisms of this
ability are yet to be unearthed.

The fact that material appearance research is in an early phase of its develop-
ment, with yet ample unknowns, motivated us to observe the process of material
appearance assessment by humans with an objective to generate relevant research
hypotheses and to pave the way for future research. Afterwards, we aimed our
attention at a particular subset of visual stimuli – translucent materials and ob-
jects made of them. We explored not only translucency proper as an appearance
attribute, but also the perception of glossiness on translucent objects. We want
to highlight the following: although translucency as an optical phenomenon is a
property of materials, we usually view and interact with different objects that are
made of those materials. In addition to optical properties, geometric properties of
an object, such as shape, roughness and size, also impact what we perceive. There-
fore, in the rest of this thesis, we discuss perceiving the translucency of particular
objects, not that of materials as abstract entities.

Finally, while computer graphics enables us to manipulate material and ob-
ject’s properties in an easy, cheap and systematic manner, manufacturing physical
objects that cover a broad range of materials is a substantially harder task. On
the other hand, computer graphics which suffers from a lower dynamic range and
lacks interactivity, tactile information and binocular vision, does not fully emu-
late the natural experience we usually have in our daily lives. The need for an
inevitable trade-off prompted us to conduct our study both on real and digital
stimuli, which itself can reveal intriguing differences between the media.

This fundamentally interdisciplinary work, which incorporates components
from computer science, social science, vision science and experimental psychol-
ogy, has implications for a broad range of fields, such as 3D printing, computer
graphics and even visual arts (Hodgson (2020)).

1.2 Research Objectives

The preeminent goal of this work is to unveil the visual mechanisms of material
appearance and to find the correlation between physical and perceptual prop-
erties, with particular emphasis on, but not limited to, translucent materials and
objects made of them. Considering the complex nature of the problem, we believe
the goal should be reached incrementally, by generating interesting hypotheses,
followed either by their falsification or inability thereof. Consequently, we divided
the project into distinct parts according to four major objectives:

First of all, we aimed for constructing a qualitative model of material appear-
ance and generating relevant research hypotheses, which if supported by the state-
of-the-art and validated quantitatively, would enable us to generalize our observa-
tions incrementally. Although translucent objects remain the focus of this thesis,
the objective at this stage has been to observe the process of assessing material
appearance in general, to provide a bigger picture and to propose hypotheses both
on translucent and non-translucent objects.
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Figure 1.1: Beinecke Rare Book and Manuscript Library is located on Yale Uni-
versity campus, in New Haven, Connecticut. It was designed by Gordon Bunshaft
and the construction was completed in 1963. The library is built with translucent
marble panels. This is a vivid example of using translucent building materials in
modern architecture and respective visual appearance generated with that. While
the panels look opaque most of the time (the left wall in the image), they start
to transluce and glow (the right wall) as soon as direct sunlight hits them. The
visual effect is achieved with a phenomenon that objects look more translucent
when they are back-lit. [Photo by Davit Gigilashvili]

Secondly, we tested the interesting hypotheses about interactions between
translucency and other appearance properties, such as geometric shape and per-
ceived glossiness.

Afterwards, we attempted to identify how information about material appear-
ance (namely, translucency and glossiness) is encapsulated in the image structure.

Finally, we concentrated on translucency as an appearance attribute. The ob-
jective at this stage has been to analyze the findings, use them to advance the
state-of-the-art about translucency perception and to outline future steps needed
for reaching the preeminent goal.

It is worth noting that the objective of this thesis is limited neither to translu-
cency perception, nor the appearance of translucent objects. Translucency co-
exists with other appearance attributes, being a piece of a puzzle in a picture
of total appearance. We started from a general topic and narrowed our focus as
the work progressed and more data was being obtained. This is summarized in
Table 1.1.

1.3 Research Questions

The details regarding the generated hypotheses and research questions are sum-
marized in Chapter 3. Below we enlist the pivotal research questions for this work.
How these research questions serve to the four objectives discussed above is shown
in Figure 1.2.

1. How do people behave when assessing appearance, and which factors facil-
itate this process?
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Table 1.1: We started collecting experimental observations on material appear-
ance assessment in general. Gradually narrowing the focus, we tested the hy-
potheses quantitatively and eventually surveyed the updated state-of-the-art on
a particular topic of translucency perception.

Objective Appearance
Attributes Addressed

Level of Generality

1 Hypotheses generation Virtually any Appearance
in general

2 Interaction of translu-
cency, gloss and shape

Translucency, gloss Two attributes

3 Impact of image struc-
ture on apparent
translucency and gloss

Translucency, gloss Two attributes

4 Knowledge status in
translucency perception

Translucency Focus on a single at-
tribute

2. Does the human visual system manifest constancy in translucency percep-
tion similarly to color constancy, and to what extent?

3. Does translucency contribute to glossiness perception?
4. Does the shape of the object impact the perceived magnitude of translu-

cency?
5. Does the shape of the object impact detection of translucency differences?
6. Does the magnitude of subsurface scattering impact our ability to detect

translucency differences?
7. Does appearance assessment differ between physical objects and displayed

images, and how vital is the direct interaction with the objects when judging
their appearance?

8. Does the presence of caustics impact the perceived magnitude of translu-
cency?

9. Does image blur impact the perceived magnitude of translucency?
10. Can the luminance statistics be used for prediction of apparent gloss and

translucency?
11. What are the major obstacles to advancing translucency perception re-

search?
12. What is the knowledge status on translucency perception and where should

we go next?

1.4 Research Methodology

1.4.1 Methods used in the project

The initial stage of the project was dedicated to qualitative research using an
inductive research method. We started the project with a qualitative research
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Hypotheses
Generation

Interaction
among

Attributes
Image

Structure

Update Knowledge Status and Outline Future Directions

1 2 3-7 8 9-10

11-12

Figure 1.2: The figure summarizes how the research questions relate to the objec-
tives of the project. The numbers correspond to the respective research questions.
For instance, research question 2 about translucency constancy helps us generate
research hypotheses and also understand how translucency interacts with other
attributes. All research questions, including 11-12, serve the objective to update
the knowledge status on translucency perception and identify the avenues worth
taking in the future.

methodology with an intention of:

• Building a qualitative model of material appearance that is rooted in the
experimental data. While qualitative models are usually based on subjective
interpretation by the authors and their philosophical rationales, to the best
of our knowledge, no model exists that is fully rooted in experimental data.
• Generating relevant research hypotheses for future deductive studies,

which, if validated with quantitative research methods, will help the gener-
alization of the model.

We hypothesize that appearance is a social interaction, either a human subject
interacting with the object in a scene, or two subjects communicating the appear-
ance. Therefore, we approached the problem with a methodology from social sci-
ence and conducted a social experiment to observe this interaction. As well-noted
by Anderson (2011), the experimental scenes are usually oversimplified, creating
a risk that the experimenters remove information essential to the visual system
and "those experiments may provide little insight into the normal functioning of the
visual system". In order to see a broader picture of the appearance assessment
process and make the interaction as close as possible to natural everyday behav-
ior, unrestricted interaction with the objects was permitted and the experimental
conditions have not been fixed.
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The process was videotaped and the transcripts have been analyzed with the
Grounded Theory Analysis (GTA) (Paillé (1994)). The GTA is an inductive research
method derived from the Grounded Theory Approach (Glaser et al. (1968) and
Corbin and Strauss (2015)) in social science. The method consists of six stages of
analysis:

1. Coding – assigning labels to all experimental observations.
2. Categorization – grouping conceptually similar observations into categories.
3. Co-linking – identifying how different categories relate to each other.
4. Integration – putting the categories into a single system and reinforcing

the original links with additional data which could be either quantitative
frequency analysis or the overview of the state-of-the-art.

5. Modelling – creating a model that describes the underlying structure of the
data.

6. Theorization – creating a provisional theory, which is far from a general
theory, but is conceptually and structurally more advanced than a mere de-
scription of observations.

The examples of using this methodology for addressing numerous social as-
pects can be found in the works by Jacob and Holmes (2011), Gaucher and Payot
(2011), and Rippon et al. (2020). In parallel to qualitative analysis, quantitative
frequency analysis was also conducted to augment and strengthen the qualitative
observations - more specifically, to identify the most common observations and
to formulate research hypotheses based on them. Afterwards, the literature has
been reviewed and the observations have been scrutinized in the context of the
state-of-the-art.

At the second stage of the project, the most relevant hypotheses were
tested quantitatively. We conducted psychometric scaling experiments (Engel-
drum (2000)) and tried to correlate physical material properties with the per-
ception of particular attributes among the human observers, as well as to mea-
sure the statistical significance of these correlations. Several experimental setups
were used in different studies, including pair-wise comparisons (Articles D and
G), rank order (Articles A and C), category judgment (Article F), and the method
of constant stimuli (Article E). The visual stimuli have been presented: as physical
objects (Articles A, B and C), computer-generated imagery (Articles D, E and F)
or RGB images (Article G). Additionally, image statistics of the RGB photographs,
particularly the first four moments of luminance histogram, were also analyzed
(Article H) to understand how changes in optical properties and visual appear-
ance are reflected in the image structure.

Finally, an exhaustive literature review was produced that advanced the state-
of-the-art with our findings obtained in the previous steps. Figure 1.3 illustrates
how these fundamentally different methods fit together in the loop of generating
new knowledge.
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State-of-the-artGenerate observations
and research hypotheses

Compare with the 
state-of-the-art

Test the relevant
hypotheses

Improve
understanding of
the observations

Update the
state-of-the-art

Figure 1.3: After generating new hypotheses and observations, they are com-
pared with the state-of-the-art. The ones considered most relevant are tested
quantitatively. Validation or falsification of the hypotheses helps us not only to
update the knowledge status, but also improve our understanding of the original
observations.

1.4.2 Rationale for using an inductive research method

We are aware that the current academic community is dominated by "hypothetico-
deductive" research and the scepticism towards the methods based on Grounded
Theory (GT) is not unheard in the scientific community (Luckerhoff and
Guillemette (2011)). However, considering the interdisciplinarity and complexity
of the problem, the research methodology has been chosen with full awareness of
the latter fact. Below we will explain the rationale for using the inductive research
method derived from the GT.

Luckerhoff and Guillemette (2011) have analyzed methodological peculiari-
ties of the GT that are oftentimes reason for rejection of the GT-based research
proposals by evaluation committees. However, we believe that this project took
great advantage of these very features that are specific to this inductive method.

Typical quantitative studies test the research hypotheses by fixing particular
optical properties of the materials while systematically varying others – trying to
measure their impact on observer responses (Anderson (2011)). However, mate-
rial appearance research is still in its infancy and little remains known about the
complex process of behavioral and psychovisual mechanisms of material appear-
ance assessment. This creates a fundamental problem that even before raising
the question of how particular research hypotheses should be tested, first of all,
we need to identify what those hypotheses are. When Glaser and Strauss (1965)
introduced the GT method, they argued that some sociologists "over-emphasize rig-
orous testing of hypotheses, and de-emphasize the discovering of what concepts and
hypotheses are relevant for the substantive area being researched". While a colossal
area in the field of material appearance remains to be explored, generating re-
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search hypotheses and bringing new concepts to light is a valuable contribution
in itself.

In traditional deductive studies a literature review is conducted before setting
up an experiment, while in GT-based approaches reference to the literature is
postponed in order to avoid prejudices and ensure a higher degree of openness
among the experimenters. The observations are compared with the state-of-the-
art once they are collected and a researcher is open to whatever emerges from the
data rather than “forcing the data to comply with existing theories”. (Luckerhoff
and Guillemette (2011))

Furthermore, while traditional research methodologies are linear by nature
(proposing a hypothesis, setting up an experiment, testing the hypothesis, drawing
the conclusions), the GT is characterized with circularity - as a constant refinement
loop is allowed by the GTA, where every new piece of the data can be used to
return to the original observations and improve their understanding.

We believe these peculiarities of the inductive research method are especially
important for generating new unbiased ideas and guiding future research, which
can be crucial for such an understudied field as material appearance. This is well
summarized by Starrin et al. (1997): "Usually you collect the data, then analyze
them. When collecting theoretical puzzle pieces, you have no idea ahead of time what
you will collect. Above all, you do not know where they will lead you. By discovering
codes and trying to saturate them by seeking comparable groups, you get a growing
feeling of where you should look for more data."

Finally, we want to mention that our research objectives could be to some lim-
ited extent reached with structure discovery techniques, such as multidimensional
scaling (MDS). However, those techniques could not fully substitute the benefits of
using GTA for the following reasons: first, GTA is a qualitative inductive research
method, while MDS is a quantitative method of a deductive nature. When using
structure discovery techniques, some hypotheses about the structure are assumed
– for instance, in MDS we assume dimensionality. However, we refused to accept
any pre-existing hypotheses due to above-discussed reasons. Secondly, structure
discovery methods, such as MDS, deal with scale, numerical and ordinal data (e.g.
similarity of the objects by glossiness). However, unlike GTA, they cannot mea-
sure and capture the complex socio-behavioral aspects of the interaction. Thirdly,
quantitative structure discovery methods (such as MDS) require a high number
of visual stimuli, which would have been impractical with physical objects. Using
computer generated imagery as an alternative would have considerably limited
the naturalness of the behavior due to a simpler environment and the lack of the
interaction. Indeed, it is not to deny that the methods such as MDS are powerful
tools for building reliable quantitative visual models, but on the other hand, the
methods such as GTA, are more suitable for observing a broad range of the behav-
ioral and social processes involved in appearance assessment. It is important to
highlight that we neither consider these methods mutually exclusive alternatives,
nor have we abstained from using the MDS – instead, we postponed it in time
(MDS was later used in Article D). We see GTA and quantitative methods as the
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methods suitable for different stages of the recursive process. We first generate
observations and hypotheses free from assumptions and state-of-the-art bias, and
only afterwards we validate them with the quantitative methods.

1.5 List of Articles

The thesis is based on 10 articles, out of which 9 have been either published or
accepted for publication in the peer-reviewed publication channels, while the re-
maining 1 is awaiting the peer-review at a scientific journal. The publications are
listed with alphabet-based enumeration, based on their occurrence in the the-
sis narrative. The articles come in four types: qualitative research, quantitative
research, review and position paper. The experiments and/or visual demonstra-
tions in the articles are based on three different types of visual stimuli: physical
tangible objects the observers have been able to interact with, synthetic images
generated with computer graphics and displayed on a monitor, and RGB pho-
tographs displayed on a monitor. The types of articles and the relation among
them are illustrated in Figure 1.4. The content of the articles is summarized in
Chapter 3.

The following articles are included in the thesis. Journal articles are shown in
boldface, while conference articles are shown in regular typeface:

Article A Davit Gigilashvili, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Mar-
ius Pedersen (2018). “Behavioral investigation of visual appearance as-
sessment.” In: Color and Imaging Conference. Society for Imaging Sci-
ence and Technology, pp. 294–299 DOI: https://doi.org/10.2352/ISSN.
2169-2629.2018.26.294

Article B Davit Gigilashvili, Jean-Baptiste Thomas, Marius Pedersen, and Jon
Yngve Hardeberg (n.d.). “On the appearance of objects and materi-
als: Qualitative analysis of experimental observations.” In: Accepted
for publication in the Journal of the International Colour Association
(JAIC), 33 pages

Article C Davit Gigilashvili, Jean-Baptiste Thomas, Marius Pedersen, and Jon Yngve
Hardeberg (2019). “Perceived Glossiness: Beyond Surface Properties.” In:
Color and Imaging Conference. Society for Imaging Science and Technology,
pp. 37–42 DOI: https://doi.org/10.2352/issn.2169-2629.2019.27.8

Article D Davit Gigilashvili, Weiqi Shi, Zeyu Wang, Marius Pedersen, Jon Yngve
Hardeberg, and Holly Rushmeier (2021). “The Role of Subsurface Scat-
tering in Glossiness Perception.” In: ACM Transaction on Applied Per-
ception 18.3, 10:1–10:26 DOI: https://doi.org/10.1145/3458438

Article E Davit Gigilashvili, Philipp Urban, Jean-Baptiste Thomas, Marius Peder-
sen, and Jon Yngve Hardeberg (n.d.). “The Impact of Optical and Ge-
ometrical Thickness on Perceived Translucency Differences.” In: Under
review in a journal, 13 pages

Article F Davit Gigilashvili, Lucas Dubouchet, Marius Pedersen, and Jon Yngve Hard-
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eberg (2020). “Caustics and Translucency Perception.” In: Material Appear-
ance 2020, IS&T International Symposium on Electronic Imaging. Society for
Imaging Science and Technology, 033:1–033:6 DOI: https://doi.org/10.
2352/ISSN.2470-1173.2020.5.MAAP-033

Article G Davit Gigilashvili, Marius Pedersen, and Jon Yngve Hardeberg (2018).
“Blurring impairs translucency perception.” In: Color and Imaging Con-
ference. Society for Imaging Science and Technology, pp. 377–382 DOI:
https://doi.org/10.2352/ISSN.2169-2629.2018.26.377

Article H Davit Gigilashvili, Midori Tanaka, Marius Pedersen, and Jon Yngve Harde-
berg (2020). “Image Statistics as Glossiness and Translucency Predictor in
Photographs of Real-world Objects.” In: 10th Colour and Visual Computing
Symposium 2020 (CVCS 2020). Vol. 2688. CEUR Workshop Proceedings,
pp. 1–15

Article I Davit Gigilashvili, Jean Baptiste Thomas, Jon Yngve Hardeberg, and Marius
Pedersen (2020). “On the Nature of Perceptual Translucency.” In: 8th An-
nual Workshop on Material Appearance Modeling (MAM2020). Eurographics
Digital Library, pp. 17–20 DOI: https://doi.org/10.2312/mam.20201141

Article J Davit Gigilashvili, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and
Marius Pedersen (n.d.). “Translucency perception: A review.” In: Ac-
cepted for publication in the Journal of Vision, 45 pages

Two of the above-mentioned works won the accolades. Namely, Article C has
received the 2019 Best Student Paper Award at the 27th Color and Imaging Con-
ference. Article F received the Best Paper Award at Material Appearance 2020
conference, IS&T International Symposium on Electronic Imaging.

1.6 Supporting Articles

In addition to 10 above-mentioned articles, 5 additional articles have been pub-
lished within the course of the PhD program. Although those articles are not in-
cluded as a part of the thesis, they play a supporting role. They have facilitated
progress through the overall project and provided additional insight into the data.
Therefore, we list them below, as we believe that some readers might find them
interesting:

Article K Davit Gigilashvili, Jean-Baptiste Thomas, Marius Pedersen, and Jon Yn-
gve Hardeberg (2019). “Material appearance: ordering and clustering.”
In: Material Appearance 2019, IS&T International Symposium on Electronic
Imaging. Society for Imaging Science and Technology, 202:1–202:6 DOI:
https://doi.org/10.2352/ISSN.2470-1173.2019.6.MAAP-202

Article L Davit Gigilashvili, Philipp Urban, Jean-Baptiste Thomas, Jon Yngve Harde-
berg, and Marius Pedersen (2019). “Impact of Shape on Apparent Translu-
cency Differences.” In: Color and Imaging Conference. Society for Imag-
ing Science and Technology, pp. 132–137 DOI: https://doi.org/10.2352/
issn.2169-2629.2019.27.25



12 Gigilashvili: Translucency and Appearance

Article M Davit Gigilashvili, Fereshteh Mirjalili, and Jon Yngve Hardeberg (2019). “Il-
luminance Impacts Opacity Perception of Textile Materials.” In: Color and
Imaging Conference. Society for Imaging Science and Technology, pp. 126–
131 DOI: https://doi.org/10.2352/issn.2169-2629.2019.27.24

Article N Aditya Sole, Davit Gigilashvili, Helene Midtfjord, Dar’ya Guarnera, Giuseppe
Claudio Guarnera, Jean-Baptiste Thomas, and Jon Yngve Hardeberg
(2019). “On the acquisition and reproduction of material appearance.” In:
International Workshop on Computational Color Imaging. Springer, pp. 26–
38 DOI: https://doi.org/10.1007/978-3-030-13940-7_3

Article O Ana Amirkhanashvili and Davit Gigilashvili (2020). “Color Naming and
Communication of Color Appearance: Is it Different for Native Georgian
Speakers?” In: 10th Colour and Visual Computing Symposium 2020 (CVCS
2020). Vol. 2688. CEUR Workshop Proceedings, pp. 1–15

Article K is based on the same experiment as Articles A and B, providing
analysis of appearance-based clustering and initiating the discussion on poten-
tial appearance ordering systems. It is a preliminary work and the observations
collected from Article K have been used for generating research hypotheses and
strengthening the conclusions of Article B. However, it is not included as a part
of the thesis as it neither tests any particular hypothesis, nor provides a compre-
hensive report of qualitative observations. The content of Article L is to a large
extent covered in Article E. Article M tested the hypothesis proposed in Article B
that opacity does not imply the complete absence of transmission. However, the
specific type of visual stimuli (textiles) and their context put the work out of the
scope of this thesis. Article N revisits Articles A and G and puts them in context of
the general problem of material appearance acquisition and reproduction. Arti-
cle O has explored communication of appearance - namely, how native Georgian
speakers communicate color appearance in comparison with English speakers.

1.7 Ethical Considerations

Conducting psychophysical and social experiments imply collection of personal
data, which must be processed in an ethical and responsible manner. The study
was conducted with full adherence to research ethics, as well as national and in-
ternational legal requirements. Participation was voluntary and all participants
provided a priori written consent. Demographic information (age, gender, profes-
sional background etc.) has been collected and treated anonymously and has not
been used for any purpose other than scientific research. The work reported in Ar-
ticles A and B implied collection of sensitive personal information (videotapes of
face and voice). Therefore, the study was reported to and approved by the NSD -
Norwegian Centre for Research Data (approved project number 59754). The data
is to be fully anonymized as soon as Article B clears the peer review.
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Figure 1.4: The figure explains how the articles are related to each other and
where they fit in the narrative of the thesis.
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1.8 Thesis Organization

The thesis consists of two parts. Part I consists of the umbrella chapters with the
general overview of the work carried out, while the 10 articles mentioned above
are appended in Part II. The Introduction chapter covers the motivation of the
work, research objectives to be reached, research questions to be answered, and
methodologies applied to answer these questions.

The background chapter provides definitions of appearance and its attributes,
a brief discussion of qualitative appearance models which are based on philosoph-
ical rationale rather than experimental data. As we primarily focus on translu-
cency and gloss, the background chapter also summarizes the optical aspects of
translucency and gloss, followed by the state-of-the-art in translucency and gloss
perception research.

The third chapter is the summary of the contributions, where the major take-
aways from each of the ten articles are summed up. In Chapter 4 we discuss the
results, answer the research questions raised in Section 1.3 and analyze how the
findings could refine and strengthen the qualitative model proposed in Article B.
In the same chapter, we also analyze the limitations of the work and the shortcom-
ings of the articles that have been revealed in the course of the doctoral project.
In Chapter 5, we draw conclusions, which is followed by the outline of the future
work and the overview of the short and long term perspectives in Chapter 6.



Chapter 2

Background

2.1 Definition of Appearance and its Attributes

2.1.1 Appearance and Total Appearance

According to the ASTM - Standard Terminology of Appearance (ASTM E284-17
(2017)), appearance of an object is "the collected visual aspects of an object or a
scene", while perceived appearance is defined as "the visual perception of an ob-
ject, including size, shape, color, texture, gloss, transparency, opacity, etc., separately
or integrated." Appearance is a complex phenomenon that is far from being com-
prehensively understood. Considering its complex nature, appearance is usually
broken down into various attributes which entail just particular dimensions of
appearance. The CIE1 defines color, gloss, translucency and texture as four ma-
jor appearance attributes (Eugène (2008) and CIE (2006)). Pointer (2003) ar-
gues that while appearance might imply description of color information only,
total appearance requires "a description of the shape, size, texture, gloss and any
other apparent quality". Appearance has long been a point of scholarly interest,
Hunter and Harold (1987) providing the first significant summary of appearance
measurement techniques extending Hunter’s momentous contributions to under-
standing different appearance attributes (Hunter (1937)). Although the title "The
Measurement of Appearance" implies some extent of total appearance measure-
ment, Hunter and Harold primarily focus on individual attributes, with color be-
ing the major focus of the textbook. Discussion of total appearance is based on
a very constrained qualitative analysis. According to the authors, the objective of
appearance measurement is "to obtain numbers that are representative of the way
objects and materials look." (Hunter and Harold (1987)) However, they consider
that comprehensive analyses of the total appearance is impossible and impractical
and argue that "measurements of specific attributes of appearance can be exceedingly
useful and economically important". This work is not only far from modeling total
appearance, but also provides little guidance on the correlation between metro-

1Commission internationale de l’éclairage, The International Commission on Illumination - an
international organization dealing with color and illumination-related aspects.

15



16 Gigilashvili: Translucency and Appearance

logical and perceptual aspects of it.
It is very unlikely that the four attributes of appearance are independent. We

have observed that appearance attributes impact each other and the same has
been previously proposed by Eugène (2008) as well. There has been an extensive
amount of work on appearance in computer graphics, vision, and metrology, the
vast majority of them focusing on very narrow specific cases and providing quan-
titative analysis of particular appearance attributes (Hunter (1937), Motoyoshi
(2010), Motoyoshi et al. (2007), Nicodemus (1965), Nishida and Shinya (1998),
Xiao et al. (2014), Chowdhury et al. (2017), and Fleming and Bülthoff (2005)),
and to the best of our knowledge, there is no comprehensive model and termi-
nology standard for total appearance. However, there have been some attempts
to debunk the concept of total appearance.

Some aspects of total appearance have been discussed by Hutchings (1995a).
His work is "an attempt to emphasize the continuity of science and art, helping prac-
titioners of these traditionally disparate disciplines work together to achieve a greater
understanding and control of the visual images we create and manage in our crowded
world." He thinks that appearance communication "can be based on a quantitative
understanding of the basic perceptions of form, colour, translucency, gloss, and move-
ment." He describes a structure of the factors affecting total appearance (Hutch-
ings (1995a)):

• Appearance Images (e.g. gestalt principles, recognition, emotional and sen-
sory responses)
• Immediate environment factors (e.g. geographical, social, medical)
• Inherited and learned responses (e.g. culture, memory, fashion)
• Receptor mechanisms (color vision, aging effects, adaptation, other senses)
• Design (e.g. aesthetics of paintings, performing arts)
• Object’s properties (e.g. optical properties, like spectral reflectance; shape

and size; movement and temporal aspects)
• Light source properties (e.g. illumination spectrum and direction)

Hutchings (1999) takes the total appearance concept up to the level of a scene
understanding and defines it as follows: "total appearance combines a description
of the appearance of each element of a scene. . . with a personal interpretation of
the total scene in term of its recognition and expectation." However, Eugène (2008)
also highlights that CIE recommends the following definition: "the total appear-
ance points out the visual aspects of objects and scenes". He considers appearance
measurement challenging, because it involves subjective judgment and argues
that "a goal of making measurements that ensures appropriate quality control in
the manufacturing process is probably achievable, but the measurement process will
be multidimensional, product specific and probably application specific".

Choudhury (2014) has also reviewed total appearance as a concept and de-
scribed a four-step flow of total appearance from molecular composition of an
object to the high level cognitive interpretation of appearance by an observer.

Despite these qualitative attempts to put total appearance perception into
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some system, all above-mentioned works are theoretical reasoning without be-
ing based on particular experimental observations and the behavior of humans.

Translucency and gloss are appearance attributes that play a significant role in
total appearance. As they remain relatively understudied unlike color, we decided
to investigate the perception of these two attributes. These terms can have dif-
ferent meanings to different people and in different industries (Pointer (2003)).
Thus, in the two following subsections we present and discuss the definitions of
the terms translucency and gloss, which should be used for interpreting this work.
Afterwards, in the subsequent sections we provide a brief state-of-the-art summary
on translucency and gloss perception, respectively.

2.1.2 Definition of Translucency

Translucency appearance is a result of stimuli emitted by an object possessing
some degree of subsurface light transport. Translucency relates to spatial variation
of color, which takes place "due to the relationship between the light transmitted,
the light reflected, and the light scattered by the body of the object" (Pointer (2003)).

According to Eugène (2008), "translucency occurs between the extremes of com-
plete transparency and complete opacity... If it is possible to see only a ”blurred” image
through the material (due to some diffusion effect), then it has a certain degree of
transparency and we can speak about translucency". Gerbino et al. (1990) make
a more clear distinction between transparency and translucency, postulating that
"transparent substances, unlike translucent ones, transmit light without diffusing it."
ASTM - Standard Terminology of Appearance (ASTM E284-17 (2017)) defines
translucency as "the property of a specimen by which it transmits light diffusely
without permitting a clear view of objects beyond the specimen and not in contact
with it.". While technical definitions usually connote subsurface scattering and re-
sulting blur of the see-through image, translucent as an adjective in everyday use
can be also used to describe transparent and lucid media (Merriam-Webster Dictio-
nary (n.d.)). The CIE (2006) highlights that "translucency is a subjective term that
relates to a scale of values going from total opacity to total transparency." We have
observed a high degree of subjectivity in the interpretation of the term (Articles
A, B and E), and discussed potential challenges related to this in Article I.

2.1.3 Definition of Gloss

Gloss is usually associated with surface shininess and is perceived separately from
color (Pointer (2003)); According to CIE, gloss is "the mode of appearance by which
reflected highlights of objects are perceived as superimposed on the surface due to
the directionally selective properties of that surface" (CIE (1987) cited in Eugène
(2008)) and "gloss perception is particularly depending on the way that light is re-
flected from the surface of the object at and near the specular direction." (Eugène
(2008)) ASTM Standard Terminology of Appearance (ASTM E284-17 (2017)) de-
fines gloss as "angular selectivity of reflectance, involving surface-reflected light, re-
sponsible for the degree to which reflected highlights or images of objects may be seen
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as superimposed on a surface." In his classic work, Hunter (1937) postulated six
different types of gloss:

1. Specular gloss - "brilliance of specularly reflected light, shininess"; (Fig-
ure 2.1(a))

2. Sheen - "shininess at grazing angles"; (Figure 2.1(b))
3. Contrast gloss - "contrast between specularly reflecting areas and other

areas"; (Figure 2.1(c))
4. Absence-of-bloom gloss - "absence of smear or excess semi-specular reflec-

tion adjacent to reflected highlights and images"; (Figure 2.1(d))
5. Distinctness-of-reflected-image gloss - "distinctness and sharpness of re-

flected images"; (Figure 2.1(e))
6. Absence-of-surface-texture gloss - "surface evenness, absence of texture,

indicated by difficulty of recognizing presence of surface." (Figure 2.1(e))

He proposed that glossiness might be correlated with surface specular re-
flectance and concluded that reflectance distribution functions "offer the only
means by which the reflectance properties of surfaces responsible for their glossiness
may be completely specified." This traditional definition that gloss is surface-specific
quality is challenged in Articles C and D.

2.2 Measurement, Modeling and Simulation of Appear-
ance

When discussing the measurement of appearance, it is important to make a dis-
tinction between soft metrology and hard metrology. Soft metrology implies us-
ing human response to determine an objective property of the target (Pointer
(2003)). In order to study the correlation between physical properties and percep-
tion, proper generation of visual stimuli based on these properties is of the utmost
importance. The physical accuracy of the rendering in computer graphics is con-
strained by the accuracy of the input physical material properties, dubbed as "the
input problem" by Rushmeier (1995). This makes accurate instrumental measure-
ment of these optical properties (hard metrology) important. The most compre-
hensive and up-to-date survey regarding the acquisition of the optical properties
of translucent materials is done by Frisvad et al. (2020).

A pivotal contribution to modeling light and matter interaction has been made
by Nicodemus et al. (1977) who proposed bidirectional distribution functions
characterizing macro-level interaction between light and materials, and that come
in form of BSDF (Bidirectional Scattering Distribution Function) and BSSRDF
(Bidirectional Subsurface Scattering Distribution Function). The fundamental dif-
ference between the two is that the BSDF is a local approximation of BSSRDF,
which assumes that incidence and emergence points are the same, while BSS-
RDF considers light globally, i.e. light can be incident at one point and emerge
from another point. BSDF is a combination of BRDF (Bidirectional Reflectance
Distribution Function) and BTDF (Bidirectional Transmittance Distribution Func-
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Figure 2.1: Hunter identified six types of gloss. (a) specular gloss - shininess
due to the mirror reflection (i.e. incident (I) and reflected (S) rays form identical
angles with the surface normal); (b) sheen (SH) - shininess on different gazing
angles (other than specular); (c) contrast gloss - the contrast between specular
(S) and other areas (D); (d) absence-of-bloom gloss - absence of haze or smear
(B) in the areas adjacent to specular highlights (S); (e) distinctness-of-reflected-
image gloss - distinctness and sharpness of reflected image; absence-of-surface-
texture gloss - inability to detect surface irregularities in the reflected image
(surface appears perfectly smooth).

tion). BRDF characterizes the light that is reflected at the point of incidence, i.e.
re-emerges towards the same hemisphere it has arrived from, while BTDF charac-
terizes the light that re-emerges on the opposite side. BSDF is usually enough to
approximate the light and matter interaction when subsurface scattering is negli-
gible. However, unlike BSSRDF, it cannot account for scattering inside the volume.
BSSRDF is eight-dimensional (four spatial and four angular) and it provides the
relation between incident radiant flux at a given point xi from direction −→ωi and
outgoing radiance at another point xj towards direction −→ωj. A simplified represen-
tation of these functions can be found in Figure 2.2.

Instrumental measurement of BSDF is conceptually more straightforward than
that of BSSRDF. Frisvad et al. (2020) discuss goniometric techniques as per ASTM
Standard (ASTM E2387-05 (2011)). However, image-based techniques have also
been demonstrated (summarized in Dorsey et al. (2010)). The principle in gonio-
metric measurement is the following (ASTM E2387-05 (2011)): a sample object
is illuminated from a given direction, while the detector moves and measures how
emerging light intensity varies from angle to angle. Afterwards, the illumination
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BRDF

BTDF

BSDF BSSRDF

Figure 2.2: Representation of BSDF and BSSRDF. Orange arrow corresponds to
incident light, black arrows signify surface scattering, while blue arrows corre-
spond to subsurface light transport. Surface scattering is characterized by BRDF,
while BTDF describes transmission, when scattering inside the medium is negli-
gible. The BRDF and BTDF constitute BSDF which is an approximation of more
complex BSSRDF. In addition to light and matter interaction characterized by
BSDF, BSSRDF also accounts for multiple scattering events taking place inside
the material. In BSSRDF, light incident at one point of a surface can emerge from
a different point on any side of the object. If the penetration depth is negligibly
small due to high absorption and scattering, light that re-emerges back from non-
specular areas is in some scenarios approximated as "diffuse reflectance". BRDF is
usually thought to be descriptive of glossiness. However, we challenge this opin-
ion in Articles C and D

.

angle is changed by moving either the light source or the object. BRDF is mea-
sured in reflection setup (detector and illuminant are in the same hemisphere),
while BTDF is measured in transmission setup (detector and illuminant are in dif-
ferent hemispheres). The process is sketched in Figure 2.3. A detailed review of
the techniques and instruments for the BRDF acquisition can be found in the work
by Leloup et al. (2008).

On the other hand, the high dimensional nature of BSSRDF makes it virtu-
ally infeasible to apply the same principle to it. Therefore, according to Frisvad
et al. (2020), neither a standardized sampling of directions, nor respective equip-
ment exists. BSSRDFs are usually measured using camera-based techniques, as
proposed by Jensen et al. (2001) or such as proposed by Gkioulekas et al. (2013).
Piadyk et al. (2020) proposed a light field imaging system for BSSRDF acquisition
and built a low-cost prototype setup.
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Detector moves to record
reflectance at different angles

Light source can rotate to
change the illumination angle

Alternatively, the sample
can be rotated to change

the illumination angle

The sample can move
horizontally to capture

spatially varying properties

Figure 2.3: A schematic representation of goniometric measurement of material
properties in reflectance geometry. For a fixed illumination geometry, the detector
moves and quantifies reflected energy at different angles. Afterwards, illumina-
tion geometry is changed by rotation of either a light source, or a sample. While
this method measures material property at a given point, the sample can addi-
tionally be displaced horizontally as well, in order to capture spatially varying
properties (properties across different points on the surface).

It is worth noting that as BSSRDF includes a spatial component, it is a function
of object’s shape and geometry. Therefore, in addition to intrinsic optical proper-
ties, the acquisition of object’s geometry is also of vital importance. However, cap-
turing the shape of translucent materials to date remains a challenging task for 3D
scanners, and various invasive techniques have been proposed as workarounds,
such as covering with a layer of diffuse opaque dust in order to "turn off subsurface
scattering". (Goesele et al. (2004))

The seminal work by Jensen et al. (2001) pioneered using BSSRDF in com-
puter graphics, which remarkably advanced translucency rendering as well as
translucency perception studies. The authors simplified the problem by assum-
ing that when the light propagates through a homogeneous translucent medium
and scatters multiple times, diffusion theory can be applied. Instead of addressing
all scattering events individually, they use diffusion equation and approximate the
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subsurface scattering with a single scattering term. In other words, when a photon
gets scattered many times, its directionality becomes somewhat random (however,
this might not work well for thin objects as observed by Gkioulekas et al. (2013)
and Xiao et al. (2014)). The model is called the classical dipole model (Jakob
(2010)). The parameters of the BSSRDF are the index of refraction, scattering
and absorption coefficients, and the scattering phase function which defines the
directionality of the scattered light. Nowadays, a broad range of techniques ex-
ists to avoid dipole-type of approximations (Jensen et al. (2001)) and to model
and simulate light and matter interaction in an accurate manner, which by Fris-
vad et al. (2020) is divided into roughly two categories: radiometric models and
field models. The latter is applied when a rigorous description of the electromag-
netic field and e.g. solving Maxwell’s equations are needed. This could be the case
when replication of the wave optics phenomena (e.g. interference and diffraction)
is desired. On the other hand, the problem can be approached in the radiometric
domain and light and matter interaction can be modeled as a variation of radiant
energy due to absorption and scattering phenomena. The process entails mod-
eling coefficients of absorption and scattering, as well as scattering phase func-
tion, and solving the radiative transfer equation (Chandrasekhar (1960)). One of
the most popular methods for solving the radiative transfer equation is the Monte
Carlo method. The Monte Carlo method is a probabilistic approach. For instance,
Monte Carlo ray tracing entails following light rays through the scene. Whether
the ray is absorbed or scattered inside the medium, or whether it is reflected or
refracted at the boundary, is decided stochastically. Monte Carlo methods have
been broadly used in appearance perception research to generate translucent vi-
sual stimuli for psychophysical experiments (e.g. Urban et al. (2019), Gigilashvili
et al. (2019), Xiao et al. (2014), and Gkioulekas et al. (2015)).

While the above-mentioned techniques attempt to acquire and model physi-
cal material properties of translucent objects, no technique has been proposed to
date for measuring overall perceptual qualities instrumentally. There are multiple
application-specific instruments on the market for measuring distinct visual at-
tributes related to transmission-related properties and appearance (BYK Gardner
GmbH. Haze-gard Transparency Transmission Haze Meter (n.d.)). Two most com-
mon attributes studied in relation to translucency are clarity - "clarity, defined in
terms of the ability to perceive the fine detail of images through the material", and
haze - "defined as a property of the material whereby objects viewed through it appear
to be reduced in contrast" (Pointer (2003)). Haze is usually associated with wide
angle scattering (when the angle between incident illumination and transmitted
light is more than 2.5 degrees, according to the ASTM standard (ASTM D 1003
(2003)) of light that causes blur and loss of contrast of the see-through image,
while clarity usually results from narrow angle (less than 2.5 degrees) scattering.
However, it is important to highlight that no clear link between translucency as an
appearance attribute, on the one hand, and clarity and haze, on the other hand,
has been established. Pointer (2003) argues that "the concept of translucency can
perhaps be regarded as a descriptor of the combined effects defined above as clarity
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and haze. This implies that it is a more general term and, perhaps, should be limited
to use as a subjective term, keeping clarity and haze as descriptors of objective, or
measurable, correlates." This subjectivity can raise the question, whether translu-
cency is the right attribute to study and to be measured at all. However, we need to
highlight two factors: first of all, neither clarity, nor haze alone can fully character-
ize the complexity of subsurface light transport properties, and it is translucency
that encapsulates the effects of both combined; secondly, the definitions of clar-
ity and haze to some extent imply the visibility of the background image through
the object. However, oftentimes it is not possible to see the background through
the objects and materials, and the luminance variation on the object’s body is the
sole indicator of subsurface light transport. Therefore, the appearance character-
istics of the objects made of, for example, marble or wax, are better conveyed by
translucency.

2.3 The Gap between Physics and Perception

Pointer (2003) asserts that appearance consists of three aspects: physical - spatial
and spectral distribution of the light emerging from an object, which depends on
its optical properties; physiological - the stimulation of the HVS by this light, the
sensory response; and psychological - the ability to interpret the sensed stimuli
"thanks to long training". Despite the advance in the acquisition (Frisvad et al.
(2020)) and modeling (Dorsey et al. (2010)) of the optical properties of mate-
rials, it remains largely unknown how these objective physical properties from
the scene relate to what people perceive. Advance in computer graphics makes
virtual prototyping and creating digital twins possible. However, the knowledge
gap between physical properties and perception limits our ability to generate de-
sired visual effects from scratch, and to predict and replicate appearance across
different objects, scales and observation conditions. This motivates the attempts
of soft metrology, particularly relying on psychophysics - "the study of the functions
relating the physical measurements of stimuli and the sensations and perceptions the
stimuli evoke." (ASTM E284-17 (2017)). This explains the ever increasing interest
in gloss and translucency perception research in modern vision science and the
broad range of industries, such as 3D printing.

2.4 Translucency Perception

We want to make it clear that in this thesis we are addressing translucency and not
transparency. As already mentioned above, it is usually accepted that ”transparent
substances, unlike translucent ones, transmit light without diffusing it.” (Gerbino
et al. (1990)) Unlike translucency perception, mechanisms of transparency per-
ception are relatively well-explored and understood. However, transparency and
translucency are not mutually exclusive and a given visual stimulus might to some
extent evoke perception of the both attributes.
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Up until recently, studies on light transmittance have been limited to trans-
parency perception, modeling an object as a thin filter. The classical studies in this
direction have been done by Metelli who proposed the episcotister model (Metelli
(1974)) which models transparency as a linear color fusion between opaque part
of the rotating circle and background seen through its cut-out sector (refer to
Figure 2.4). Further studies paid attention that the spatial arrangement of the lu-
minance intensities at the filter-background boundaries, called X-junctions (Beck
and Ivry (1988) and Gerbino et al. (1990)), could assist the HVS in inferring ma-
terial transmittance properties (refer to Figure 2.5). While Metelli’s model implies
an additive color mixture to model transparency, filter models have also been pro-
posed as an alternative approach (Beck et al. (1984), Faul and Ekroll (2002), and
Faul and Ekroll (2011)). In these models the transparent overlay is presented as
a filter that reflects part of the light at its surface (additive component), while
the rest gets refracted and continues propagation through the filter, where it can
get absorbed depending on the filter’s thickness and absorbance (subtractive color
mixture). Faul and Ekroll (2011) demonstrated that under the diffuse illumina-
tion the surface reflection of the filter might evoke the perception of translucency
even without subsurface scattering, as the background contrast is decreased and it
serves as a cue to translucency. Singh and Anderson (2002) studied thin transpar-
ent filters that scatter light that propagates through them. They proposed that blur
and apparent contrast of the background image are the cues to translucency. How-
ever, if the magnitude of scattering is large enough, the background is not visible
through the object and transparency cues, such as X-junctions, are absent. This
means that transparency perception models simply cannot explain the perception
of translucency in highly scattering media, which gave birth to translucency per-
ception research as an independent direction.

Translucency depends on numerous intrinsic and extrinsic properties of an
object and scene. The most extensive survey accounting for subsurface scatter-
ing in 3D objects has been carried out by Fleming and Bülthoff (2005). They
studied the image cues affecting translucency perception and argue that the hu-
man visual system is not capable of inverting optics, but rather relies on simple
image cues and statistics to judge translucency. They review a broad range of fac-
tors affecting the perceived translucency, like specular highlights, color, object’s
scale, image contrast and illumination direction. It is worth mentioning that their
results are limited to a small number of rendered images with objects of sim-
plified geometrical structure. The impact of illumination direction on perceived
translucency was studied further by Xiao et al. (2014), who conclude that the
perceived degree of translucency strongly depends on the illumination direction
and most materials look more translucent when they are back-lit, rather than in
case of front-side illumination. They introduce the concept of translucency con-
stancy, i.e. an ability of human-beings “to estimate translucency in a consistent way
across different shapes and lighting conditions” and make a counter-intuitive find-
ing that the objects with complex geometric shapes demonstrate a higher degree
of translucency constancy failure, even though complex objects provide more vi-
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Figure 2.4: The linear algebraic modeling of transparency has been proposed
by Metelli (1974). The episcotister is an opaque disc with a sector cut out (left
image). When it rotates fast enough, the background and disc colors fuse in a
linear fashion and the disc is perceived as a thin transparent film overlaid over
the background (right image). The perceived color of the disc depends on the
color of the opaque part, as well as the angle of the see-through sector (blue
arrow).

sual cues (Fleming and Bülthoff (2005) and Xiao et al. (2014)) about translu-
cency. Gkioulekas et al. (2013) have shown that translucency has at least two
perceptual dimensions and they are impacted by the scattering phase function.
The sharpness of the surface details is another factor that has been demonstrated
to be impacting perceived translucency (Xiao et al. (2020) and Sawayama et al.
(2019)). Motoyoshi (2010) has approached the question from the perspective of
image structure. The author has shown that luminance contrasts within distinct
spatial frequency bands of non-specular object regions carry relevant informa-
tion on translucency appearance, and low luminance contrast in these regions is
usually an indicator of translucency. Nagai et al. (2013) also identified that par-
ticular image regions are “hot spots” for translucency perception and the HVS
relies on local luminance statistics in those regions. Interestingly, the authors re-
ported that the informative regions observers have relied on are not universal,
and they vary from person to person. Marlow et al. (2017) argue that the lack
of co-variance between shape and shading might be the cue the HVS relies on
for distinguishing translucent and opaque materials. They have even been able to
evoke the illusory perception of translucency with an optically opaque material by
manipulation of the diffuse light field which produced the shading non-covariant
with surface geometry. This means that the perception of translucency might be
inherently interconnected with shape perception. Marlow and Anderson (2021)
have recently shown that both translucency and shape depend on the relations
among the subsurface scattering, the specular reflections and the self-occluding
contours, as all of these three factors are rooted in the same geometrical property
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Figure 2.5: X-junctions, i.e. the relation between luminance intensities on the
bounding regions, have been shown to be definitive for the perception of trans-
parency. S-shaped junction (left image) creates a bi-stable image, where both
figures can be perceived as being on top. This can be attributed to the fact that
the overlapping polygon intensity is the mixture of the two, while on the back-
ground they both look solid opaque white and black and neither of them looks to
be fused with the light gray background, which does not provide enough cue to
understand which one is on the top and which one is on the bottom. Crisscross
junction (the middle image) does not produce the impression of transparency,
because the overlapping region is lighter than both of the figures, which makes
it physically impossible to be the mixture of the two. S-shaped junction (right
image) the diagonal figure looks overlaid over the horizontal black figure. In con-
trast with the left image (S-shaped junction), the rest of the diagonal figure is not
pure white, it looks fused with the light gray background, which makes our visual
system deduce that this is the transparent one and not the horizontal solid black
object, which seemingly does not have a contribution from the background.

- the 3D surface curvature. This means that the HVS might be assessing the shape
and translucency together from the combination of the same image cues. Finally,
Chadwick et al. (2019) have recently demonstrated anatomical independence of
translucency perception from that of color and texture. They showed that damage
in cortical areas responsible for color and texture processing does not compromise
the ability to perceive translucency. Despite those attempts, the exact mechanisms
of translucency perception remain largely unidentified. A comprehensive review
of the knowledge status in translucency perception research is given in Article J.

2.5 Gloss Perception

The knowledge about gloss perception mechanisms also remains limited. Various
image cues and statistics, such as skewness of luminance histogram (Motoyoshi
et al. (2007) and Landy (2007)), contrast (Pellacini et al. (2000), Thomas et al.
(2017), Marlow et al. (2012), and Marlow and Anderson (2013)), sharpness (Pel-
lacini et al. (2000), Marlow et al. (2012), and Marlow and Anderson (2013)) and
coverage area (Beck and Prazdny (1981), Marlow et al. (2012), Marlow and An-
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derson (2013), and Kerrigan and Adams (2013)) of the highlights have been pro-
posed as potential glossiness cues. However, similar statistics might be found in
the images of some non-glossy materials as well, meaning that those findings are
subject to multiple photo-geometric constraints (Anderson and Kim (2009), Kim
et al. (2011), and Marlow et al. (2011)). Pellacini et al. (2000) have identified
two perceptual dimensions of gloss that are similar to contrast and distinctness-of-
image. They concluded that "darker objects look glossier than lighter ones". Toscani
et al. (2020) proposed that surface reflection has at least three perceptual dimen-
sions: lightness, gloss, and metallicity.

Gloss perception is a complex psychophysical process that relies on the analy-
sis and interpretation of several image cues and involves some degree of subjectiv-
ity. Wendt et al. (2010) have demonstrated that color, motion and disparity cues
are used in the process, both separately and in combination. However, different
observers prioritize different cues. Leloup et al. (2012) studied gloss perception
using the physical objects and identified a very interesting dichotomy in the ob-
servers’ approaches. They found that some observers prioritize the distinctness
of the reflected image as a cue to glossiness, while others principally rely on the
luminance contrast between the specular and diffuse areas.

Leloup et al. (2010) studied physical samples and reported that the perceived
contrast is a better correlate of the perceived gloss than the instrumentally mea-
sured specular gloss, while the entire process is strongly impacted by the complex-
ity and geometry of the illumination. The latter observation has been consistent
with the claims by Fleming et al. (2003), who proposed that gloss depends on
the illumination, and the matching accuracy of the surface reflectance proper-
ties, as well as the magnitude of the perceived gloss, is higher under a realistic
complex illumination. Later, Leloup et al. (2011) introduced a perceptual metric
that incorporates both surface and illumination characteristics, and predicts per-
ceived glossiness based on the luminance measurements in the specular and non-
specular areas. On the other hand, Obein et al. (2004) found that observers are
able to compensate for the changes in the stimuli induced by the varying illumina-
tion geometry and hence, the HVS to some extent demonstrates gloss constancy,
similarly to the color constancy. Recently, Faul (2019) also reported the high gloss
constancy across the illumination conditions, and argued that the strong depen-
dence of gloss on the illumination in the previous studies can be ascribed to the
lack of the Fresnel effects in the visual stimuli and the simplistic shapes used in
the experiments (spheres (Fleming et al. (2003)) and flat patches (Leloup et al.
(2010) and Leloup et al. (2011)) had been used by the other authors). Gloss con-
stancy is likely to be related to the ability of the HVS to identify and segment the
specular and diffuse reflection components in the proximal stimulus. One of the
instruments the HVS proposedly relies on for segmentation is the binocular vision
– as the binocular disparity and the binocular depth cues facilitate isolation of
the object body (diffuse component) from the specular highlights (Wendt et al.
(2008)) and the mirror-reflection image of the immersing environment (Obein
et al. (2004)). Gloss constancy is, however, limited and in addition to illumina-
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tion (Fleming et al. (2003) and Olkkonen and Brainard (2011)), the perceived
magnitude of glossiness can be also affected by object’s shape (Vangorp et al.
(2007), Olkkonen and Brainard (2011), and Marlow et al. (2012)), color (Nishida
et al. (2008) and Wendt et al. (2010)) and motion (Wendt et al. (2010), Sakano
and Ando (2010), and Doerschner et al. (2011)). Cheeseman et al. (2021) have
recently studied sensitivity to the changes in the specular reflectance and found
that the visual sensitivity to the gloss differences is lower when the magnitude of
the specular reflection is high.

Finally, Ged et al. (2010) have noted that gloss contributes to material identi-
fication and discrimination. Additionally, they highlighted the importance of ob-
serving the materials from multiple angles, as the surface reflectance and the re-
sulting intensities in the proximal stimulus are angle-dependent. A comprehensive
review on gloss perception can be found in works by Chadwick and Kentridge
(2015) and Leloup et al. (2014).



Chapter 3

Summary of Contributions

Ten manuscripts included as a part of the thesis are summarized in this chapter.
We briefly summarize the objectives, methods and major takeaways of each work.
For further details, refer to the respective manuscripts in Part II.

3.1 Article A: Behavioral investigation of visual appear-
ance assessment

Davit Gigilashvili, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Mar-
ius Pedersen (2018). “Behavioral investigation of visual appearance assess-
ment.” In: Color and Imaging Conference. Society for Imaging Science and
Technology, pp. 294–299

3.1.1 Objectives

While the psychophysical experiments studying material appearance are usually
conducted in fixed and strictly controlled conditions, the process is far from what
we experience in our daily lives and these kind of experiments might not reveal
the actual behavioral patterns humans usually apply for assessing material appear-
ance. Therefore, this study was conducted in uncontrolled conditions, permitting
unrestricted interaction with the objects, as it is in a daily routine. Although this
does not permit modeling the correlation between physics and perception, the
objective of this study has been identification of interesting trends, generation
of research hypotheses based on them and outlining the directions for future re-
search.

3.1.2 Methods

We conducted series of social experiments in uncontrolled illumination and ob-
servation conditions. The observers were asked to describe the physical objects

29
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Figure 3.1: The objects used for the experiment. They have been distributed into
9 boxes and used for 11 different visual tasks. The letters are randomly assigned
for reference purposes only.

and to perform eleven simple visual tasks that came in five different types: clus-
tering objects by their appearance similarity, arranging objects in a space in any
way observers consider "natural", ranking objects by glossiness, ranking objects
by translucency and clustering objects into opaque and non-opaque categories.
We used objects from the Plastique artwork collection (Thomas et al. (2018)).
The objects are illustrated in Figure 3.1. We videotaped the experiment from two
viewpoints to analyze the entire process subsequently. A sample frame from such
video is shown in Figure 3.2. Frequency analysis of the task results was performed
in order to identify interesting trends and hypotheses. Besides, the results of the
frequency analysis have been used as an input for the qualitative analysis reported
in Article B.

3.1.3 Results

The frequency analysis of the task results has revealed several interesting trends
that have been used to formulate research hypotheses and inspired future work.
We have made several observations:

• Different tasks produced contradictory results on gloss perception. While
on one occasion, an equal magnitude of apparent gloss was evoked with
equal surface coarseness, in other cases, lightness and translucency also con-
tributed to apparent gloss. Contradictory results have been obtained in the
latter case as well: while some subjects considered lighter and translucent
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Figure 3.2: A sample frame from the dual-view videotape of the experimental
process.

objects glossier, because more light emerged from them, others opted for
darker and opaque ones, which manifest a larger tonal range and contrast.
• Object’s shape can have a significant impact on the magnitude of perceived

translucency of a material, and the presence of thin parts can outweigh
intrinsic material properties, such as density of the scattering particles.
• Opacity does not imply a complete absence of transmission. Classification of

a material as opaque varies across illumination conditions. Besides, caustics
can facilitate distinction between opaque and non-opaque materials.
• Definition of translucency has been found to be a challenging task. Inter-

pretation of the instruction "rank the objects by how light is going through
them" varied among observers and led to contrasting results.

The results of this article have inspired the rest of the work and have been
used as an input for other articles in the following way:

• Whether translucency impacts perceived gloss was studied in Articles C
and D.
• Whether the presence of thin parts contributes to the detection of translu-

cency, and particularly, translucency differences, was examined in Article E.
• The role of caustics in translucency perception was investigated in Arti-

cle F. Besides, we also studied whether high illuminance backlight impacts
discriminating opaque and non-opaque materials. Refer to supporting Ar-
ticle M for further details.
• Challenges related to the definition and interpretation of translucency as a

term, made us question the current conceptual understanding of translu-
cency and inspired our position Article I.
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3.2 Article B: On the appearance of objects and mate-
rials: Qualitative analysis of experimental observa-
tions

Davit Gigilashvili, Jean-Baptiste Thomas, Marius Pedersen, and Jon Yngve
Hardeberg (n.d.). “On the appearance of objects and materials: Qualitative
analysis of experimental observations.” In: Accepted for publication in the
Journal of the International Colour Association (JAIC), 33 pages

3.2.1 Objectives

The objective of the work is bi-fold: firstly, to build a qualitative model of material
appearance assessment which is rooted in the experimental data; and secondly,
to generate relevant research hypotheses. Validation or falsification of these hy-
potheses should not only strengthen the proposed model, but also advance general
understanding of material appearance.

3.2.2 Methods

The work analyzes the experiment described in Article A. However, instead of
the quantitative analysis of the task results, this work analyzes the overall process
of material appearance assessment in a qualitative way. The Grounded Theory
Analysis (GTA) (Paillé (1994)) - an inductive research method has been used for
this purpose. The method is described in Section 1.4.

3.2.3 Results

The resulted qualitative model is illustrated in Figure 3.3. The model consists
of two sections: the essential Visual Part - which portrays the process from the
introduction of the object to completion of the visual task on it; and auxiliary
Decision-making Part which characterizes the factors that could impact a method-
ology selection for performing tasks. While decisions made on the methodology
can affect the result of the task, the entire pipeline remains independent of the
task and individual observer.

Object, with its absolute properties, such as size and shape, and conditions of
observation, such as illumination geometry and spectral composition, produce the
input stimulus for observers’ visual system. When an observer is asked to perform
a task based on the input visual stimulus, they need a relevant methodology for
solving the task. Comparison with a reference has been a fundamental behavioral
pattern all methodologies have relied on. The task instructions, social interaction
with the experimenter and pre-existent expectations of the observers impact how
they interpret the task and how they come up with a particular strategy to solve the
given problem. When observers are asked to describe the object and communicate
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Learning and Adaptation f(t)

Task
Interpretation

Experimenter
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Figure 3.3: Qualitative model of material appearance assessment. The primary
Visual Part of the model details the flow of the process from the introduction of an
object in particular conditions to the semantic description of its appearance and
completion of a visual task using this object. The auxiliary Decision-making part
illustrates categories impacting methodology selection in the Visual Part, while
Learning and Adaptation impacts the entire process as a function of time.

their appearance, they have to rely on respective vocabulary which itself is a result
of an extensive vocabulary search process. Finally, the entire process changes over
time due to the acquisition of new skills and information, as well as the change
in the physiological state of the observer. An explicit example of how this model
is rooted in the data can be found in Appendix 2 of Article B.

Considering qualitative analysis and quantitative results from Article A, we
formulated 20 research hypotheses and discussed their relevance in the light of
the state-of-the-art. Below we list and discuss the most significant ones:

• Translucency impacts perceived glossiness of an object. This hypothesis
has been addressed in Articles C and D.
• (a) A given material looks more translucent when an object made of

it has thin parts; (b) Shape difference can dramatically impact appear-
ance difference even for identical materials. These two hypotheses in-
spired us to propose at the later stage that thin parts facilitate detection
of translucency differences, which is explored in Article E.
• Presence of caustics is a cue for translucency assessment and may in-

crease perceived degree of translucency. This hypothesis is tested in Ar-
ticle F.
• (a) Multisensory information and interaction level impact the robust-

ness of appearance constancy; (b) Motion facilitates gloss perception;
(c) Back-lit is a preferred lighting geometry for translucency assess-
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ment. These three hypotheses made us study appearance in two different
contexts: using physical tangible objects permitting interaction and using
displayed stimuli with strictly controlled conditions and no interaction.

3.3 Article C: Perceived Glossiness: Beyond Surface Prop-
erties

Davit Gigilashvili, Jean-Baptiste Thomas, Marius Pedersen, and Jon Yngve
Hardeberg (2019). “Perceived Glossiness: Beyond Surface Properties.” In:
Color and Imaging Conference. Society for Imaging Science and Technology,
pp. 37–42

3.3.1 Objectives

In this work, we attempted to challenge the established opinion that perceived
gloss exclusively depends on surface-qualities of an object. As hypothesized in
Articles A and B, translucency impacts perceived glossiness. This is further sup-
ported by the notions that, subsurface light transport can modulate the image
cues which are supposedly used for gloss perception (Motoyoshi et al. (2007) and
Nishida and Shinya (1998)) and the HVS is poor at inverting optics (Motoyoshi et
al. (2007) and Fleming and Bülthoff (2005)) and thus, is unlikely to fully separate
transmission and reflection components.

Figure 3.4: The female bust objects used for the experiment. Three clusters of
objects emerged from the data: more transparent ones (cluster 1), which have
been usually ranked glossiest by most observers; more opaque ones (cluster 3),
which have been ranked glossiest by some observers, but were mostly considered
least glossy; and the ranking of the dark-blue semi-transparent object (cluster 2)
varied considerably. Although the latter was not as shiny as cluster 1 objects, its
darker color and hence, higher contrast between specular and non-specular parts,
landed it usually higher than cluster 3 objects in the ranking.
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3.3.2 Methods

We conducted rank order psychophysical experiments under uncontrolled condi-
tions. 107 observers ranked female bust plastic objects by their glossiness which
had identical surface properties but differed in subsurface scattering. The tactile
interaction with the objects (illustrated in Figure 3.4) has been unrestricted.

3.3.3 Results

The results varied considerably among observers and their approaches to the task
can be categorized into four groups:

1. 10 people (9.35%) tied all objects considering them equally glossy.
2. 84 people (78.50%) considered more transparent objects glossier (cluster 1

objects in Figure 3.4).
3. 8 people (7.48%) considered more opaque objects glossier (cluster 3 objects

in Figure 3.4).
4. 5 people (4.67%) used an approach that did not fit in any of the above-

mentioned categories.

The results have led to three major observations:

• Identical surface properties do not necessarily yield the identical perception
of gloss.
• Gloss perception function, or the interpretation of the concept, varies among

individuals.
• Unlike spherical objects used in Article A, fewer observers considered opac-

ity to be positively correlated with gloss. This can be explained by the fact
that the complex surface geometry of the female bust objects does not per-
mit observation of mirror-reflection of the environment.

3.4 Article D: The Role of Subsurface Scattering in Glossi-
ness Perception

Davit Gigilashvili, Weiqi Shi, Zeyu Wang, Marius Pedersen, Jon Yngve Hard-
eberg, and Holly Rushmeier (2021). “The Role of Subsurface Scattering
in Glossiness Perception.” In: ACM Transaction on Applied Perception 18.3,
10:1–10:26

3.4.1 Objectives

The study is inspired by Article C and aims to test the hypothesis that subsur-
face scattering impacts gloss perception. Additionally, the study investigates how
this impact varies as a function of micro-scale surface roughness and macro-scale
shape of the object.
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3.4.2 Methods

The problem has been studied in the context of computer graphics applications.
The physically-based rendering (Jakob (2010)) has been used to vary surface
roughness, extinction coefficient and subsurface scattering albedo systematically,
while isotropic scattering phase function has been used and the index of refraction
has been fixed to 1.5. Two paired-comparison psychometric scaling experiments
have been organized on the Amazon Mechanical Turk. While the initial experi-
ment covered spherical objects only, four additional shapes have been introduced
in the second experiment, which varied in surface curvature and thickness. The
shapes are illustrated in Figure 3.5.

3.4.3 Results

The analysis of the two experiments made us conclude:

• We have not been able to falsify the null hypothesis that subsurface scat-
tering properties do not contribute to perceived glossiness. There is ample
evidence that subsurface scattering can impact apparent gloss. The exam-
ples are shown in Figure 3.6.
• The impact made by subsurface scattering differs among levels of micro-

scale surface roughness and macro-scale shape of the object.
• For a spherical object the impact of subsurface scattering on gloss is stronger

when the surface is smooth; conversely, for complex Stanford Lucy shape,
surface roughness increases the role of subsurface scattering in gloss ap-
pearance; the impact remained limited for all cylindrical objects.
• For smooth spherical objects, apparent gloss is negatively correlated with

albedo, but the correlation is positive for rough spherical objects. For Lucy,
apparent gloss is negatively correlated with the extinction coefficient and
positively correlated with albedo, regardless of roughness.
• The impact of subsurface scattering is relatively modest in comparison with

the impact made by surface scattering. However, we have generated im-
ages with different roughness which equal in apparent gloss, because of the
differences in subsurface scattering.
• Unlike Article C, the inter-observer consistency has been higher, which

makes us think that virtual stimuli demonstrate larger gloss constancy.

Figure 3.5: Five different shapes have been included in the experiments. Left to
right: sphere, spiky sphere, Stanford Lucy, low-resolution Lucy and cylinder.
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Figure 3.6: Although objects A and B have identical shapes, roughness and spec-
tral reflectance, object A looks glossier, which can be attributed to its lower
albedo. Low albedo generates higher contrast and permits observing mirror-like
reflections. Contrarily, higher albedo Lucy (image C) has been considered glossier
than the Lucy in image D, which only differs from it in subsurface scattering prop-
erties. In this case, high albedo generates more highlights. The complex shape of
Lucy makes separation of reflectance and transmission components difficult and
the highlights are mistaken for specular reflections.

3.5 Article E: The Impact of Optical and Geometrical
Thickness on Perceived Translucency Differences

Davit Gigilashvili, Philipp Urban, Jean-Baptiste Thomas, Marius Pedersen,
and Jon Yngve Hardeberg (n.d.). “The Impact of Optical and Geometrical
Thickness on Perceived Translucency Differences.” In: Under review in a
journal, 13 pages

3.5.1 Objectives

The primary objective of the study is to test the hypotheses that it is easier to
detect changes in translucency when (a) the object has geometrically thin parts;
(b) the object is made of an optically thin material. Additionally, the study aimed
to produce further hypotheses for future translucency perception research.

3.5.2 Methods

We used a set of virtual materials that varied in absorption and scattering co-
efficients and were presented in a virtual viewing booth proposed by Urban et
al. (2019). We conducted psychophysical experiments with a method of constant
stimuli. The observers were shown two pairs of images and they had to select the
one with a larger difference in translucency. One of the pairs has always been an
anchor Buddha pair with suprathreshold translucency difference, identical to the
one used in Urban et al. (2019). The second pair was composed of test images
that came in five different shapes. A probit model was fitted to identify the differ-
ence in absorption and scattering coefficients necessary for yielding suprathresh-
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Figure 3.7: In both pairs, absorption and scattering coefficients equal to 77.5 in
the left image and 1000 in the right one. Regardless of the considerable distance
in absorption-scattering space, spheres look nearly identical. The difference be-
comes more apparent for bumpy objects, as the bumps produce sharper shadows
when the material is more opaque, while the shadows are absent due to light
transmission through the bumps when absorption and scattering are lower.

old translucency difference and studied how this varied across different shapes.
The shapes were quantified with surface-to-medial-axis histograms. We repeated
the experiment, but a transparent anchor-pair was substituted with an anchor
pair that did not permit to see the background through the objects. In the sec-
ond experiment, we studied how the detection of translucency differences varies
between see-through and non-see-through materials.

3.5.3 Results

The experiments have produced ample evidence in support of both hypotheses. It
is easier to spot suprathreshold translucency differences on spiky objects, which
have thin parts than it is for compact spherical objects. This phenomenon is
demonstrated in Figure 3.7. Despite this qualitative observation, we have not been
able to find a quantitative model that would correlate this impact with an objective
shape descriptor, such as a histogram of surface-to-medial-axis distances.

Besides, we also found that the HVS is more sensitive to changes in absorption
and scattering when the material is optically thin and it permits seeing the blurred
background through it. A larger difference in material properties is needed to spot
the difference when no background can be seen through the object and the HVS
relies solely on luminance distribution on the object’s body. This makes us con-
clude that translucency and transparency involve interpretation of fundamentally
different image cues and these phenomena should be studied separately.
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3.6 Article F: Caustics and Translucency Perception

Davit Gigilashvili, Lucas Dubouchet, Marius Pedersen, and Jon Yngve Hard-
eberg (2020). “Caustics and Translucency Perception.” In: Material Appear-
ance 2020, IS&T International Symposium on Electronic Imaging. Society for
Imaging Science and Technology, 033:1–033:6

3.6.1 Objectives

As shown in Figure 3.8, caustics might carry valuable information regarding the
material, such as color and light transmission properties. We observed in the ex-
periments reported in Articles A and B that human observers often use caustics
as a cue for translucency assessment. This made us hypothesize that placing an
object on a surface that does not permit observation of caustics will impact the
magnitude of perceived translucency of a given object. The objective of this work
is to test this hypothesis.

3.6.2 Methods

We generated a set of dielectric materials placed in a virtual Cornell box. The
materials were presented in five different shapes. Each material was rendered
twice - in the original Cornell box and in the Cornell box where the floor was
made fully absorbing black (refer to Figure 3.9). Translucency was modulated
with surface roughness, expressed as the root mean square (RMS) slope of micro-
facets (Jakob (2010)). We conducted category judgment psychophysical experi-
ments on a QuickEval platform (Van Ngo et al. (2015)). The task of the observers
was to assign a given material to one of the six categories, where 1 corresponds
to most translucent and 6 corresponds to least translucent, which has been defined
as "closer to opacity".

3.6.3 Results

The results of the experiment support our hypothesis. Objects were considered
less translucent when placed on a black floor with caustics absent. The difference
has been statistically significant for all shapes and all surface roughness levels,
except for a perfectly smooth surface. We believe that sharp specular reflections
present on smooth objects have assisted observers to identify transparent materi-
als regardless of caustics and floor colors. On the other hand, it remains unclear
whether the considerable difference in appearance can be attributed solely to the
absence of caustics, or whether the overall luminance distribution that was cer-
tainly affected by a black floor also played a role.
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Figure 3.8: The caustics contain a lot of information regarding the properties of
a material they are cast by.

Figure 3.9: Although the material in both scenes is identical, the floor color affects
its appearance.

3.7 Article G: Blurring Impairs Translucency Perception

Davit Gigilashvili, Marius Pedersen, and Jon Yngve Hardeberg (2018).
“Blurring impairs translucency perception.” In: Color and Imaging Confer-
ence. Society for Imaging Science and Technology, pp. 377–382

3.7.1 Objectives

In this work, we have approached the question of translucency perception from
the perspective of image quality and its impact on image structure. The HVS pro-
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Figure 3.10: Two levels of Gaussian blur have been introduced in the images.
The images were presented either with full scene context (top), or just the objects
cropped and placed on a gray background.

posedly relies on luminance contrast information to perceive translucency (Flem-
ing and Bülthoff (2005), Xiao et al. (2014), and Motoyoshi (2010)). The image
blur has been shown to impair material categorization (Sharan et al. (2014)). We
hypothesized that blurring the image removes necessary cues and decreases the
perceived degree of translucency. The objective of this work has been testing this
hypothesis.

3.7.2 Methods

We introduced different levels of Gaussian blur in RGB photographs of the glass
objects from the Flickr Material Database (Sharan et al. (2014)). We hypothe-
sized that if the blur was imposed on the entire scene, the HVS could to some
extent discard its effect and keep perceived translucency relatively constant. To
study this hypothesis, some blurred objects have been cropped and placed on a
homogeneous neutral gray background, while others have been included in the ex-
periment with the full scene context. The examples are illustrated in Figure 3.10.
Paired-comparison experiments have been conducted on a calibrated display un-
der controlled laboratory conditions. 20 observers participated in the experiment.

3.7.3 Results

The analysis of the experimental data has provided indications in support of our
hypothesis. The higher the Gaussian blur, the weaker the apparent translucency.
Contrary to our expectations, this effect has been stronger on full scene images
than on the cropped ones.
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3.8 Article H: Image Statistics as Glossiness and Translu-
cency Predictor in Photographs of Real-world Objects

Davit Gigilashvili, Midori Tanaka, Marius Pedersen, and Jon Yngve Harde-
berg (2020). “Image Statistics as Glossiness and Translucency Predictor in
Photographs of Real-world Objects.” In: 10th Colour and Visual Computing
Symposium 2020 (CVCS 2020). Vol. 2688. CEUR Workshop Proceedings,
pp. 1–15

3.8.1 Objectives

Luminance statistics have been shown to co-vary with glossiness (Motoyoshi et
al. (2007)) and translucency (Fleming and Bülthoff (2005)). In this work, we
studied whether the first four moments of the luminance histogram and the area
covered with specular highlights are correlated with gloss and translucency in
real-world photographs. Unlike unnaturally perfect computer-generated imagery,
we photographed the objects which have visible unintended artifacts, which also
permits us to test the robustness of the aforementioned metrics.

3.8.2 Methods

We photographed spherical objects from the Plastique artwork collection (Thomas
et al. (2018)) that came in three different levels of surface coarseness, three hues
and different concentrations of scattering colorant particles inside the volume.
Translucent objects have been photographed twice - on white and black back-
grounds. The object was segmented from the background and the statistics of the
CIE XYZ luminance channel (Y) have been analyzed. Furthermore, k-means clus-
tering was conducted, in order to determine, whether the five statistical metrics
(the first four moments of the histogram and the area covered with the highlights)
are good predictors of the object’s class. The example of the images is illustrated
in Figure 3.11.

3.8.3 Results

The major takeaways of the work can be summarized as follows:

• As the surface becomes rougher, skewness and kurtosis of the luminance
histogram decrease.
• Although specular highlights cover less than 1% of the total visible area of

the sphere, they skew the luminance histogram and render a convincing
glossy appearance.
• Mean luminance alone is not a good predictor of gloss. However, in

particular cases mean luminance can provide information about contrast
gloss (Hunter (1937)).
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Figure 3.11: The statistics vary between blue and yellow opaque objects, the
darker one (A) permitting visibility of a more clear reflection image of the envi-
ronment than the lighter (B) one. The translucent object shown in illustrations C
and D is the same, but its appearance differs considerably due to the change in
the background color. Some artifacts and bubbles can be detected in image D.

• We did not identify any correlation between surface roughness and standard
deviation, contradicting previous findings (Wiebel et al. (2015)).
• Change in variance and mean luminance across different backgrounds could

potentially be predictors for translucency.
• The robustness of these findings can be compromised by dynamic and vari-

able environment and might not be applicable to objects with low surface
curvature.
• Image statistics alone are not enough for deducing glossiness and they are

limited with photo-geometric constraints and semantic understanding of
scene composition.

3.9 Article I: On the nature of perceptual translucency

Davit Gigilashvili, Jean Baptiste Thomas, Jon Yngve Hardeberg, and Marius
Pedersen (2020). “On the Nature of Perceptual Translucency.” In: 8th An-
nual Workshop on Material Appearance Modeling (MAM2020). Eurographics
Digital Library, pp. 17–20
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3.9.1 Objectives

The concept of translucency as an appearance attribute is oftentimes more abstract
than that of other attributes. We usually refer to the colors of the objects or to their
textures, but rarely to their translucency. Hence the precise meaning of the term
is not accepted universally. The objective of the position paper was to postulate
ambiguities about perceptual translucency which make research on translucency
perception difficult to conduct, communicate and interpret.

3.9.2 Summary

We have identified five issues observed throughout our experiments which we be-
lieve should be resolved in order to advance the translucency perception research:

• Definition and conceptual understanding - no single standard definition
exists for translucency as an appearance attribute (Eugène (2008)), which
leaves room for interpretation. This raises the question of how it should be
defined to the participants of psychophysical experiments.
• Perceptual dimensions of translucency - some appearance attributes

might be disentangled into distinct dimensions, such as hue, chromaticity
and lightness, for color. It is unclear, whether translucency should be mea-
sured psychometrically as a whole, one-dimensional phenomenon, or it has
distinct dimensions, where haze and clarity could be potential candidates.
• Relation with transparency and opacity - translucency exists between the

extremes of transparency and opacity (CIE (2006)), but it remains unclear
how it relates with them; is translucency orthogonal to transparency and
opacity, can they co-exist to some degree, or are they mutually exclusive?
We proposed that the magnitude of translucency might be conceptualized
as a bell-shaped curve (illustrated in Figure 3.12) which is low near the
extremes, gradually increases and peaks somewhere in between them.
• How to quantify perceptual translucency - it is not clear what more

translucent implies; is it proximity to transparency, to opacity, or to some hy-
pothetical maxima between the two? This uncertainty makes it difficult to
apply magnitude estimation (Torgerson (1958)), or psychophysical scaling
techniques (Engeldrum (2000)), such as rank order, for studying translu-
cency.
• Translucency constancy of objects and materials - little is known how

constant translucent appearance is across different conditions (Xiao et al.
(2014)). Objects made of an identical material might differ considerably
in terms of apparent translucency due to their shape and scale. We have
noticed that observers found cross-shape translucency comparison difficult,
because it was unclear what should be assessed - an appearance of a given
object, or an absolute, shape-independent property of a material. We pro-
pose that perceptual translucency is a context-specific concept with limited
constancy.
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Figure 3.12: Translucency might be gradually increasing, reaching its peak and
decreasing between transparency and opacity. However, transparency and opacity
are unlikely to be discrete points - thus, translucency may co-exist with them.

3.10 Article J: Translucency perception: A review

Davit Gigilashvili, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Mar-
ius Pedersen (n.d.). “Translucency perception: A review.” In: Accepted for
publication in the Journal of Vision, 45 pages

3.10.1 Objectives

Translucency perception research is relatively novel and the findings are scattered
around the literature. The objective of the review article is to put the current
knowledge status about translucency together which includes the recent findings
made in the course of this doctoral program. Additionally, the review aims to par-
ticularize existing knowledge gaps and outline the avenue for future translucency
perception research.

3.10.2 Methods

We have conducted an exhaustive literature review about translucency perception,
which covers a broad range of works in vision science, computer graphics and
visual arts. First of all, we summarized and listed which factors and parameters
affect apparent translucency and demonstrated these effects based on physically-
based renderings and RGB photographs. Afterwards, we reviewed partial models
of translucency perception proposed by other authors and manipulated computer-
generated imagery to spotlight the limitations of those models.
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3.10.3 Summary

The compilation of the literature led us to identify the factors that had been pre-
viously shown to be affecting translucency perception. These factors include: sub-
surface absorption and scattering coefficients, scattering phase function, index
of refraction, object’s scale and structural thickness, its surface roughness and ge-
ometry, illumination direction, illumination structure, object’s color, its glossiness,
caustics, motion and scene dynamics and high-level cognitive interpretation by the
observers.

Analysis of the partial models of translucency perception made us conclude
that a full perceptual model of translucency, which could simply take the scene
and material properties as an input and provide an estimation of a perceptual cor-
relate, remains beyond reach nowadays. It seems unlikely that modern vision sci-
ence would solve this problem anytime in the foreseeable future. The knowledge
status on translucency perception mechanisms can be conceptually summarized
as follows:

1. It seems that neither luminance nor spatial information alone is enough for
estimating apparent translucency. The HVS seemingly uses some sophisti-
cated combination of the both.

2. Spatial regions where a photon can go through easily look brighter and
contain rich information about material translucence. Examples of this kind
of regions are edges, thin parts and sharp fine details of a surface geometry.

3. The regions that are usually shadowed in opaque objects are also informa-
tive about translucency, as they look brighter in translucent materials.

4. To summarize the two previous points: if in absence of subsurface light
transport a considerably smaller amount of light could have reached a par-
ticular region, this region can be diagnostic for material translucence.

5. Understanding how much light could or could not have reached a particular
region inherently involves understanding the surface geometry and global
correlation among different local regions.

6. It is not known how the human visual system segments an image, how it
identifies informative regions and how it calculates surface geometry.

7. These calculations are not unique and vary considerably across individuals.
There can be multiple translucency cues in a proximal stimulus and different
people can rely on different ones for yet unknown reasons.
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Discussion

This chapter is structured as follows. First of all, we answer the research ques-
tions presented in Section 1.3 and discuss what we have learned regarding them.
This is followed by a general discussion, which addresses the topics that are not
related to one particular research question. Finally, we analyze the limitations of
our findings.

4.1 Research Questions

4.1.1 How do people behave when assessing appearance, and which
factors facilitate this process?

In Articles A, B and C we allowed observers to interact freely with the objects
while assessing their appearance. We noticed that they move objects, observe
them from different viewpoints and under different illumination conditions, and
in short, they rely on scene dynamics. This is consistent with the proposal by
Fleming (2014) who argues that the HVS somehow identifies the salient features
of materials, builds an internal generative model and characterizes systematic
changes of these features to learn how materials and respective features behave
under different conditions. It seems that humans are unconsciously aware of the
rules which exist around us and which define the systematic changes in appear-
ance. For example, objects look more translucent when they are lit from behind
(Xiao et al. (2014)). We noticed that in order to assess translucency, people pick
up objects and look through them towards the sun or an artificial light source.
Apparently, they attempt to detect whether objects shine under back-light, which
would be an indicator of subsurface light transport. It has also been shown earlier
that specular reflections on a rotating object, unlike surface texture, remain static
relative to the observer (Wendt et al. (2010) and Doerschner et al. (2011)). We
observed that people move objects or their heads to assess glossiness - seemingly
trying to separate specular reflections from surface texture. In general, humans
use motion, whenever they are allowed to do so, and observe the change in ap-
pearance, which eventually helps them deduce material properties. This seems to

47
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be a result of prior training we undergo since birth. The motivation for motion
is what we call comparison with a reference in our qualitative model of material
appearance (Article B) and which, in our data, turned out to be of critical impor-
tance for assessing the appearance of the objects. Appearance is not assessed in
isolation, it needs a reference which facilitates quantification of appearance. In
the above-mentioned cases, humans use the appearance of a given object under
a different condition as a reference and quantify the change relative to that when
an object is moved to a new condition. For instance, comparing the appearance of
a given object between front-lit and back-lit conditions can help observers deduce
whether the object is translucent or opaque.

The importance of a proper reference has been further observed in subsequent
works. In Article E, we noticed how observer responses changed between differ-
ent anchor (i.e. reference) pairs, while Article D demonstrated that the emphasis
put on subsurface scattering differences depends on the surface scattering differ-
ence, i.e. on the compared materials. A reference also plays an important role
in semantic communication of appearance - for instance, when a corpus of the
visual stimuli is composed of objects with different shapes, the shape is more fre-
quently mentioned in the description of appearance, rather than when the shape
is identical in the entire corpus.

In addition to visual information, which encapsulates spatial and temporal
aspects, humans tend to use multisensory information when it is available. We
observed that visual information alone has oftentimes not been enough for iden-
tification of materials and accurate estimation of their mechanical properties (e.g.
solid plastic objects were usually described as soft and elastic unless they had
specular reflections). Observers use information from other senses to verify what
they see, because "the appearance of glass paired with a pepper sound is perceived
as transparent plastic", as noted by Fujisaki et al. (2014). People use tactile in-
formation to assess the surface of an object and auditory information to identify
materials. Other senses complement the vision and integrated multisensory infor-
mation is seemingly analyzed for the purpose of material identification, as well as
for assessment of their appearance. Our study is limited to collecting these obser-
vations and we have not explored exactly why people need to identify materials
or estimate their mechanical properties when assessing visual appearance. One
explanation for this could be the existence of priors about familiar materials, i.e.
they expect a particular appearance for particular materials (e.g. glass is usually
glossy and transparent).

Material appearance assessment, both behavior and semantic communication
are impacted by the individual observer’s background and subjective traits, which
is consistent with prior works (Hutchings (1995a) and Hutchings (1995b)). For
example, observers with expertise in appearance studies inspect objects more
scrupulously and tend to rely on literature definitions more often than artists.
Semantic communication is often impacted by personal experience, as objects’
descriptions involve comparisons with subjective references, such as materials for
observer’s childhood memories. On the other hand, communication of appearance
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inherently involves some degree of objectivity. Otherwise, it might have been im-
possible and unintelligible, which is not the case. For example, there is to some
extent common understanding of what green and jelly-like mean.

To the best of our knowledge, Article B has been the first attempt to study the
social and behavioral basis of appearance assessment. However, our observations
come with particular limitations and need to be taken with care. Our assumption
that the original social experiment was "as natural and as close as possible to real-
life situations" does not fully hold. In order to motivate the social interaction, the
process was driven by artificially imposed tasks, which themselves are unnatural
and rarely performed in real life. We hardly ever rank objects by their glossiness
and translucency. Therefore, this does not guarantee that the behavioral patterns
we observed are identical to those applied when performing daily routines. Be-
sides, the application of observed behavioral patterns was subject to the presence
of particular illumination conditions. For instance, people put objects under high-
illuminance backlight (looking towards the sun), but this might not be possible in
diffuse ambient illumination.

4.1.2 Does the human visual system manifest constancy in translu-
cency perception similarly to color constancy, and to what ex-
tent?

It has been demonstrated earlier that translucency constancy fails across different
shapes and illumination conditions (Fleming and Bülthoff (2005) and Xiao et al.
(2014)). Xiao et al. (2014) argue that the robustness of constancy depends on the
scattering phase function and its location in the 2D perceptual space proposed by
Gkioulekas et al. (2013). Our observations are consistent with the state-of-the-
art and in Article J we have demonstrated that translucency constancy fails due
to change in illumination direction (refer to Figure 4.1), as well as due to ob-
ject’s scale and shape (refer to Figure 9 in Article J). Moreover, we have shown in
Article F that translucency constancy is compromised by the environment color
and subsequent removal of caustics. Color constancy relies on sensory adaptation
as well as estimation and discounting of the illumination color. Sensory mecha-
nisms of translucency are poorly understood. It is likely that its complex nature,
which involves interpretation of luminance and spatial information, complicates
sensory adaptation across different conditions. Moreover, discounting the effects
of the illumination seems a challenging task, as translucency is a result of com-
plex light and matter interaction, which for the HVS is difficult to understand
and invert (Fleming and Bülthoff (2005)). For example, we observed in Article F
that translucency constancy failed when the object involved complex surface scat-
tering, while perceived translucency remained relatively constant, when smooth
transparent objects were assessed, because it was easier to understand (and prob-
ably invert) the underlying optics.

In Article B, we argue that constancy fails faster in real-life situations where
interaction is possible. Therefore, this can be considered a limitation of our studies
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Figure 4.1: The object is identical, however, the illumination geometry varies
from back-lit (left) to side-lit (middle) and front-lit (right). Perceived translucency
changes with the change of the illumination direction, as the back-lit object looks
more translucent than a front-lit one.

conducted on displayed still images, as the absence of scene dynamics, interaction
and multisensory information might have exaggerated the constancy of translu-
cency appearance.

4.1.3 Does translucency contribute to glossiness perception?

Hunter (1937) argued that "reflection distribution functions, though complex and
cumbersome, offer the only means by which the reflectance properties of surfaces re-
sponsible for their glossiness may be completely specified." However, we believe that
an apparent gloss model should also include subsurface scattering distribution
functions. Articles A, C and D have provided ample evidence that even when the
spectral reflectance is identical, subsurface scattering properties affect the per-
ceived magnitude of gloss. However, our data does not permit understanding ex-
actly how the subsurface scattering is contributing to gloss perception. Subsurface
scattering parameters should be sampled more densely in order to quantitatively
model the correlation between optical properties and perceived gloss. Moreover,
it needs to be explored how subsurface scattering impacts image structure - i.e.
exactly which image cues are affected by subsurface scattering and how those
cues co-vary with subsurface scattering parameters.

For simple shapes, which permit observation of the reflection image of the en-
vironment, higher subsurface absorption generates higher contrast between spec-
ular and non-specular areas, also permitting to detect the reflection image more
clearly. Interestingly, transparent objects which generate more caustics and per-
mit to see-through, are also perceived glossy, either due to overall shininess or
high-level cognitive factors. These trends are consistent between Articles A and
C. It was already proposed earlier that gloss cannot be characterized by specu-
lar reflectance only, and that diffusely reflecting areas contribute as well (Hunter
(1937), Hunter and Harold (1987), Pellacini et al. (2000), and Thomas et al.
(2017)). However, what is known as a diffuse reflection in simplified models, is
actually light scattered backwards from the superficial layers of the subsurface. If
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the extinction coefficient is low enough, light can re-emerge far from the point of
incidence, contributing to non-specular areas in that region. On the other hand,
complex shapes which do not permit observing clear reflection images, tend to
differ in perceived gloss by the amount of caustics and highlights which result
from subsurface scattering and back-reflections. This trend is consistent between
Articles C and D, which studied the Plastique (Thomas et al. (2018)) female bust
and Stanford Lucy (The Stanford 3D Scanning Repository (1994)) shapes, respec-
tively. This made us conclude that when studying gloss perception, it is essential to
include complex shapes and not generalize the findings based on simple shapes,
such as a sphere. It is interesting to identify the source of observer inconsistency
reported in Articles A and C. We believe these differences are produced due to
different semantic interpretation of the concept rather than differences in phys-
iological sensory stimuli or the conditions of observation (the trends have been
similar for all nine different conditions in which the experiment was conducted in
Article C). For instance, we believe experts and non-experts saw the same, but ex-
perts tied all stimuli simply because they relied on the official definition of the term
gloss. Interestingly, the dichotomy in gloss perception between the distinctness-of-
image and luminance-based approaches has been also observed by Leloup et al.
(2012).

The findings of Article D are limited by the fact that the dynamic range of
the stimuli was small (we use clipping to convert high-dynamic range images to
PNG, in order to make them compatible with observer displays). Besides, only still
images have been used. Limited dynamic range and absence of motion cues make
separation of reflection and transmission components more challenging than it is
in real life.

Finally, our studies are limited to finding the correlation between optical prop-
erties and the magnitude of perceived glossiness. However, we believe observed
phenomena need to be explained from an image statistics perspective. Our stud-
ies do not investigate how subsurface scattering affects image structure and which
image statistics are variant among the levels of subsurface scattering.

4.1.4 Does the shape of the object impact the perceived magnitude
of translucency?

For a given material with given absorption and scattering properties, the likeli-
hood that a photon propagating through it either gets absorbed or scattered, in-
creases with the distance that it needs to travel (Urban et al. (2019)). This means
that the luminance distribution, which is supposedly a cue for translucency per-
ception, will vary with object’s thickness and size. For example, it has been shown
that if the extinction coefficient is high, it is usually the edges which are diagnos-
tic for translucency (Fleming and Bülthoff (2005) and Gkioulekas et al. (2015)).
In Article A, we observed that the presence of thin parts can compensate for a
higher extinction coefficient in the material. The HVS cannot invert optics (Flem-
ing and Bülthoff (2005)), which makes it challenging to isolate effects of material
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Figure 4.2: Objects in the same column are made of the identical material. How-
ever, due to the smaller scale and presence of thin parts, the Bunny has more cues
evoking perception of translucency.

properties and illumination from those of object’s shape. This is especially true,
when the range of structural thicknesses is large and the object has fine details
(Xiao et al. (2014)). Objects in each column in Figure 4.2 are made of an identi-
cal material. However, the Bunny possesses more translucency cues and evokes a
stronger perception of translucency than a thick and compact spherical object.

In addition to the macro-scale shape of the object, we have demonstrated in
Article F that the micro-level composition of the surface also impacts apparent
translucency. It turns out that there is a monotonic and linear relationship between
translucency and surface roughness (root mean square slope of the microfacets),
when subsurface scattering is negligible.

Our works do not attempt to explain how people deal with the conceptual
ambiguities between object and material translucency. If an object is composed of
parts with varying thickness, some parts of it look translucent, while others look
opaque. This confuses observers who cannot decide whether they should assess
translucency as a generic property of a material or an object, or translucency for
each particular region of the object individually.

4.1.5 Does the shape of the object impact detection of translucency
differences?

Article E has provided evidence in support of our hypothesis that it is easier to de-
tect suprathreshold translucency differences on shapes that have thin parts. This
is consistent with the state-of-the-art claiming that thin areas contain much infor-
mation about material translucence (Fleming and Bülthoff (2005), Gkioulekas et
al. (2015), Xiao et al. (2014), Sawayama et al. (2019), and Nagai et al. (2013)).
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Although the qualitative trend is apparent, we have not been able to model this
correlation quantitatively. As we do not know exactly which image cues the HVS
relies on, we cannot construct a shape descriptor that could correlate with per-
ceived translucency differences. For instance, we hypothesized that a histogram of
surface-to-medial-axis distances might be such a descriptor. However, we do not
know whether the abundance of thin parts is needed, or if even a single thin region
would suffice for the HVS. The two cases generate contrasting surface-to-medial-
axis histograms, but might be identical in terms of detectability of translucency
differences.

As shown in Figure 3.7, spherical objects make it difficult to detect translu-
cency difference. According to Marlow et al. (2017), the HVS relies on co-variance
between shading and geometric information. However, a compact spherical ob-
ject which contains no concavities or bumps, leaves less room for observation of
this co-variance. We believe that this finding has implication for future studies on
translucency perception, as we need to reconsider the common practice of using
a sphere as a shape of choice in psychophysics.

4.1.6 Does the magnitude of subsurface scattering impact our ability
to detect translucency differences?

The discrimination of the different levels of translucency depends on the magni-
tude of the subsurface scattering. A similar phenomenon has been described for
gloss; Cheeseman et al. (2021) noticed that the HVS is less sensitive to gloss dif-
ferences in case of the high magnitude specular reflectance. Article E has shown
that changes in subsurface light transport properties are detected faster by hu-
mans when it is possible to see the background through this material. First of
all, this is consistent with the Steven’s and Weber-Fechner laws (Stevens (1960)
and Fechner et al. (1966)). Secondly, this demonstrates that transparency and
translucency perception mechanisms are fundamentally different and they should
be addressed separately. While transparency, on the one hand, is judged based on
blur and contrast of the background seen through the object (Singh and Ander-
son (2002)), translucency perception, on the other hand, involves assessment of
luminance distribution and low level image cues (Motoyoshi (2010), Nagai et al.
(2013), and Fleming and Bülthoff (2005)). It is intuitive that the impact is larger
when direct distortion of the background is visible. This has implication for de-
signing future psychophysical studies. As it turned out, transparent anchor pairs
are poor references for translucent test pairs when the method of constant stimuli
is used.

4.1.7 Does appearance assessment differ between physical objects
and displayed images, and how vital is the direct interaction
with the objects when judging their appearance?

Using physical objects and permitting direct interaction introduces multisensory,
binocular and motion cues, all of which have been shown to be important for
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assessing material properties (Fujisaki et al. (2014), Obein et al. (2004), Wendt
et al. (2008), Doerschner et al. (2011), and Tamura et al. (2018)). Appearance
constancy is unrealistically high for displayed images, while for physical objects
they fail faster (Filip et al. (2018)) as more cues and information are available.
The viral images that trick the visual system, such as #TheDress (Brainard and
Hurlbert (2015) and Lafer-Sousa et al. (2015)) and shiny legs (Molloy (2016)),
would most likely not have happened if they were presented as physical objects
rather than images.

We found in Article B that lack of tactile and auditory information leads to
misidentification of materials and misestimation of their mechanical properties,
such as elasticity, fragility, softness and hardness. Interaction with physical ob-
jects is a natural way to assess material appearance. This is what we experience
in daily lives and this is what our visual system is trained on. We observed that
all subjects moved and interacted with the objects when they were permitted to
do so (however, we cannot rule out a possibility that their behavior was induced
by the instructions, which explicitly mentioned that interaction was permitted).
Interaction provides a broad range of references, for instance, they can inspect a
translucent object on homogeneous and heterogeneous backgrounds, and use the
variation in appearance for assessing translucency. In displayed images, observers
may lack the proper reference to assess appearance adequately. As noted by An-
derson (2011), in such experiments, the experimenter might unwittingly remove
information that is fundamental for the HVS - providing little insight into the real
mechanisms of appearance perception. Comparison of the results of Article A and
C with that of D, has shown that observers are more consistent when judging
computer generated imagery, while a broader range of cues and opinions emerge
when the stimuli are presented in the form of physical objects.

The discussion on this topic in this thesis is fundamentally limited by the fact
that we have not studied the physical and digital representation of the identical
objects. This makes it impossible to rule out that the difference observed between
physical and digital stimuli where rooted in the properties of those stimuli and not
in the method of their representation. Future work should compare appearance
assessment between a physical object and its digital twin.

4.1.8 Does presence of caustics impact the perceived magnitude of
translucency?

We observed in Articles A and B that caustics is a widely used and a reliable cue
for judging the translucency of a material. Caustics is a familiar cue for the HVS,
as we encounter them on a daily basis. For instance, when a wine glass or a vase
projects a light pattern onto a table, we understand that the pattern is produced
by subsurface transport of light. In Article F we showed that placing an object on a
surface that removes caustics decreases the magnitude of perceived translucency.
This can have implications for the retail industry, as the appearance of translucent
products might depend on the surface color they are placed on. In some particular
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Figure 4.3: While the object’s body might look fully opaque (e.g. middle object in
the bottom row), caustics provide rich information about subsurface light trans-
port properties of a material.

cases, caustics can be the only indicator of translucency, as in Figure 4.3.
This study comes with particular limitations. First of all, changing floor color

to black not only removes caustics from the image structure, but also impacts
overall luminance distribution considerably. Objects and scenes become generally
darker. Therefore, it cannot be ruled out that the results are impacted not only
by the absence of caustics, but other cues that we unwittingly affected with a
black floor. Secondly, the study assessed objects with no subsurface scattering.
The translucent appearance was generated with surface scattering only. However,
the structure of the caustic pattern is impacted by subsurface scattering as well
(see the bottom row in Figure 4.3) and studying these kind of materials can reveal
more information about caustics as a translucency cue.

4.1.9 Does image blur impact the perceived magnitude of translu-
cency?

Article G has shown that the impact of image blur on the perceived magnitude
of translucency is statistically significant, blurrier objects appear less translucent.
This is counter-intuitive at first glance, as translucency by definition implies that
the image emerging from a translucent object is blurred (ASTM E284-17 (2017),
Eugène (2008), and Gerbino et al. (1990)). Furthermore, it has been shown that
decreased luminance contrast evokes the perception of translucency (Fleming and
Bülthoff (2005), Motoyoshi (2010), and Nagai et al. (2013)). However, these no-
tions need to be taken with care. When discussing decreased luminance contrast, it
is usually implied that the luminance contrast between specular and non-specular
areas is decreased because luminance increases in non-specular areas and remains
the same in the specular highlights (Motoyoshi (2010)). For instance, if concav-
ities are shadowed in opaque objects, they look brighter for translucent ones, as
photons reach them via subsurface layers. As shown earlier, local luminance statis-
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tics and relation among them are more diagnostic for translucency than global
ones (Motoyoshi (2010) and Nagai et al. (2013)). However, when blur is imposed
on the entire image, we affect both specular and non-specular areas. This makes
it difficult to estimate the spatial information, in particular, surface geometry and
texture of the object, which according to Marlow et al. (2017) are essential to
translucency perception. The fact that perception of translucency implies compre-
hension of spatial information is intuitive, because a color or a luminance inten-
sity of a single local point can be simply produced by surface reflection, while the
spatial variation of colors is what indicates subsurface light transport. Therefore,
blurring imposed globally removes information about the spatial distribution of
luminance intensities, which means that the image cues evoking perception of
translucency disappear. Imagine an extreme case, when a blur produces a homo-
geneous patch with no intensity variation - indeed, no homogeneous patch can
appear translucent, as translucency cues inherently rely on spatial information.
If we gradually decrease the blur, more spatial information and more translu-
cency cues can emerge. On the other hand, we understand that the impact of blur
might be negligible for see-through objects which lack specular reflections and
are placed on a homogeneous background, because the spatial variation of the
luminance intensities will be low even for the sharp images.

This finding is important for future psychophysical experiments. We can con-
clude that visual acuity of the observers and distance to the stimuli have a consid-
erable impact on translucency perception and those factors need to be considered
in the experimental design. Additionally, image quality can also impact the results
of such studies.

The study has several limitations: first of all, it has been possible to recognize
the same object in the images with different degrees of blur, which could tempt
the observers to consider them equally translucent. Secondly, the sampling in the
blur parameters is very sparse - just two levels of Gaussian blur are applied which
differ considerably in the magnitude of imposed blur. This does not permit us to
model the impact quantitatively, neither to identify when the impact of blur on
translucency becomes noticeable. More levels of blur should be studied for this
purpose. Finally, all objects studied in the experiment are glossy and have clearly
visible specularities. It is interesting to explore whether the impact would be as
strong for objects with no specular regions.

4.1.10 Can the luminance statistics be used for prediction of appar-
ent gloss and translucency?

In Article H, we propose that objects with smooth surface and visible specular
reflections produce highly skewed luminance histograms, being consistent with
Motoyoshi et al. (2007) and Landy (2007). Additionally, mean luminance might
be an indicator of potential contrast gloss, if specularities are present. This is con-
sistent with the state-of-the-art. Leloup et al. (2011) proposed a perceptual gloss
metric that estimates gloss by comparing the luminance measured in the specu-
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Figure 4.4: Specular highlights are superimposed on the photographs of rough
spherical objects. While both highlights are artificial, the left object looks glossier
due to the lack of artifacts, while the scratches help us know the right object is not
smooth, i.e. not glossy. In the latter case, the highlights look like artefacts rather
than specular reflections.

lar and non-specular areas. We also demonstrated that the impact of background
change on luminance variance can be used for measuring translucency. However,
it is important to consider that both for gloss and translucency, spatial informa-
tion has critical importance, which cannot be captured with luminance histograms
alone. Identical histograms can be produced with images of glossy and matte ob-
jects, as well as random re-arrangement of their pixels. Image statistics are usually
subject to strict photo-geometric constraints, and perception of gloss, as demon-
strated in Figure 4.4, involves complex cognitive understanding of the scene and
geometry. When the origin of the detected image structure is not clear (as in Ar-
ticle C and shiny legs image (Molloy (2016))), then given image statistics might
produce contrasting perceptions.

Moreover, image statistics are by no means a robust measure of material prop-
erties. We have demonstrated that for highly reflective materials, image statis-
tics can vary considerably due to changes in the environment and light field, and
meaningful statistics might not be possible to be extracted from planar surfaces
and objects with low surface curvature. This is especially true for metallic samples
and automotive industry applications.

It is worth mentioning that Article H correlates physical properties with the lu-
minance statistics. All reasoning on perceptual aspects is based on authors’ percep-
tion and no psychophysical experiments have been conducted to support those ob-
servations. Besides, we studied JPEG images instead of RAW ones. The JPEG com-
pression together with non-linearity of the acquisition system can be a source of
inaccuracies in the luminance information and the luminance intensities recorded
by the camera can differ from what the HVS observes.

4.1.11 What are the major obstacles to advancing translucency per-
ception research?

We argue in Article I that one of the major factors that might undermine the
advance of translucency perception research is the problems with the definition
and understanding of the term.
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Questions about psychophysical mechanisms of translucency perception re-
main unanswered, which could be cleared up by carefully planned psychophysical
experiments. The value of the experimental results greatly depends on observers’
adherence to the instructions. Hence, properly formulated instructions have vital
importance for the reliability of the experimental data. We have observed that the
interpretation of the term translucency varies substantially among observers. This
fundamental problem might compromise experimental results, lead to miscom-
munication in the scientific channels and cause misinterpretation of the findings.

For instance, we observed in Article A that when asked to assess translucency,
some subjects rely on preservation of the transmitted image structure, while others
try to quantify the radiometric amount of the transmitted light. Unlike clarity and
haze, translucency remains largely subjective and the findings are usually limited
to particular interpretation in a particular community. We believe that standard-
ization of definitions, measurement and observation conditions are essential for
the rapid advancement of this topic.

Additionally, the way visual stimuli are presented to the observers also implies
some limitations and the risk of unwitting removal of important translucency cues.
For instance, computer-generated stimuli usually limit interactivity and multisen-
sory information.

4.1.12 What is the knowledge status on translucency perception and
where should we go next?

The knowledge status and future perspectives in translucency perception research
are put together in Article J. Current knowledge on translucency perception is
mostly limited to the impact of particular optical parameters. Translucency per-
ception research is in its infancy and partial models proposed by different authors
(such as Motoyoshi (2010), Fleming and Bülthoff (2005), and Nagai et al. (2013))
attempt to correlate local image statistics with the perceived magnitude of translu-
cency. However, it remains unknown how the HVS identifies and weights these
local regions and why they differ across individuals. The role played by high level
vision, memory and cognitive understanding of the scene also remains unclear.
Unlike the physiology of color vision, the physiology of translucency perception
remains largely unexplored. Thus, neither cross-individual differences in translu-
cency perception, nor the limits of translucency constancy are understood.

4.2 General Discussion

Below we discuss some of the general observations we have made about object
appearance throughout the entire project. Each subsection covers one of the key
observations.
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4.2.1 Image cues and [in]constancy of perception

People effortlessly complete complex visual tasks that remain unattainable for
machines and instruments (Sharan et al. (2014)). However, understanding the
mechanisms of this ability and predicting human perception based on measur-
able physical properties remain a challenging task. Although we have identified
interesting phenomena about the perception of object appearance, in its broadest
sense, we still have not been able “to obtain numbers that are representative of the
way objects and materials look” (Hunter and Harold (1987)). If we do not com-
prehend how humans perceive appearance, it will be difficult to mimic this ability
with machines.

It is unlikely that the HVS estimates optical properties and light and mat-
ter interaction, but it might rather be relying on simple image cues and rules of
systematic changes those cues undergo across different conditions (Fleming and
Bülthoff (2005) and Fleming (2014)). Moreover, the visual stimuli do not even
need to conform to the laws of physics, as long as they generate image cues which
are familiar for the HVS – for instance, adept artists can generate vivid impressions
of various material appearances simply based on these image rules and recipes,
and paintings evoke the perception of translucency, gloss and other appearance
attributes in a robust and realistic manner (Cavanagh (2005) and Di Cicco et al.
(2020a)). We are not adept at abstracting material properties from the effects of
shape and illumination, which makes our gloss (Vangorp et al. (2007) and Wendt
et al. (2010)) and translucency constancy (Fleming and Bülthoff (2005) and Xiao
et al. (2014)) imperfect. We believe that the constancy of perceived translucency
and gloss is limited by the variability of the image cues across different conditions.
For judging translucency and glossiness, we seemingly rely on image structures
which themselves are not invariant across different shapes and illumination di-
rections. For example, we have observed that objects with thin parts look more
translucent (Articles A and J) and materials with identical spectral reflectance dif-
fer in apparent gloss (Articles A, C and D), because in both cases, subsurface light
transport affects the spatial distribution of the luminance intensities in the prox-
imal stimulus. This once again indicates that our ability to split image structure
into reflectance and transmission components, to understand and isolate effects
of shape, material and illumination, is substantially limited and we are relying on
image structure and statistics.

4.2.2 We rely on references and this can aid metrology

People rely on the references which they extract from the 2D retinal image (Article
B). When they assess appearance, they are essentially conducting a metrological
process where a reference is a unit of measure. If we could identify what these
references and their physical correlates are, we could replicate this process with
machines. Standardization of reference and units that the HVS quantifies could
be fundamental for advancing appearance metrology. However, the high dimen-
sionality of the problem makes it an overly challenging and complicated task. For
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instance, we need one unit to measure distance and two units to measure veloc-
ity (time and distance), while the number of units, or "dimensions" needed for
appearance measurement might be impractically high. We have proposed in Ar-
ticle B that if any appearance ordering system would ever exist, it will be very
cumbersome and high dimensional (refer to supporting Article K for a detailed
analysis). This makes us conclude in Article I that any definition and measure-
ment standards, particularly for translucency, and we believe, for appearance in
general, will remain application- and context-specific in the foreseeable future.

4.2.3 Motion leaves less room for uncertainty, which can inspire
measurement techniques

Scene dynamics and interaction with the objects play an important role in the as-
sessment of their appearance. The fact that the motion and the ability to inspect
a surface from the multiple angles are important for proper estimation of objects’
properties has been highlighted by other researchers as well (Ged et al. (2010) and
Wendt et al. (2010)). We have observed that humans inspect objects from many
different observation and illumination geometries before assessing their appear-
ance. Current measurements of color, gloss and light transmission are however
done in predefined geometries (see Pointer (2003) and CIE (2006) for surveys).
This further limits the possibility to predict appearance from those measurements.
For instance, in order to assess the glossiness of a table, we do not simply rely on
specular gloss from the initial observation position, but also move our head to low
gazing angles. This means that for quantifying what we perceive, we might need to
measure not only specular gloss, but sheen as well. Although we perceive translu-
cency in still images, in real life we rely on scene dynamics and spatio-temporal
components – we move objects over different backgrounds (Article B) to assess
their translucency. We believe that a measurement technique for translucency can
be inspired from this observation – we can measure image intensities under dif-
ferent backgrounds and illumination geometries and use variation across them as
a correlate for perceptual translucency (as we have proposed in Article H).

A further reason why the temporal component is essential for this kind of
metrology is the fact that image statistics are prone to variations, even due to
slight changes in the environment (Article H). This is especially true for metal-
lic materials, which are used, for instance, in the automotive industry. Therefore,
any statistics that are extracted from a single scene and geometry, might not be
generalizable and diagnostic enough for translucency and gloss. The commercial
relevance of predicting the appearance of the still image scenarios only is lim-
ited (e.g. photo-based advertising), while the vast majority of consumer products
(e.g. cosmetics, gadgets, 3D printed materials and accessories, video games and
computer graphics) are inherently intended for interaction and observation in dy-
namic scenes. The visual effects that might be achieved in still images, can fail
when the interaction is permitted.
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4.2.4 It is not just about the low-level vision

What complicates objective measurement and prediction of appearance even fur-
ther is its multimodal nature. Tactile, olfactory and auditory ("ah, this sounds like
cheap plastic" phenomenon) information are seemingly used (Article B) in yet
unidentified ways. Furthermore, in addition to objective visual stimuli that exist in
the immersive environment, the perceptual process involves subjective observer-
specific factors as well. The knowledge about the translucency perception on the
cortical level, as well as the role of cognitive priori, remains virtually non-existent.
The only exception is the work by Chadwick et al. (2019), who demonstrated that
an observer which suffered from color blindness of a cortical origin was still able
to discriminate the levels of translucency, concluding that translucency perception
is anatomically independent from color perception on the cortical level. High level
cognitive and memory factors ("this looks like a gummy bear candy I used to have
in my childhood" - Article B) are very difficult to model and quantify. Our abil-
ity to unmix absorption and scattering and thus, the accuracy of our perception,
might depend on the training our visual system has undergone in the course of
the lifetime (Chadwick et al. (2018)). We believe that any statistical model speci-
fying perceived gloss and translucency should be a mixed-effects model, whereas
optical properties can be treated as fixed effects, and observer physiology and
psychology as a random effect. Intriguingly, the qualitative model proposed in
Article B encapsulates observer characteristics in the conditions of observation,
as we observed that the way subjective physiological and psychological aspects
contribute to appearance is phenomenologically no different from the contribu-
tion of illumination and other extrinsic factors. This might have implication for
data analysis and instead of pooling experimental results, appearance perception
research might move more towards models tailored to individuals.

4.2.5 Revisiting the qualitative model

The Grounded Theory Analysis permits to return to the original model, and to
refine and strengthen it based on new experimental data. We want to highlight
that we found ample experimental evidence in support of our research hypothe-
ses. We believe the hypothesis that translucency impacts glossiness perception has
the largest generalization potential and it should be scrutinized in future studies.
Moreover, the omnipresence of a reference has been observed in the subsequent
works as well (e.g. the impact of anchor pair reference in Article E and the im-
portance of a reference surface scattering in Article D). Additionally, we observed
that conditions of observation (Articles F, G, H and J) impact appearance signif-
icantly, while task interpretation has affected the methodology selection in Arti-
cle C. These observations have solidified the qualitative model proposed in Arti-
cle B. However, a substantial amount of future work is required to achieve general
theorization.
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4.2.6 Terminology matters: "material appearance" versus "object ap-
pearance"

Finally, we observe that material appearance is a vague and misleading term. Ap-
pearance as a visual phenomenon and the respective field studying its nature have
been dubbed as material appearance. This term has been promoted by a broad
range of academic publications (such as Serrano et al. (2018), Lagunas et al.
(2019), Dorsey et al. (2010), and Sole et al. (2019)), as well as projects (e.g.
MANER1) and fora (e.g. MAAP2). However, in perceptual experiments we never
study materials as abstract entities, but we study objects instead. We need objects
to display and represent materials. Indeed, materials possess particular optical
properties, which define how light interacts with them. However, we have ob-
served in Articles A, B, D, E, F and J that features of an object, such as shape,
roughness or its size and thickness also contribute to the visual sensation. In other
words, the appearance of a given material might differ considerably across differ-
ent objects made of this material. This makes us question: can material appear-
ance as a term adequately characterize the problem, or should we talk about
object appearance instead? Moreover, psychophysical studies are usually based
on simple shapes, such as spheres (e.g. Pellacini et al. (2000) and Serrano et al.
(2018)) or tori (e.g. Fleming and Bülthoff (2005)). Our work indicates that find-
ings based on those shapes might not be generalizable to other, more complex
shapes. This means that for appearance modeling and replication tasks each ob-
ject and shape should be considered individually, which once again brings up a
problem of object appearance rather than material appearance.

4.2.7 Applications

The results obtained throughout this work can not only contribute to the broad
range of the industrial applications, where customers’ perception of the translu-
cent products is economically important (discussed in detail in section 1.1), but
also opens a broad range of new avenues.

Although Articles A and B report the hypotheses obtained though the induc-
tive research, which need quantitative validation before being implemented in the
industrial applications, the observations obtained from these works can still be
applicable to improve the soft and hard metrology techniques of the appearance
measurement. For instance, the design of the future psychophysical experiments
might be refined with the knowledge on the behavioral observations and the im-
portance of the naturalness of the interaction. We believe this will pave the way for
a broader use of the extended reality technologies in psychophysical experiments.

1Material Appearance Network for Education and Training. The project funded by the Research
Council of Norway. For more details refer to: https://app.cristin.no/projects/show.jsf?id=
675496

2The annual Material Appearance conference at the IS&T Electronic Imaging Symposium.
For more details refer to: https://www.imaging.org/site/IST/IST/Conferences/EI/EI_2021/
Conference/C_MAAP.aspx
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Besides, as already mentioned above, the importance of a reference and the scene
dynamics might inspire motion-based instrumental measurement techniques for
translucency.

The results of the Articles C and D have implication for material design in
computer graphics and manufacturing. The comparative analyses of these two
works can be used for cross-media gloss reproduction – particularly, reproduction
of gloss between the physical and the digital light permeable materials.

Article E is important for 3D printing. Cross-shape matching of appearance in
the 3D printing applications needs a measure and a space of perceived translu-
cency, which could incorporate the translucency difference metrics. Our results
have important implications for the development of such metrics and for cross-
shape translucency matching task in general.

Insights from Article F can be potentially developed into an image-based
material measurement technique. Additionally, Article F along with Articles
G and H can contribute to the computer vision techniques for the material
identification and appearance characterization tasks.

4.3 Limitations

The study comes with a number of limitations that we want to discuss below.

4.3.1 Inconsistent definitions undermine the subsequent analysis

Considering the structure of the work distribution, some trends emerged only
at the later stage of the study. The challenge related to the proper definition of
translucency, which was discussed in Article I, is the result of the smaller observa-
tions collected in the course of the previous studies. Therefore, it has not been until
recently that we realized the necessity for consistent instructions and definitions
across the experiments. The definition of translucency is inconsistent across our
studies. In the experiment reported in Articles A and B, observers are instructed
to rank the objects "by how the light is going through", without mention of translu-
cency. In Article G, more translucent was defined as "transmitting higher amount
of light", while in Article F, least translucent was defined as "closest to opacity".
The experiment reported in Article E did not provide any definition for translu-
cency and similarly to Urban et al. (2019) left it for individual interpretation. This
inconsistency of the instructions might have affected observers’ behavior and the
results obtained from different experiments might not be directly comparable.

4.3.2 Our observations might not generalize to all objects, materials
and conditions

It is also important to mention that the materials and observation conditions
we are testing our hypotheses on represent only a tiny subset of all possible
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materials and observation conditions that exist around us. In order to keep the
length of the experiments within the reasonable range, we limited the num-
ber of variable parameters and used only simple materials (e.g. isotropic phase
function; wavelength-independent absorption and scattering properties; viewing
booth with simple background texture etc.). We are aware that those findings
might not generalize well to other conditions and materials and that an extensive
amount of future work is needed to determine the limits of our findings.

4.3.3 No method for presenting stimuli is perfect

The findings of our studies are inherently limited by the way the stimuli are pre-
sented to the observers. Physical objects and either photographs or computer gen-
erated images displayed on a monitor all come with their advantages and limita-
tions (refer to Appendix 1 in Article B for a detailed analysis). Psychophysical
experiments reported in Articles A, B and C use physical objects as visual stimuli.
Although physical objects permit interactions that are close to what we experi-
ence on a daily basis, it is difficult to obtain their optical properties. This limits
our ability to conduct quantitative modeling between the physical and percep-
tual properties, and permits drawing just qualitative conclusions. Besides, objects
come with unintended artifacts and are subject to aging effects, which makes it
impossible to reproduce the experiments over time. For example, we detected a
noticeable change in color of the Plastique collection objects due to lengthy expo-
sure to illumination. Maloney and Knoblauch (2020) note that the experiments
involving physical objects usually take longer due to the time needed to manually
substitute samples from trial to trial. This was especially true for Articles A and
B, which might have caused a loss of concentration among observers.

On the other hand, Articles D, E, F and G use images for a psychophysical
study. They lack many cues which have been observed to be important in Article B,
such as binocular vision, scene dynamics, tactile information and interactivity. In
addition to this, all visual stimuli are limited with the specification of the monitor,
such as color gamut and dynamic range, which are usually smaller than in real life.
Although physically-based rendering made it possible to generate photorealistic
stimuli with full control over optical material properties and scene composition
(Articles D, E, F), Chadwick et al. (2018) have observed that people’s performance
on synthetic stimuli is not as good as on real ones, proposing that the HVS might
be trained on the materials and objects that actually exist around us. The latter
problem can be solved by using photographs (Article G), but they do not contain
the information regarding the optical material properties, limiting the analysis to
image statistics extraction (such as in Article H). Finally, each stimulus, either
virtual or real, is also limited by the shape it is presented in, since conclusions
drawn in our works (Article A, B and D) might not be generalized to other shapes
and objects.
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4.3.4 Online and physical experiments come with their shortcomings

Conducting an experiment either online or physically also brings additional lim-
itations to the studies. Experiments reported in Articles A, B, C, E and G have
been conducted with a physical presence of an experimenter and an observer,
while those in Articles D and F have been conducted online. Online studies en-
able collecting larger amounts of data in a significantly shorter period of time. For
instance, data collection for Article B took 3 months, while for Article D it was es-
sentially collected overnight. The diversity of the observers is usually larger in on-
line studies and encompasses a broader part of the general populace. It is difficult
to ensure observer diversity in experiments conducted physically. For instance,
the observer pool in Articles A, B, E and G have been mostly composed of the
colleagues from the Norwegian Colour and Visual Computing Laboratory, while
the experiment in Article C was conducted at relevant academic conferences with
most observers having expertise in the field. Therefore, the findings of these works
might poorly generalize to non-experts and the general populace.

On the other hand, conducting studies with physical presence is advantageous
in several ways:

• First of all, unlike online studies, the experimenter has control over obser-
vation conditions.
• Physical experiments give the experimenter a choice to select either physical

or displayed stimuli, while online studies are limited to displayed stimuli
only.
• The information collected about observers is more reliable - e.g. the exper-

imenter can test visual acuity and color vision of the observers.
• We noticed that oftentimes observers need additional clarifications about

the task and the instructions, which is usually possible with the physical
presence of the experimenter. This is especially true when studying translu-
cency, because the term is inherently vague.
• The experimenter can ask observers to reflect on the task and obtain com-

prehensive explanations for observer’s responses when both are physically
present.
• We observed that data obtained online was noisier and the overall dedica-

tion of the observers was worse. For instance, the experiments conducted
on the Amazon Mechanical Turk involved many seemingly random clicks.

4.3.5 The data can be noisy

We also cannot rule out the existence of unintended noise in the data. We have
observed in Article F that the sequence of the comparisons in the course of the
experiment might have affected the results in an unintended way. There might be
this kind of noise from unidentified sources in the data, especially in the experi-
ments which permitted improvisation by the experimenter (Articles A-C).
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4.3.6 Semantic communication had to be explored further

Finally, semantic communication has been explored to a very little extent (al-
though see supporting Article O). We observed in the original study that semantic
description and communication are essential parts of the appearance assessment
process. Understanding the ways to exchange the information about appearance
has a considerable economic implication and it ensures the effective communi-
cation not only externally, between customers and manufacturers, but also in-
ternally, within industrial and academic communities. While this study advanced
our knowledge on perception, we believe it could have also explored more on
how people express and convey what they perceive. The first step towards this
objective can be clearing the ambiguous definitions up.



Chapter 5

Conclusions

We have initially conducted inductive research in order to observe the behavioral
traits of material appearance assessment process and to formulate relevant re-
search hypotheses. The study has revealed that the comparison with a relevant
reference is at the core of the appearance assessment and multisensory informa-
tion, motion and scene dynamics are extensively used, making interaction with
the objects an important part of the assessment process. Afterwards, we focused
on the appearance of translucent materials, as translucent materials represent an
important subset of materials we encounter on a daily basis, but are yet mostly
understudied. We tested interesting research hypotheses using deductive research
methods and found ample evidence that:

• Translucency impacts glossiness perception; surface reflectance distribution
functions cannot adequately specify perceived glossiness and subsurface
scattering properties need also to be taken into consideration.
• The constancy of translucency appearance is limited with cross-shape and

observation condition variations.
• Thin parts facilitate detection of suprathreshold translucency differences

when apparent translucency of two materials is compared.
• Translucency and transparency perception cues are essentially different and

humans are more sensitive to subsurface scattering changes when the back-
ground is seen through the object.
• Caustics encapsulate important information about material translucence

and they contribute to the magnitude of perceived translucency.
• Decreasing luminance contrast increases the magnitude of perceived

translucency only when specular highlights are kept intact, while blurring
the entire image including specular highlights decreases the magnitude of
perceived translucency.
• The statistics of the luminance histogram can reflect gloss and translucency

properties, but being subject to numerous photo-geometric and environ-
mental constraints, they alone are not reliable predictors of appearance.

In the course of the experiments, we faced substantial challenges due to con-
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ceptual ambiguity of translucency and highlight the need for standardization.
However, we understand that universal definitions and measurement standards
might not be feasible and they could be limited to specific contexts, applications
and industries.

Finally, a comprehensive analysis of the state-of-the-art made us conclude that
translucency perception research is in the initial stage of its development. An ex-
tensive amount of future work is needed to bring those mechanisms to light that
are responsible for perceiving translucency. The abundance of translucent objects
and materials in our daily lives makes this question economically relevant for a
broad range of industries.



Chapter 6

Future Work

Varying distinct optical properties in a systematic manner and measuring how
they impact observers’ responses provides little understanding of how the HVS
functions and what are the actual mechanisms of translucency perception. Al-
though multimodal information contributes to material appearance, we believe
the essential portion of the information is encapsulated in a 2D retinal image. The
fundamental problem is to identify how the HVS uses and weights image intensi-
ties in order to deduce subsurface light transport and surface reflectance proper-
ties. Nagai et al. (2013) found that instead of relying on global statistics, the HVS
judges translucency based on local informative "hot spots". It was earlier proposed
that such regions are usually edges (Fleming and Bülthoff (2005)), but the exact
way the color (both intensity and chromaticity), spatial and temporal informa-
tion is used by the HVS is yet to be understood. We propose that for advancing
translucency perception research, and research on the perception of appearance
in general, eye tracking experiments should be conducted. Eye tracking will reveal
which regions impact observers’ decisions. It is especially interesting to conduct
it in dynamic scenes, where either the object or the background is in motion.
This will help us determine why the stimuli differ in translucency and how optical
and environmental parameters modulate the image cues and thus, the magnitude
of perceived translucency. For instance, identifying the regions that contribute to
translucency perception will help us construct respective shape descriptors to ad-
equately model the impact of shape on translucency appearance. Additionally, eye
tracking will also reveal whether observers actually rely on caustics or other cues
located elsewhere in the scene, outside the object’s body.

Secondly, machines could assist with the extraction of the relevant image fea-
tures. For instance, it has been demonstrated recently that unsupervised machine
learning techniques outperform image statistics in the prediction of human per-
ception (Storrs and Fleming (2020)). This can be a promising avenue for translu-
cency and in general, appearance research. Extracting perceptually meaningful
features using machine learning techniques might provide a deeper insight into
the humanly mechanisms of perception than simple handcrafted image metrics.

Thirdly, it is also important to explore how translucency interacts with other
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appearance attributes and what is the role of cognitive prior, such as material iden-
tification and expectations, in translucency perception, which has been demon-
strated to be an important factor in appearance in general (Alley et al. (2020)).
We believe that a sophisticated and perplexing mechanism of translucency per-
ception cannot be elucidated by psychophysics and image analysis alone without
contribution from modern neuroscience. We expect that the research on translu-
cency perception can greatly benefit from studies similar to that by Chadwick
et al. (2019). A neuroscientific study should reveal whether the perception of
translucency and other attributes are anatomically independent, and in general,
which cortical areas are responsible for perceiving translucency. For instance, it is
greatly anticipated that translucency perception is interrelated with the percep-
tion of shape (Marlow et al. (2017), Chowdhury et al. (2017), and Xiao et al.
(2020)). Understanding the physiology of translucency perception on the retinal
and cortical levels could aid the definition of a standard observer for translucency.

Besides, it is of particular interest to explore to what extent the HVS can
separate surface and subsurface scattering and whether it is feasible to produce
translucency metamers with distinct surface and subsurface scattering effects -
and if so, in which light field should the object be embedded for this effect. While
separation of the two might be easier for smooth, specularly reflecting objects,
as observed in Article F, the task can become increasingly difficult with the in-
crease of surface roughness. This research question can have significant economic
relevance, as surface manipulation is oftentimes cheaper than that of subsurface
scattering properties.

Furthermore, we think that information encapsulated in caustics deserves fur-
ther attention. Future work should explore to what extent can object and material
properties be estimated from a caustic pattern. A cheap and simple image-based
measurement technique can be developed, if reliable links are found between
caustics and material properties. This measurement technique, however, can be
limited with caustic metamers, i.e. different objects and materials producing iden-
tical caustics, the potential existence of which is an interesting question itself.

Apart from that, we have discussed a broad range of shortcomings that are
associated with the usage of still images. However, the generation of large physical
object datasets remains economically inefficient, as well as inconvenient in terms
of data sharing and research reproducibility and replicability. We contemplate that
future works can find a trade-off using emerging technologies to present stimuli,
such as extended reality and programmable matters.

To summarize, the research conducted by us and the open points outlined
above show that neither computer science, nor the vision science community is
likely to solve the appearance-related problems alone, but rather a multidisci-
plinary effort and different ways of thinking are needed. Appearance as a concept
does not belong to any particular domain and advances in our understanding of
it require input from the vision, computer and material science communities, as
well as from the visual arts, social science, experimental and cognitive psychology
research. We foresee that the key is in interdisciplinary research on appearance.
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Holly Rushmeier (2018). “Evaluating physical and rendered material appear-
ance.” In: The Visual Computer 34.6-8, pp. 805–816.

Fleming, Roland W (2014). “Visual perception of materials and their properties.”
In: Vision research 94, pp. 62–75.

Fleming, Roland W and Heinrich H Bülthoff (2005). “Low-level image cues in the
perception of translucent materials.” In: ACM Transactions on Applied Percep-
tion (TAP) 2.3, pp. 346–382.

Fleming, Roland W, Ron O Dror, and Edward H Adelson (2003). “Real-world il-
lumination and the perception of surface reflectance properties.” In: Journal
of Vision 3, pp. 347–368.

Frisvad, Jeppe Revall, Søren Alkærsig Jensen, Jonas Skovlund Madsen, António
Correia, Li Yang, Søren KS Gregersen, Youri Meuret, and Poul-Erik Hansen
(2020). “Survey of Models for Acquiring the Optical Properties of Translucent
Materials.” In: State of The Art Report, Eurographics 2020 39.2, pp. 729–755.

Fujisaki, Waka, Naokazu Goda, Isamu Motoyoshi, Hidehiko Komatsu, and Shin’ya
Nishida (2014). “Audiovisual integration in the human perception of materi-
als.” In: Journal of Vision 14.4:12, pp. 1–20.

Gaucher, Nathalie and Antoine Payot (2011). “From powerlessness to empower-
ment: Mothers expect more than information from the prenatal consultation
for preterm labour.” In: Paediatrics & Child Health 16.10, pp. 638–642.

Ged, Guillaume, Gaël Obein, Zaccaria Silvestri, Jean Le Rohellec, and Françoise
Viénot (2010). “Recognizing real materials from their glossy appearance.” In:
Journal of vision 10.9:18, pp. 1–17.



74 Gigilashvili: Translucency and Appearance

Gerbino, Walter, Casimir I Stultiens, Jim M Troost, and Charles M de Weert (1990).
“Transparent layer constancy.” In: Journal of Experimental Psychology: Human
Perception and Performance 16.1, pp. 3–20.

Giancola, Giorgiana and Mitchell L Schlossman (2015). “Decorative Cosmetics.”
In: Cosmeceuticals and Active Cosmetics, pp. 191–219.

Gigilashvili, Davit, Lucas Dubouchet, Marius Pedersen, and Jon Yngve Harde-
berg (2020). “Caustics and Translucency Perception.” In: Material Appearance
2020, IS&T International Symposium on Electronic Imaging. Society for Imag-
ing Science and Technology, 033:1–033:6.

Gigilashvili, Davit, Fereshteh Mirjalili, and Jon Yngve Hardeberg (2019). “Illumi-
nance Impacts Opacity Perception of Textile Materials.” In: Color and Imaging
Conference. Society for Imaging Science and Technology, pp. 126–131.

Gigilashvili, Davit, Marius Pedersen, and Jon Yngve Hardeberg (2018). “Blurring
impairs translucency perception.” In: Color and Imaging Conference. Society
for Imaging Science and Technology, pp. 377–382.

Gigilashvili, Davit, Weiqi Shi, Zeyu Wang, Marius Pedersen, Jon Yngve Hardeberg,
and Holly Rushmeier (2021). “The Role of Subsurface Scattering in Glossiness
Perception.” In: ACM Transaction on Applied Perception 18.3, 10:1–10:26.

Gigilashvili, Davit, Midori Tanaka, Marius Pedersen, and Jon Yngve Hardeberg
(2020). “Image Statistics as Glossiness and Translucency Predictor in Pho-
tographs of Real-world Objects.” In: 10th Colour and Visual Computing Sym-
posium 2020 (CVCS 2020). Vol. 2688. CEUR Workshop Proceedings, pp. 1–
15.

Gigilashvili, Davit, Jean Baptiste Thomas, Jon Yngve Hardeberg, and Marius Ped-
ersen (2020). “On the Nature of Perceptual Translucency.” In: 8th Annual
Workshop on Material Appearance Modeling (MAM2020). Eurographics Digital
Library, pp. 17–20.

Gigilashvili, Davit, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Marius Ped-
ersen (2018). “Behavioral investigation of visual appearance assessment.” In:
Color and Imaging Conference. Society for Imaging Science and Technology,
pp. 294–299.

Gigilashvili, Davit, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and Marius Ped-
ersen (n.d.). “Translucency perception: A review.” In: Accepted for publication
in the Journal of Vision, 45 pages.

Gigilashvili, Davit, Jean-Baptiste Thomas, Marius Pedersen, and Jon Yngve Harde-
berg (2019). “Material appearance: ordering and clustering.” In: Material Ap-
pearance 2019, IS&T International Symposium on Electronic Imaging. Society
for Imaging Science and Technology, 202:1–202:6.

Gigilashvili, Davit, Jean-Baptiste Thomas, Marius Pedersen, and Jon Yngve Harde-
berg (2019). “Perceived Glossiness: Beyond Surface Properties.” In: Color and
Imaging Conference. Society for Imaging Science and Technology, pp. 37–42.

Gigilashvili, Davit, Jean-Baptiste Thomas, Marius Pedersen, and Jon Yngve Hard-
eberg (n.d.). “On the appearance of objects and materials: Qualitative analysis



Bibliography 75

of experimental observations.” In: Accepted for publication in the Journal of the
International Colour Association (JAIC), 33 pages.

Gigilashvili, Davit, Philipp Urban, Jean-Baptiste Thomas, Jon Yngve Hardeberg,
and Marius Pedersen (2019). “Impact of Shape on Apparent Translucency Dif-
ferences.” In: Color and Imaging Conference. Society for Imaging Science and
Technology, pp. 132–137.

Gigilashvili, Davit, Philipp Urban, Jean-Baptiste Thomas, Marius Pedersen, and
Jon Yngve Hardeberg (n.d.). “The Impact of Optical and Geometrical Thick-
ness on Perceived Translucency Differences.” In: Under review in a journal, 13
pages.

Gkioulekas, Ioannis, Bruce Walter, Edward H Adelson, Kavita Bala, and Todd Zick-
ler (2015). “On the appearance of translucent edges.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 5528–5536.

Gkioulekas, Ioannis, Bei Xiao, Shuang Zhao, Edward H Adelson, Todd Zickler, and
Kavita Bala (2013). “Understanding the role of phase function in translucent
appearance.” In: ACM Transactions on graphics (TOG) 32.5, pp. 1–19.

Gkioulekas, Ioannis, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin
(2013). “Inverse volume rendering with material dictionaries.” In: ACM Trans-
actions on Graphics (TOG) 32.6, pp. 1–13.

Glaser, Barney G and Anselm Strauss (1965). “Discovery of substantive theory: A
basic strategy underlying qualitative research.” In: American Behavioral Scien-
tist 8.6, pp. 5–12.

Glaser, Barney G, Anselm L Strauss, and Elizabeth Strutzel (1968). “The discovery
of grounded theory; strategies for qualitative research.” In: Nursing research
17.4, p. 364.

Goesele, Michael, Hendrik PA Lensch, Jochen Lang, Christian Fuchs, and Hans-
Peter Seidel (2004). “DISCO: acquisition of translucent objects.” In: ACM SIG-
GRAPH 2004 Papers, pp. 835–844.

Hodgson, Alan (2020). “The viewing of Caustics.” In: The
Royal Photographic Society. Accessed on 17/02/2021 at
https://rps.org/news/bristol/2020/october/the-viewing-of-caustics/.

Hunter, Richard S (1937). “Methods of determining gloss.” In: NBS Research paper
RP 958, pp. 19–39.

Hunter, Richard S and Richard W Harold (1987). The measurement of appearance.
John Wiley & Sons.

Hutchings, John B (1977). “The importance of visual appearance of foods to the
food processor and the consumer 1.” In: Journal of Food Quality 1.3, pp. 267–
278.

Hutchings, John B (1999). Food color and appearance. 2nd edition. Aspen Publish-
ers, New York.

Hutchings, John B (2011). Food colour and appearance. Springer Science & Busi-
ness Media.



76 Gigilashvili: Translucency and Appearance

Hutchings, John B (1995a). “The continuity of colour, design, art, and science. I.
The philosophy of the total appearance concept and image measurement.” In:
Color Research & Application 20.5, pp. 296–306.

Hutchings, John B (1995b). “The continuity of colour, design, art, and science.
II. Application of the total appearance concept to image creation.” In: Color
Research & Application 20.5, pp. 307–312.

Jacob, Jean Daniel and Dave Holmes (2011). “Working under threat: Fear and
nurse–patient interactions in a forensic psychiatric setting.” In: Journal of
Forensic Nursing 7.2, pp. 68–77.

Jakob, Wenzel (2010). Mitsuba renderer. http://www.mitsuba-renderer.org.
Jensen, Henrik W, Stephen R Marschner, Marc Levoy, and Pat Hanrahan (2001).

“A practical model for subsurface light transport.” In: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pp. 511–
518.

Kaltenbach, Frank (2012). Translucent materials: glass, plastics, metals. Walter de
Gruyter.

Kerrigan, Iona S and Wendy J Adams (2013). “Highlights, disparity, and perceived
gloss with convex and concave surfaces.” In: Journal of Vision 13.1:9, pp. 1–
10.

Kim, Juno, Phillip Marlow, and Barton L Anderson (2011). “The perception of
gloss depends on highlight congruence with surface shading.” In: Journal of
Vision 11(9).4, pp. 1–19.

Lafer-Sousa, Rosa, Katherine L Hermann, and Bevil R Conway (2015). “Strik-
ing individual differences in color perception uncovered by ‘the dress’ pho-
tograph.” In: Current Biology 25.13, R545–R546.

Lagunas, Manuel, Sandra Malpica, Ana Serrano, Elena Garces, Diego Gutierrez,
and Belen Masia (2019). “A similarity measure for material appearance.” In:
arXiv preprint arXiv:1905.01562.

Landy, Michael S (2007). “A gloss on surface properties.” In: Nature 447.7141,
pp. 158–159.

Leloup, Frédéric B, Stefaan Forment, Philip Dutré, Michael R Pointer, and Peter
Hanselaer (2008). “Design of an instrument for measuring the spectral bidirec-
tional scatter distribution function.” In: Applied optics 47.29, pp. 5454–5467.

Leloup, Frédéric B, Gael Obein, Michael R Pointer, and Peter Hanselaer (2014).
“Toward the soft metrology of surface gloss: A review.” In: Color Research &
Application 39.6, pp. 559–570.

Leloup, Frédéric B, Michael R Pointer, Philip Dutré, and Peter Hanselaer (2010).
“Geometry of illumination, luminance contrast, and gloss perception.” In:
JOSA A 27.9, pp. 2046–2054.

Leloup, Frédéric B, Michael R Pointer, Philip Dutré, and Peter Hanselaer
(2011). “Luminance-based specular gloss characterization.” In: JOSA A 28.6,
pp. 1322–1330.



Bibliography 77

Leloup, Frédéric B, Michael R Pointer, Philip Dutré, and Peter Hanselaer (2012).
“Overall gloss evaluation in the presence of multiple cues to surface glossi-
ness.” In: JOSA A 29.6, pp. 1105–1114.

Liu, Min-Chieh, Steven A Aquilino, Peter S Lund, Marcos A Vargas, Ana M Diaz-
Arnold, David G Gratton, and Fang Qian (2010). “Human perception of dental
porcelain translucency correlated to spectrophotometric measurements.” In:
Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry 19.3,
pp. 187–193.

Lopes Filho, Hibernon, Lúcio EG Maia, Marcus Vinicius A Araújo, and Antônio
Carlos O Ruellas (2012). “Influence of optical properties of esthetic brack-
ets (color, translucence, and fluorescence) on visual perception.” In: American
journal of orthodontics and dentofacial orthopedics 141.4, pp. 460–467.

Luckerhoff, Jason and François Guillemette (2011). “The Conflicts between
Grounded Theory Requirements and Institutional Requirements for Scientific
Research.” In: Qualitative Report 16.2, pp. 396–414.

Maloney, Laurence T and Kenneth Knoblauch (2020). “Measuring and Modeling
Visual Appearance.” In: Annual Review of Vision Science 6, pp. 519–537.

Marlow, Phillip J and Barton L Anderson (2013). “Generative constraints on image
cues for perceived gloss.” In: Journal of Vision 13.14, pp. 2–2.

Marlow, Phillip J and Barton L Anderson (2021). “The cospecification of the shape
and material properties of light permeable materials.” In: Proceedings of the
National Academy of Sciences 118.14, pp. 1–10.

Marlow, Phillip J, Juno Kim, and Barton L Anderson (2011). “The role of bright-
ness and orientation congruence in the perception of surface gloss.” In: Journal
of Vision 11(9).16, pp. 1–12.

Marlow, Phillip J, Juno Kim, and Barton L Anderson (2012). “The perception
and misperception of specular surface reflectance.” In: Current Biology 22.20,
pp. 1909–1913.

Marlow, Phillip J, Juno Kim, and Barton L Anderson (2017). “Perception and mis-
perception of surface opacity.” In: Proceedings of the National Academy of Sci-
ences 114.52, pp. 13840–13845.

Merriam-Webster Dictionary (n.d.). Accessed: 2020-11-06. URL: https://www.
merriam-webster.com/dictionary/translucent.

Metelli, Fabio (1974). “The perception of transparency.” In: Scientific American
230.4, pp. 90–99.

Molloy, Mark (2016). “Confused by this shiny leg optical illusion? Here’s how
it works.” In: The Telegraph. Accessed on 04/01/2019. URL: https://www.
telegraph.co.uk/news/2016/10/31/confused- by- this- shiny- leg-
optical-illusion-heres-how-it-works.

Motoyoshi, Isamu (2010). “Highlight–shading relationship as a cue for the per-
ception of translucent and transparent materials.” In: Journal of Vision 10.9:6,
pp. 1–11.



78 Gigilashvili: Translucency and Appearance

Motoyoshi, Isamu, Shin’ya Nishida, Lavanya Sharan, and Edward H Adelson
(2007). “Image statistics and the perception of surface qualities.” In: Nature
447.7141, pp. 206–209.

Murray, Scott (2013). Translucent building skins: material innovations in modern
and contemporary architecture. Routledge.

Nagai, Takehiro, Yuki Ono, Yusuke Tani, Kowa Koida, Michiteru Kitazaki, and
Shigeki Nakauchi (2013). “Image regions contributing to perceptual translu-
cency: A psychophysical reverse-correlation study.” In: i-Perception 4.6,
pp. 407–428.

Nicodemus, Fred E (1965). “Directional reflectance and emissivity of an opaque
surface.” In: Applied optics 4.7, pp. 767–775.

Nicodemus, Fred E, Joseph C Richmond, Jack J Hsia, Irving W Ginsberg, Thomas
Limperis, et al. (1977). Geometrical considerations and nomenclature for re-
flectance. Vol. 160. Citeseer, 52 pages.

Nishida, Shin’ya, Isamu Motoyoshi, Lisa Nakano, Yuanzhen Li, Lavanya Sharan,
and Edward Adelson (2008). “Do colored highlights look like highlights?” In:
Journal of Vision 8.6, p. 339.

Nishida, Shin’ya and Mikio Shinya (1998). “Use of image-based information in
judgments of surface-reflectance properties.” In: JOSA A 15.12, pp. 2951–
2965.

Nunes, Augusto LP, Anderson Maciel, Gary W Meyer, Nigel W John, Gladimir
VG Baranoski, and Marcelo Walter (2019). “Appearance modelling of living
human tissues.” In: Computer Graphics Forum. Vol. 38. 6. Wiley Online Library,
pp. 43–65.

Obein, Gaël, Kenneth Knoblauch, and Françoise Viénot (2004). “Difference scaling
of gloss: Nonlinearity, binocularity, and constancy.” In: Journal of Vision 4,
pp. 711–720.

Olkkonen, Maria and David H Brainard (2011). “Joint effects of illumination
geometry and object shape in the perception of surface reflectance.” In: i-
Perception 2.9, pp. 1014–1034.

Paillé, Pierre (1994). “L’analyse par théorisation ancrée.” In: Cahiers de recherche
sociologique 1.23, pp. 147–181.

Pellacini, Fabio, James A Ferwerda, and Donald P Greenberg (2000). “Toward a
psychophysically-based light reflection model for image synthesis.” In: Pro-
ceedings of the 27th annual conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co., pp. 55–64.

Piadyk, Yurii, Yitzchak Lockerman, and Claudio Silva (2020). “Anisotropic Sub-
surface Scattering Acquisition Through a Light Field Based Apparatus.” In:
Electronic Imaging, Imaging Sensors and Systems 2020 7, 225:1–225:7.

Pointer, Michael R (2003). “Measuring Visual Appearance- A Framework of the
Future. Project 2.3 Measurement of Appearance.” In: National Physical Lab-
oratory (NPL) Report: Centre for Optical and Analytical Measurement (COAM)
19.



Bibliography 79

Rippon, Daniel, Andrew McDonnell, Michael Smith, Michael McCreadie, and
Mark Wetherell (2020). “A grounded theory study on work related stress in
professionals who provide health & social care for people who exhibit be-
haviours that challenge.” In: PLoS ONE 15.2, pp. 1–23.

Rushmeier, Holly (1995). “Input for participating media.” In: In Realistic Input
for Realistic Images (1995), ACM Press, ACM SIGGRAPH ’95 Course Notes. Also
appeared in the ACM SIGGRAPH ’98 Course Notes - A Basic Guide to Global
Illumination. 8:1–8:24.

Sakano, Yuichi and Hiroshi Ando (2010). “Effects of head motion and stereo view-
ing on perceived glossiness.” In: Journal of Vision 10.9:15, pp. 1–14.

Sawayama, Masataka, Yoshinori Dobashi, Makoto Okabe, Kenchi Hosokawa,
Takuya Koumura, Toni Saarela, Maria Olkkonen, and Shin’ya Nishida (2019).
“Visual discrimination of optical material properties: a large-scale study.” In:
BioRxiv, 35 pages.

Serrano, Ana, Diego Gutierrez, Karol Myszkowski, Hans-Peter Seidel, and Belen
Masia (2018). “An intuitive control space for material appearance.” In: arXiv
preprint arXiv:1806.04950.

Sharan, Lavanya, Ruth Rosenholtz, and Edward H Adelson (2014). “Accuracy and
speed of material categorization in real-world images.” In: Journal of Vision
14.9:12, pp. 1–24.

Singh, Manish and Barton L Anderson (2002). “Perceptual assignment of opacity
to translucent surfaces: The role of image blur.” In: Perception 31.5, pp. 531–
552.

Sole, Aditya, Davit Gigilashvili, Helene Midtfjord, Dar’ya Guarnera, Giuseppe
Claudio Guarnera, Jean-Baptiste Thomas, and Jon Yngve Hardeberg (2019).
“On the acquisition and reproduction of material appearance.” In: Interna-
tional Workshop on Computational Color Imaging. Springer, pp. 26–38.

Starrin, Bengt, Lars Dahlgren, Gerry Larsson, and Sven Styrborn (1997).
Along the path of discovery: Qualitative methods and grounded theory. ISBN:
9144005156. Lund, Sweden: Studentlitteratur.

Stevens, Stanley S (1960). “The psychophysics of sensory function.” In: American
Scientist 48.2, pp. 226–253.

Storrs, Katherine R and Roland W Fleming (2020). “Unsupervised Learning Pre-
dicts Human Perception and Misperception of Specular Surface Reflectance.”
In: bioRxiv, 25 pages.

Tamura, Hideki, Hiroshi Higashi, and Shigeki Nakauchi (2018). “Dynamic visual
cues for differentiating mirror and glass.” In: Scientific reports 8.1, pp. 1–12.

The Stanford 3D Scanning Repository (1994). Stanford University Computer
Graphics Laboratory. URL: http : / / graphics . stanford . edu / data /
3Dscanrep/.

Thomas, Jean-Baptiste, Aurore Deniel, and Jon Y Hardeberg (2018). “The Plas-
tique collection: A set of resin objects for material appearance research.” In:
XIV Conferenza del Colore, Florence, Italy, 12 pages.



80 Gigilashvili: Translucency and Appearance

Thomas, Jean-Baptiste, Jon Yngve Hardeberg, and Gabriele Simone (2017). “Im-
age contrast measure as a gloss material descriptor.” In: International Work-
shop on Computational Color Imaging. Springer, pp. 233–245.

Torgerson, Warren S (1958). “Theory and methods of scaling.” In: 1958, Wiley:
New York.

Toscani, Matteo, Dar’ya Guarnera, Giuseppe Claudio Guarnera, Jon Yngve Harde-
berg, and Karl R Gegenfurtner (2020). “Three perceptual dimensions for spec-
ular and diffuse reflection.” In: ACM Transactions on Applied Perception (TAP)
17.2, pp. 1–26.

Urban, Philipp, Tejas Madan Tanksale, Alan Brunton, Bui Minh Vu, and Shigeki
Nakauchi (2019). “Redefining a in RGBA: Towards a standard for graphical
3D printing.” In: ACM Transactions on Graphics (TOG) 38.3, pp. 1–14.

Van Ngo, Khai, Jehans Jr. Storvik, Christopher André Dokkeberg, Ivar Farup, and
Marius Pedersen (2015). “Quickeval: a web application for psychometric scal-
ing experiments.” In: Image Quality and System Performance XII. Vol. 9396.
International Society for Optics and Photonics, 93960O.

Vangorp, Peter, Jurgen Laurijssen, and Philip Dutré (2007). “The influence of
shape on the perception of material reflectance.” In: ACM Transactions on
graphics (TOG). Vol. 26. 3. ACM, 77:1–77:10.

Wendt, Gunnar, Franz Faul, Vebjørn Ekroll, and Rainer Mausfeld (2010). “Dispar-
ity, motion, and color information improve gloss constancy performance.” In:
Journal of Vision 10.9:7, pp. 1–17.

Wendt, Gunnar, Franz Faul, and Rainer Mausfeld (2008). “Highlight disparity con-
tributes to the authenticity and strength of perceived glossiness.” In: Journal
of Vision 8.1:14, pp. 1–10.

Wiebel, Christiane B, Matteo Toscani, and Karl R Gegenfurtner (2015). “Statisti-
cal correlates of perceived gloss in natural images.” In: Vision Research 115,
pp. 175–187.

Wijntjes, MWA, C Spoiala, and H de Ridder (2020). “Thurstonian Scaling and the
Perception of Painterly Translucency.” In: Art & Perception 8.3–4, pp. 363–386.

Xiao, Bei, Bruce Walter, Ioannis Gkioulekas, Todd Zickler, Edward Adelson, and
Kavita Bala (2014). “Looking against the light: How perception of translucency
depends on lighting direction.” In: Journal of Vision 14.3:17, pp. 1–22.

Xiao, Bei, Shuang Zhao, Ioannis Gkioulekas, Wenyan Bi, and Kavita Bala (2020).
“Effect of geometric sharpness on translucent material perception.” In: Journal
of Vision 20.7:10, pp. 1–17.



Part II

81





Article A

Davit Gigilashvili, Jean-Baptiste Thomas, Jon Yngve Hardeberg, and
Marius Pedersen (2018). “Behavioral investigation of visual appear-
ance assessment.” In: Color and Imaging Conference. Society for Imag-
ing Science and Technology, pp. 294–299

83





Behavioral Investigation of Visual Appearance Assessment
Davit Gigilashvili, Jean-Baptiste Thomas, Jon Yngve Hardeberg, Marius Pedersen;
Department of Computer Science, Norwegian University of Science and Technology; Gjøvik, Norway

Abstract
The way people judge, assess and express appearance they

perceive can dramatically vary from person to person. The objec-
tive of this study is to identify the research hypotheses and outline
directions for the future work based on the tasks observers per-
form. The eventual goal is to understand how people perceive,
judge, and assess appearance, and what are the factors impact-
ing their assessments. A series of interviews were conducted in
uncontrolled conditions where observers were asked to describe
the appearance of the physical objects and to complete simple
visual tasks, like ranking objects by their gloss or translucency.
The interviews were filmed with the consent of the participants
and the videos were subsequently analyzed. The analysis of the
data has shown that while there are cross-individual differences
and similarities, surface coarseness, shape, and dye mixture have
significant effect on translucency and gloss perception.

Introduction and Motivation
Vision is one of the primary senses humans use to perceive

and interpret the surrounding. ”Visual perception is the abil-
ity to interpret the surrounding environment by processing infor-
mation that is contained in the visible light” [1]. On the other
hand, ”appearance is the visual sensation through which an ob-
ject is perceived to have attributes as size, shape, colour, texture,
gloss, transparency, opacity etc.” [2] Appearance is a complex
psychophysical phenomenon that depends not only on the stim-
uli, but on a broad spectrum of various factors, e.g. memory of
the observer [3]. For an easier understanding of appearance, it
has been split into several distinct attributes that compose the ap-
pearance. CIE defines four major appearance attributes: color,
gloss, translucency and texture [2, 4] that interact and influence
each other [5, 6, 7].

Advances in computer graphics and simplicity of controlling
the parameters have lead to widespread usage of synthetic images
for appearance research (e.g. [8, 9]). On the other hand, RGB
images of the real objects are frequently used for material appear-
ance analysis, especially in computer vision (e.g. [10, 11, 12]).
Despite the clear advantage of using synthetic or real images, the
appearance and perception still differ from that of real-life situ-
ations. The interaction can be considered less natural due to the
presence of the intermediate media and lack of the imperfections
in synthetic images [13]. Lack of possibility to touch the objects,
limited or no possibility to move them, and lack of the effect of the
head movement can be named as further disadvantages of using
images for studying appearance.

There has been examples of using real objects for studying
appearance [14, 15]. However, experiments were held in con-
trolled laboratory conditions, the observation geometry was fixed
and observers were not allowed to touch the objects. This makes
the setup artificial and is rarely to be encountered in real life.

Therefore, we decided to use real objects for our study; al-
lowing observers to freely interact with them. The geometry of
the measurement can impact the appearance. Bidirectional Re-
flectance Distribution Functions (BRDF) [16, 17], gloss [18, 19],
or color [20, 21] are all measured for predefined geometries.
However, observation geometries in real life vary a lot. This is
the main reason why we allow the observers to freely interact
with the objects. This is primarily a qualitative study to identify
traits of appearance assessment by human observers. Analysis of
the consistency of human behaviour might potentially outline the
directions for further studies, and eventually leading to a better
understanding of appearance perception.

The scope of this paper covers the results obtained from the
experiments. Particular procedures and processes that lead ob-
servers to the results discussed below will be analyzed in the fu-
ture work. Below we introduce the experimental setup, quantita-
tive results of the experiments followed by the research hypothe-
ses generated from them.

Experimental Setup
In our experiments, we used resin objects of the Plastique

artwork collection described by Thomas et al. [13]. The objects
are referred by their codes in task descriptions, as labelled in [13].
The collection of objects is composed of spheres, parallelepipeds,
and female bust figures of three levels of surface coarseness and
four hues (blue, yellow, white, and achromatic/transparent).

The interviews were conducted in uncontrolled conditions,
under a mixture of daylight and artificial fluorescent illumination.
The experimenter measured light intensity (in lux) and color tem-
perature of the illumination (in Kelvin) with a light meter before
and after the interview. The video and audio of the interview was
recorded from two perspectives, front and side. A screenshot from
a sample video can be seen in Figure 1. Nine boxes with differ-
ent sets of the physical objects were used for eleven tasks of the
interview (Figure 2). A checkerboard, a pen with text on it, and
a white paper were placed on the table without explicit explana-
tions. However, the participants were informed that they could
freely interact with the objects. We expected that the white paper,
as a homogeneous background, and a checkerboard, as a hetero-
geneous background, could be used by the observers for judging
translucency. Besides, a pen with a text on it could be used to
check whether reading through the object was possible. The ob-
servers were asked to wear gloves, in order to protect the objects.

17 observers, 11 men and 6 women have been interviewed
in total with average age of 35.7 years. 4 out of them were the
authors of this paper. 14 observers were experts in the field, while
three of them were naı̈ve to visual appearance studies. 2 observers
were color deficient.

The interviewees were encouraged to explain their decisions
and comment their actions while completing the tasks. The boxes
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Figure 1: A screenshot from a sample video.

Figure 2: The boxes used in the interview. The letters are ran-
domly assigned to the boxes and are not related to the appearance
of the objects.

with respective oral instructions were introduced to the intervie-
wees in the following order:
Task 1 (box Q):
• Objects: There are 48 rectangular parallelepipeds of different

color, coarseness and translucency in the box.

• Tasks: 1) The first task is to cluster the objects into any num-
ber of groups the participant considers natural. 2) Experi-
menter asks the participant to discuss and explain the reason-
ing of clustering this way. 3) Experimenter asks the participant
whether there could be any other way of creating groups that
look natural. 4) Experimenter selects one of the groups of the
cluster and asks the participant to sub-cluster this group even
further.

Task 2 (box C):
• Objects: There are 5 yellow spheres of different coarseness and

translucency in the box. Besides, there are 6 more objects: two
female busts, two spheres and two rectangular parallelepipeds.

• Tasks: 1) The first task is to order the 5 spheres in any way
the participant considers natural. They are encouraged to use
any dimensions they think fit. 2) The participant is given 6
additional objects and is asked to locate the object in relation to
the order he/she created with the first five spheres. The observer
is expected to fail to order all objects within the created order,
and thereby, to generate some questions how to locate the new
object. The outcome is to identify potential cues to create an
appearance ordering system.

Task 3 (box X):
• Objects: There are 5 blue female bust objects from the Plas-

tique collection in the box. Object codes: 140, 154, 157, 158,
161.[13]

• Tasks: 1) The first task is to describe the appearance of the
objects. Besides, the observers are asked, which objects look
softer or harder, lighter or heavier, without touching them. 2)
The participant can now touch the objects. The participant is
asked to rank the object by their gloss/shine.

Task 4 (box M):
• Objects: There are 3 yellow spheres of different surface coarse-

ness and translucency in the box. Object codes: 86, 95, 109.

• Tasks: 1) The first task is to describe the appearance of the
objects with participants’ own words. 2) The second task is to
rank the object by their gloss/shine.

Task 5 (box P):
• Objects: There are 5 spheres of different colors, coarseness and

translucency in the box. Object codes: 79, 82, 88, 94, 112.

• Tasks: 1) The first task is to describe the appearance of the
objects with participants’ own words. 2) The second task is
to rank the object by their gloss/shine. The goal is to observe,
whether difference in color and translucency impacts the result.

Task 6 (box F):
• Objects: There are 3 blue objects in the box: one sphere, one

rectangular parallelepiped, and one female bust. Object codes:
42, 101, 155.

• Tasks: 1) The first task is to describe the appearance of the ob-
jects with participants’ own words. 2) The second task is to
rank the object by their translucency. However, word ”translu-
cency” is not be mentioned explicitly throughout the experi-
ment, as it could be ambiguous for some of the interviewees;
”how light is going through” is used instead.

Task 7 (box X):
• Objects: There are 5 blue female bust objects in the box. Al-

though the box has already been used in the experiment, the
experimenter has re-introduced the box in the pile discretely.

• Tasks: 1) The first task is to describe the appearance of the ob-
jects. 2) The second task is to rank the object by their translu-
cency.

Task 8 (box A):
• Objects: There are 3 objects of different shape and color in

the box: yellow female bust, achromatic rectangular paral-
lelepiped, and blue sphere. Object codes: 2, 103, 151.

• Tasks: 1) The first task is to describe the appearance of the ob-
jects. 2) The second task is to rank the object by their translu-
cency. The goal is to observe, whether color and shape impact
translucency perception.

Task 9 (box Z):
• Objects: There are 5 female bust objects of different colors in

the box. Object codes: 115, 152, 160, 163, 167.

• Tasks: 1) The first task is to describe the appearance of the
objects. Besides, the observers are specially asked, which ob-
jects looks softer or harder, heavier or lighter, without touching
them. 2) The participant can now touch the objects. The par-
ticipant is asked to rank the object by their translucency.
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Task 10 (box A):

• Objects: There are 3 objects of different shape, color, and sur-
face coarseness in the box: yellow female bust, achromatic
rectangular parallelepiped, and blue sphere. Although the box
has already been used in the experiment, this is not revealed to
the participant.

• Tasks: 1) The first task is to describe the appearance of the
objects. 2) The second task is to rank the object by gloss/shine.

Task 11 (box T):

• Objects: There are 6 blue spheres of different surface coarse-
ness and dye mixture in the box. Object codes: 75, 76, 80, 83,
100, 102.

• Tasks: 1) The first task is to describe the appearance of the ob-
jects. 2) The second task is to cluster them into ”opaque” and
”non-opaque” categories. We are interested, whether level of
light transport is critical for opacity or transparency identifica-
tion.

The objects used for tasks 3, 4, 5, 7 and 9 are labelled and
illustrated on Figure 4.

Analysis and Results
We provide quantitative analysis on 9 boxes, while the first

two ones will only be considered in a qualitative way due limited
space. Nevertheless, the behavioral patterns and detailed analysis
will be considered in a future communication. Behavioral patterns
for boxes Q and C are very complex and therefore, left beyond the
scope of this paper.

The ranking experiment results are quantified as follows:
ranked objects are given points from 5 to 1, where 5 points cor-
respond to the most glossy/translucent one. In case of ties, the
average point of the tied objects is assigned to each of them. For
instance, if first three objects are tied, each of them gets 4 points,
while if only first two are tied, each gets 4.5 points.

The results are visualized as boxplots, given on Figure 3.
In order to check statistical significance of the differences, ranked
objects were considered as pairs. Afterwards, sign tests have been
conducted and Bonferroni correction [22] was applied to avoid the
bias due to the multiple testing. Alpha threshold was set to 0.05.

It is worth mentioning that the experimental protocol was
not identical for all observers. Some observers were clearly in-
structed that they could have ties, while in other cases, this was
not clearly mentioned by the interviewer. Therefore, the observers
might have assumed that they were forced to choose and cross-
individual differences might be accounted for this factor.

Task 1 (box Q)
Color or hue was a dominant attribute used by the observers

to group the objects. 13 out of 17 participants used this single
criterion for clustering, while the criteria used by 4 other ob-
servers were the combination of color and translucency, trans-
parency, ”surface properties”, and ”material properties”. How-
ever, the number of groups created based on color varied, leading
to a color naming problem. The second level criteria were mostly
gloss and translucency, either separately, or in combination.

Task 2 (box C)
12 observers had 2-dimensional arrangement for defining the

space, while 5 observers had 1-dimensional order. 14 observers
used translucency as one of the criteria. The dimensions increased
in 8 cases after getting access to additional objects. However, 13
observers mentioned that either they would not have changed their
space in case they had access to all objects at once, or they were
uncertain what they would have done. As suggested by Thomas
et al. [13], people usually tend to stick to the standards they create
and feel comfortable with.

Task 3 (box X)
The task was reasonably fast taking about 5 minutes on av-

erage. Seven observers had binary ranking - grouping the ob-
jects into two: ”glossy” and ”matte” categories. While others
had more than two steps with some ties possible. There is very
clear separation between the objects, as A, B and C are always
considered less glossy than D and E. On the other hand, there
is no consensus among observers about ranking within ”glossy”
and ”matte” groups, especially, between D and E. All differences
are statistically significant except for that between A and B, and
D and E. 5 people considered D more glossy, 5 people ranked E
as more glossy, while 7 people tied them. The analysis of their
argumentation revealed two different approaches: people opting
for D mostly argued that as the object is lighter and more translu-
cent, more light is coming from it and therefore, it appears more
glossy. On the other hand, people opting for E argued that it has
larger tonal range, as the contrast between brightest and darkest
points is larger, and therefore, the object appears more glossy. In
the latter case, we can think that people use the contrast gloss (as
defined by Hunter [23]) as an additional cue.

Task 4 (box M)
All observers ranked object C as the most glossy one, while

the difference between A and B is not statistically significant. Ob-
jects A and B have the same level of surface coarseness, while
they substantially differ in transparency. In this particular case, we
achieved the same gloss perception with the same surface coarse-
ness, even when other material properties are different. We can
hypothesize that similar gloss appearance can be achieved with
similar surface coarseness. This is in agreement with microfacet
BRDF model [24, 25, 26]. However, the limits of this hypoth-
esis need to be understood. As we have demonstrated for Task
3, transparency and lightness can impact gloss perception among
some individuals, even when surface properties are the same.

Task 5 (box P)
All five objects have the same surface coarseness. According

to the hypothesis drawn from the Task 4, their perceived glossi-
ness is expected to be the same. It is interesting that there is no
clear trend in ranking and no statstically significant difference
among perceived gloss of the object. The only statistically sig-
nificant difference was observed between D and E. Five observers
decided that all objects have same amount of glossiness. In spite
of this, other observers forced themselves to use various cues for
ranking. While some used the same argumentation, as in case
of the objects from box X (ligher and more translucent ones be-
ing more glossy, i.e. objects A and B), others used the clarity
of their own image reflected on the surface, listing C, D, and E
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Figure 3: Boxplots for observer scores. Central mark -median; bottom and top edges - 25th and 75th percentiles, respectively; Whiskers
extend to the extreme data points excluding outliers; red ’+’ symbol - outliers. We can observe clear separation for Tasks 3 and 7, clear
order can be seen for Task 9, while no difference is significant for Task 5.

Figure 4: The objects used: (i) Tasks 3 and 7 (box X). (ii) Task 4
(box M). (iii) Task 5 (box P). (iv) Task 9 (box Z).

as more glossy ones. This implied that they come a bit closer to
the object and then, the intrinsic properties of the material per-
mitted them to infer differences. Hunter [23] defined six types
of perceptual gloss. Apparently, specular gloss that is ”the most
commonly measured parameter in experiments as an approxima-
tion for the physical measurement of perceptual gloss” [27] is
widely used by the observers. On the other hand, we might ar-
gue that distinctness-of-reflected-image gloss is a secondary cue
for judgement used by some observers. However, we think that
the observers use different reflections from different light sources
rather than different types of gloss as a cue. When the reflection
of a very intense point light source is equivalent (the sun in our
experiments), the observers might have tried to estimate ambient
structured light in the room, which was too low to generate a very
bright specularity. Therefore, the observers tried to evaluate dis-
tinctness of the reflected image. However, considering the data
we have at hand, no statistical correlation have been found be-
tween average intensity of illumination (mean of the illumination
in Lux at the beginning and the end of the experiment) and usage
of distinctness-of-reflected-image as a cue. However, illumination
has changed rapidly for some experiments due to meteorological

conditions and thus, we need more controlled conditions to exam-
ine the hypothesis.

Task 6 (box F)
The decisions were very consistent about the rectangular ob-

ject, 13 observers considering it least translucent and thereby,
making the difference statistically significant. However, the dif-
ference between the bust and the sphere is statistically negligible.
The rectangular object has more coarse surface than other objects,
while surface coarseness is the same for the bust and the sphere.
On the other hand, the sphere has one-level-less amount of blue
dyes than the rectangular object and the female bust. Ranking the
cube as least translucent can be accounted for the combination of
its compact shape in comparison with the bust, higher amount of
dyes in comparison with the sphere, and higher surface coarse-
ness in comparison with both objects. Despite the fact that the
bust has higher proportion of the dyes, we still have insignificant
difference in perceived translucency with the sphere. This can
be explained with the presence of thin areas in the bust, while
the sphere is a compact and thick object. Objects of the same
shape with varying material properties are often used in appear-
ance studies (e.g. [8, 14, 28]). However, our data has some indi-
cations that shape might compensate for the difference in intrinsic
material properties and generate the similar translucency percep-
tion of the overall object even if the material is less translucent.
To test this hypothesis, further experiments are needed using dif-
ferent levels of dye mixture, and same level of surface coarseness.

Task 7 (box X)
In contrast with the first occurrence of this box, the results

are very consistent among observers. All differences are statis-
tically significant. 14 people ranked them in the following or-
der from least translucent to the most translucent one: C (least
translucent), B, A, E, D (most translucent). In this case, dye mix-
ture and surface coarseness factors do not contradict and compen-
sate each other that makes ranking simple for the observers.
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Task 8 (box A)
13 observers considered the cube as least translucent one.

Although there have been three observers who ranked this ob-
ject first. The reason can be the experimental protocol, as the
phrase ”how light is going through” used by the experimenter was
interpreted differently. While some participants understood this
phrase as the complexity or simplicity of the light interaction with
the objects, others judged simply the amount of light transmitted
through them. The ambiguity of the instruction makes sphere and
cube the only pair that are significantly different.

Task 9 (box Z)
The observers demonstrated very high consistency when

ranking the objects by translucency. While shapes are the same in
contrast with Task F, surface coarseness and dye mixing should be
impacting perceived translucency. All differences are statistically
significant except for that between A and B. Object A and B have
a more rough surface than objects C, D, and E. Their surface scat-
ters the light, and blurs the content behind. Besides, Object A has
higher portion of yellow dyes, and therefore, considered mostly
less translucent than B. However, four observers discarded the
”color difference” and ranked them as equally translucent. While
object E has smooth surface and no colorants inside, it is intu-
itive that the object is considered most translucent. There is more
neutral transparent material in bluish object D than that in yel-
lowish object C. However, as absorption and scattering properties
of the two colorants are different, the effect of their concentra-
tions are not directly comparable. The fact that bluish object is
considered more translucent can be accounted for more complex
cognitive factors too. Most observers described bluish object as
precious and glassy, i.e. something associated with transparent
material. On the other hand, yellow one was compared with jelly,
less precious plastic, or amber - something to be less prone to
transparent. The most interesting case is ranking object C over
B, despite having higher concentration of the colorants. We can
hypothesize that translucency perception is impacted by surface
roughness and lightness of the object. What are the limits of the
impact by each factor needs further investigation of the objects
with varying surface roughness and dye concentration.

Task 10 (box A)
All observers considered the cube least glossy. However, the

difference between the sphere and the bust is not statistically sig-
nificant. This is an interesting case where objects with similar
surface coarseness, but with different shapes and color intensity
evoke similar gloss perception.

Task 11 (box T)
There has been interesting inconsistency in what observers

consider the limit of being opaque or translucent, as particular
objects were sometimes classified as opaque, and sometimes as
non-opaque. Even when people observed a certain translucency
for some of the opaque spheres, they still classified them opaque.
We suggest that opacity does not imply the absence of translu-
cency. However, this topic requires further investigation.

Discussion
After analyzing the data, we can say that expert observers

are more scrupulous with taking decisions, judging objects from

many different observation geometries, moving objects, trying to
look through them and moving head to detect specularities, while
non-expert observers decide faster. The interesting trends have
been identified in the vocabulary usage, as experts tend more
to use common appearance attributes ”color”, ”gloss”, ”translu-
cency” and ”texture”. Parallels with familiar objects using words
like ”icicle”,”gelatine”,”amber”,”milky”,”honey” etc. have been
widely used. This phenomenon has been also observed in the pa-
per by Thomas et al. [13] Nonetheless, the full analysis of behav-
ioral patterns and vocabulary statistics will be conducted in fur-
ther work. On average, each experiment took 1 hour and 7 min-
utes. Non-expert observers were 16 minutes faster spending 54
minutes on average, while the experiment took 70 minutes for the
experts. However, small number of non-expert observers makes
difficult to generalize the finding.

The quantitative data has shown that in some cases people
are very consistent in what they consider glossy or translucent.
Decision making is very easy and the objects are clearly sepa-
rated. Although in other cases opinions vary a lot and the ob-
servers made diametrically different decisions. While poor exper-
imental protocol could impact the result in some cases, there is
clear indication that for this dataset cues used by different peo-
ple vary and that the surface coarseness, dye concentration, and
shape of the object play significant role. Furthermore, complex
cognitive factors could also contribute to the final outcome.

The major questions can be drawn from above mentioned
analyses: whether the trends observed for this dataset can be gen-
eralized to other objects and materials, and what are the extent
surface coarseness, shape, and dye composition can impact and
alter gloss and translucency perception? Considering the dataset,
the interview, and the conditions, it is not possible to derive a gen-
eral model of perception from these data. However, we still could
identify some interesting trends to define research hypotheses for
our future experiments.

Conclusion and Further Work
We have conducted a set of experiments investigating ap-

pearance assessment using real objects in uncontrolled conditions.
Quantitative results show interesting cross-individual differences
and similarities. We suggest that surface coarseness, material
composition, and shape impact gloss and translucency perception.

It is worth mentioning that different tasks generated contra-
dictory research hypotheses. For instance, considering tasks 4,
and 10, we demonstrated that similar gloss perception is achieved,
when the surface coarseness is nearly identical. On the other hand,
task 3 has shown that transparency and lightness also impact gloss
perception. Another hypothesis is that shape is significant factor
for translucency perception and in some cases, can even outweight
the impact from intrinsic material properties. Considering the re-
sults of the task 9, we suggest that when the shapes are identical,
surface coarseness and dye mixture have most significant impact
on translucency perception. The results of task 11 lead us to the
hypothesis that opacity does not imply absence of translucency.
We plan follow-up experiments to investigate those topics.

Finally, we also plan to conduct a comprehensive study of
behavioral patterns and vocabulary better to understand the pro-
cesses that lead us to given quantitative results. As we are limited
to resin objects in this experiment, other materials and computer
graphics could be used to generalize the findings.
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Perception of appearance of different materials and objects is a complex psychophysical 
phenomenon and its neurophysiological and behavioral mechanisms are far from being fully 
understood. The various appearance attributes are usually studied separately. In addition, no 
comprehensive and functional total appearance modelling has been done up-to date. We 
have conducted experiments using physical objects asking observers to describe the objects 
and carry out visual tasks. The process has been videotaped and analyzed qualitatively using 
the Grounded Theory Analysis, a qualitative research methodology from social science. In this 
work, we construct a qualitative model of this data and compare it to material appearance 
models. The model highlights the impact of the conditions of observation, and the necessity 
of a reference and comparison for adequate assessment of material appearance. Then we 
formulate a set of research hypotheses. While our model only describes our data, the 
hypotheses could be general if they are verified by quantitative studies. In order to assess the 
potential generalization of the model, the hypotheses are discussed in context of different 
quantitative state-of-the-art works.  

 

 

 

 

Introduction 

We observe the emergence of new ways to fabricate objects and materials, such as 3D printing [1] and 

advanced surface processing [2, 3]. Object manufacturing is also related to digital edition and design [4]. Both 

need to be supported by an adequate description of material appearance. This description may be produced 

with a physical measurement and its correlation with human perception but could also be related to semantic 

communication. A further challenge comes with the development of programmable matter [5-7]. We foresee 

that an object's appearance will not be limited to the natural appearance of the material it is made of, but also 

an object may have an evolving shape, that impacts its appearance. Therefore, description, quantification, and 

communication appearance is important. 

According to the ASTM E284-17, Standard Terminology of Appearance [8], the appearance of an object is 

"the collected visual aspects of an object or a scene"; while perceived appearance is defined as "the visual 

perception of an object, including size, shape, color, texture, gloss, transparency, opacity, etc., separately or 

integrated." The same dictionary highlights that "appearance, including the appearance of objects, materials, 

and light sources, is of importance in many arts, industries, and scientific disciplines." Appearance is a complex 



Journal of the International Colour Association (2021): xx, xx-xx  Gigilashvili et al. 

2 http://www.aic-colour.org/journal.htm | http://www.aic-color.org/journal.htm ISSN 2227-1309 

 

phenomenon that is far from being comprehensively understood. Considering its complex nature, it is usually 

broken down into various attributes that entail only particular dimensions of appearance. The CIE (Commission 

Internationale de l’Eclairage, International Commission on Illumination) defines color, gloss, translucency and 

texture as four major appearance attributes [9].  

Appearance has long been a point of scholarly interest from physical [10, 11] (e.g. solving radiative transfer 

equation [12]), psychological [13], and philosophical [14, 15] points of view. Hunter and Harold [10] provided 

the first significant summary of appearance measurement techniques, which aim "to obtain numbers that are 

representative of the way objects and materials look". However, they consider that comprehensive analyses of 

total appearance is impossible and impractical and argue that, at least, "measurements of specific attributes of 

appearance can be exceedingly useful and economically important". Their work is far from modelling total 

appearance and provides little guidance on the correlation between metrology and perception. 

Practical aspects of total appearance by Hutchings [14, 15] focused on unifying knowledge of appearance 

from science disciplines and arts, which "can be based on a quantitative understanding of the basic perceptions 

of form, colour, translucency, gloss, and movement." He describes and structures seven factors that influence 

total appearance [14,16]: appearance images; immediate environment factors; inherited and learned 

responses to specifics; receptor mechanisms; design; object properties, and light source properties and defines 

it as: "total appearance combines a description of the appearance of each element of a scene... with a personal 

interpretation of the total scene in term of its recognition and expectation".  Eugène [13] highlights the 

definition recommended by the CIE "the total appearance points out the visual aspects of objects and scenes" 

[9]. On a semantic level, Eugène considers appearance measurement challenging, because it involves 

subjective judgment and argues that "a goal of making measurements that ensures appropriate quality control 

in the manufacturing process is probably achievable, but the measurement process will be multidimensional, 

product specific and probably application specific". Choudhury [11] also reviewed total appearance as a 

concept and described a four-step flow of total appearance from molecular composition of an object to the 

high level cognitive interpretation of appearance by a human observer. 

Despite those attempts, the objects' total appearance is so difficult that most research focuses on the total 

appearance of a material. Most recent quantitative studies aim to provide a correlation model between optical 

properties and perception of a single appearance attribute (e.g. [17]). Works in computer graphics, vision, and 

metrology focus on very narrow specific cases and provide a quantitative analysis of particular appearance 

attributes [18-25], or investigate the role of image attributes on appearance, e.g. [26]. Many are based on 

psychophysical studies with human subject involvement. However, the constraints imposed on the 

experimental conditions of those works limit, in general, their relevance in real life, such as, the viewing 

condition in colorimetry. The majority of these studies are based on images, either synthetic [23, 25] or real 

[27-29], shown on displays with no possibility for physical interaction. Wherever physical samples are used [30, 

31], interaction and possible observation geometries are still strictly constrained. While the attributes are 

studied separately, it is unlikely that individual attributes of appearance are independent, e.g. transparency 

may impact gloss perception [32]. Furthermore, there is inconsistency in terminology. On the one hand, 

terminology differs across communities, e.g. texture in computer graphics refers to the image mapped on a 
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mesh, while in the context of textiles, texture is primarily a tactile attribute describing surface geometry. On 

the other hand, terminology can also be ambiguous within the field of appearance, e.g. translucency, 

transparency, perceived translucency or opacity are sometimes used interchangeably, as in [25], which can 

impact the experimental observations. Further work is needed to develop a quantitative model.  

In parallel to the many quantitative studies, we propose building a qualitative model of material appearance 

outlining general processes to formulate relevant research hypotheses. Analyzing and testing those 

hypotheses reveals more details of total appearance mechanisms, including people’s behavior to assess 

appearance, the way they perceive and communicate appearance. We hypothesize that appearance is a social 

interaction, between an object in a scene and a person, or between two persons communicating about one 

object in a scene. Therefore, we approach the problem from a social science perspective and investigate how 

subjects interact with objects and communicate with other people. For this purpose, we conducted an 

experiment and applied the Grounded Theory Analysis [33], derived from the Grounded Theory Approach [34, 

35], to the data collected. This method belongs to the class of inductive research methods1. We conducted the 

experiment using physical objects from the Plastique artwork [39] comprising resin spheres, cuboids, and 

complex female bust sculptures with different mixes of colorants and surface roughness properties. The 

process and the results were videotaped and then analyzed.  

In the next section, we introduce the experiment. Then, we develop the qualitative model of our data. From 

this observation, we formulate research hypotheses and discuss them. We conclude by highlighting the 

potential limitations of this work. 

Materials and methods: the social experiment 

We conducted an experiment based on an interview format, which consisted of 11 visual tasks where the 

observer was asked to interact with physical objects, describe them and explain their choices (both rationales 

and actions). The experimenter asked additional questions to clarify the motives of particular actions, and to 

disambiguate the interpretation of the concepts by the participant. The study was reported to and approved 

by the NSD - Norwegian Centre for Research Data (project number 59754). 

Stimuli 

Generating the proper visual stimuli for the social interaction was one of the fundamental challenges in the 

preparation process. This study is based on real physical objects and this choice is discussed in Appendix 1. The 

objects belong to the artwork collection Plastique that was commissioned to the independent artist Aurore 

 

1 An example and method description in English can be found in e.g. [36], many other examples of studies can 

be found in the literature, focusing on diverse social aspects, such as [37, 38]. 
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Deniel from “Aden Keramikk”2. Technical details of production, and a description of the collection and 

subsequent analysis of the creation process are reported in [39]. The objects in the artwork are made of resin 

and come in three different shapes (cuboid, spherical, and complex female bust), various colorant mixtures 

(from achromatic to blue and yellow), and three levels of surface coarseness (also referred to as roughness).  

Experimental Protocol 

The interviews were held in two rooms with different mixed illuminations from direct sunlight (subject to 

weather conditions) and artificial fluorescent lighting systems. The illumination was measured with a 

photometer at the beginning and at the end of the interview to record changes of viewing conditions. The 

desk, where the objects were introduced to the participant, contained some potential visual references: a 

white sheet of paper, a checkerboard and a pen with text on it. We expected the observer to use them as a 

background of reference for appearance assessment. The observers were not explicitly instructed to use these 

objects to preserve their natural behavior. Additionally, the checkerboard could serve geometric calibration for 

the camera positions. 

 

Figure 1: A Bird’s-Eye Representation of the Experimental Setup. The natural illumination incident from the 

windows is mixed with the artificial light incident from the ceiling (not shown). The different angles of the two 

cameras helped us analyze the behavior of the observers.  

People had complete freedom to interact with the objects, to touch and move them. The entire process was 

videotaped by two cameras (Figure 1), from front and side, to detect all potentially interesting movements and 

facial expressions. 17 observers, 11 males and 6 females, participated in the experiment. All of them were 

proficient in English. 12 of them had a scientific background related to color, vision, and appearance studies; 2 

participants had an artistic background, while 3 observers were considered naïve. Their age ranged between 

24 and 60, with 34 being the median age. One participant was color deficient, the others performed the 

interview with corrected-to-normal vision, when needed. The experiment was conducted between March and 

 

2 Aden Keramikk website, accessed on the 21/11/2019, https://auroredeniel.wixsite.com/adenraku  
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May 2018. The experiment was arranged during the day, in order to have direct sunlight in the room. On 

average, illuminance at the table in the beginning of the experiment was 1512 lux and color temperature was 

5306 K, the standard deviation among all experiments was 766 lux and 615 K, respectively. In addition, 

illuminance difference and color temperature difference between starting and ending point of each interview 

was on average 683 lux and 497 K, respectively. We assume that some changes in participants’ behavior might 

be related to the amount or quality of incoming light (e.g. using artificial light source for translucency 

assessment rather than sunlight or vice versa). 

12 observers were interviewed by one interviewer and the other 5 by another one. Although the social 

interaction, particularly the conversation between the participant and the experimenter, was subject to 

improvisation and individual development, the experiment followed a well-defined routine. The observers 

went through 11 tasks involving set of objects grouped in 9 boxes (Figure 2). Two boxes were used twice, 

although this was not revealed to the participants. In the first task (box Q), observers were asked to cluster 48 

cuboid objects in any way they considered natural. We wanted to observe whether one particular appearance 

attribute was predominant in a grouping task. In the second task (box C), observers were asked to arrange five 

different yellow spheres in a meaningful way, i.e. creating some ordering system for them. Afterwards, they 

were given additional objects with different shape, color, and other attributes, to be placed into their ordering 

system. With this experiment, we tried to explore potential appearance ordering systems. Tasks 3 through 10 

were composed of two parts. First, observers were asked for a semantic description of the objects without 

touching them. The second implied ranking them by either glossiness (boxes X, M, P, A) or translucency (boxes 

F, X, A, Z). It is worth mentioning that the phrase "how light is going through" was used instead of 

"translucency", to avoid potential confusion by the term. The experiment was concluded with a binary 

opaque/non-opaque classification of six spherical objects (box T) with and without high intensity directional 

flashlight.  

 

Figure 2: The Nine Sets of Objects. The nine sets of objects have been used for eleven tasks throughout the 

experiment. The single letter identifiers of the boxes are completely arbitrary. The figure has been reproduced 

from [40]. Reprinted with permission of IS&T: The Society for Imaging Science and Technology sole copyright 

owners of, “CIC26: Twenty-sixth Color and Imaging Conference 2018.” 
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Data analysis 

The data collection process was followed by a thorough data analysis that consisted of three stages: 

• Two independent manual transcriptions of the collected data, i.e. more than 20 hours of 

video materials, were performed. This includes transcribing speech, as well as taking notes 

on behavior and movements. 

• We performed a quantitative study on the results of the tasks by frequency analysis. This 

analysis was independent from transcription and was based on the task results recorded 

throughout the experiment. The quantitative data were presented and discussed at 

conferences [32, 40, 41]. 

• The qualitative analysis was based on the transcribed material using the Grounded Theory 

Analysis. Those observations were augmented and strengthened by the results of the 

quantitative analysis. 

Qualitative model of material appearance assessment 

We used the Grounded Theory Analysis [33], derived from the Grounded Theory Approach [34], to analyze 

the data. The method includes a comprehensive description of the observations and labeling them with codes 

(coding step). We watched the videotaped experiments (around 20 hours of video), manually extracted all 

observations, and labeled them accordingly. Later, conceptually similar observations are grouped into 

categories (categorization step). For instance, we observed that if the object is lit from behind or if it is placed 

on a textured background, it can look more translucent. These observations are grouped together into the 

"Conditions of Observation" category. Those categories were carefully designed, defined and consolidated - in 

particular, they were consolidated with the quantification of some of the observations. Afterwards, we 

identified how different categories interact with each other (co-linking step) that eventually leads to modelling 

through the integration, where we redefined and refined what we observed. The process led to theorization. 

According to the Grounded Theory Analysis as described in [33], theorization is a process that is more 

advanced than a mere description of observation (more conceptual and better structured), yet still anchored 

in the observation, but far from a general theory. The potential of generalization towards a theory of our 

theorization is discussed in the next sections. The coding part was performed two times independently by two 

persons. The categories were consolidated and revised, and the subsequent steps were conducted jointly. 

The main reason for choosing this method is that the result, while qualitative, should guarantee to be 

strongly rooted in the data, and there are security mechanisms that avoid falling into an individual 

interpretation, e.g. the verification that all the codes are belonging to at least one category. Another reason is 

that this method is known to allow the experimenter to improve his or her understanding of the phenomenon 

to be studied, and the authors of this article benefited greatly from this collateral effect. 
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Definition of categories 

We have identified the following categories that encapsulate all the codes observed in the codification step: 

1. Object is a given sample to be considered for a particular task. It is very stable because its 

intrinsic parameters are static (e.g. shape, surface, size, but also specific light effect). However, it 

is dynamic at the same time because its appearance may vary depending on the conditions of 

observation. 

2. Conditions of Observation is a set of extrinsic factors that permit the observation, contribute to 

the appearance of a given object and the communication of it. Conditions of observation is the 

place and an individual observer (illumination geometry and spectral power distribution, 

experimental room interior, viewing angle, personal vision, physiological condition and mood, 

background, vocabulary pool, etc.) We want to highlight that observer is not a separate category 

but part of the conditions of observation. We are presenting an objective cross-observer generic 

model representing a task-motivated material assessment process. The way a subjective 

psychological or physiological condition of the observer contributes to the overall process is by 

nature no different from illumination geometry or other external conditions of observation. 

3. Methodology is a stable systematic way to act and make decisions towards completion of a task. 

Methodology can be based on intuition or experience, and it could converge and be revised after 

trial and failure (calls Learning and Adaptation). 

4. Comparison is an action that permits judgement of the objects by referring to something else, 

making assessment relative to a Reference. Similarities and differences are judged either with an 

arbitrarily chosen reference or among different states of the object itself, that becomes the 

reference. 

5. Reference is the observation, memory, concept, etc. an object or a set of objects are compared 

with. This is one of the most important categories when we want to discuss measurement of 

appearance. 

6. Vocabulary Search is the process to identify and select the right Vocabulary in order to 

communicate and express the perceived appearance of a given object or set of objects. In the 

process of Vocabulary Search, different methodologies might be applied, including, but not 

limited to, citing standard definitions from the literature, recalling familiar objects from memory 

in order to draw parallels, or looking up for proper words on the Internet. 

7. Vocabulary is a selected set of words, like adjectives, nouns, phrases (e.g. "blown-up glass") - all 

attributes and labels used to describe the appearance of a given object or set of objects. The 

selection of this set is derived from the Vocabulary Search and serves as a basis for the Semantic 

Description. 

8. Semantic Description consists of tentatives to name, or to describe the appearance of one given 

object or a given set of objects. 

9. Completion of a Visual Task is a process to successfully perform a given mission that relies on the 

analysis of the visual appearance of a given set of objects but also on the Task Interpretation. 
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10. Task is a given mission an observer is instructed to accomplish by an Experimenter. We used 

those tasks to lead the interviews. 

11. Experimenter is a person, in our case one of the authors of the paper, who introduces tasks to 

the observers and guides the entire process by oral communication with an observer. The 

communication and interaction with an observer were subject to individual improvisation by the 

experimenter. Thus, this impacted the data and made all experiments unique. 

12. Structure Expectation is an assumption by an observer that there exists a structure in the data. 

This structure, that may or may not exist, will be used as a cue to perform the task, instead of, or 

in addition to, relying on visual qualities. This implies that the participant assumes that there is an 

expectation or a solution known by the experimenter, which was not the case. 

13. Task Interpretation is a decoding process of the oral description of the task conveyed by the 

Experimenter. The observer tries to understand what they are expected to do and selects a 

Methodology to reach the goal. 

14. Decision-making is a general approach that leads the observer to the strategy on how to perform 

a Task that involves freedom of interpretation. This was not observed in all experiments, because 

some tasks were less prone to interpretation. 

15. Learning and Adaptation is a function of time affecting actions of the observer. It impacts the 

processes we have observed. As the observer interacts with the corpus of data, their 

understanding of the data is refined based on the recently acquired experience. Secondary visual 

attributes, like scratches and imperfections start to be taken into account, leading potentially to 

refinement in Methodology. Observers start recognizing similarities with the part of the corpus 

already studied and behave accordingly. It can have a positive impact and facilitate the task 

completion or a negative impact related to exhaustion, shortcut or overconfidence. 

Description of the qualitative model 

The resulting model of the data is illustrated in Figure 3. The model consists of two blocks. The pivotal visual 

part unfolds the flow of the process from introduction of the object towards the completion of a particular 

mission. An auxiliary decision-making part describes all the factors that could impact a methodology selection 

in the process of task performance. It is worth mentioning that the decision-making part only impacts the 

result of the experiment, i.e. what we observe by the frequency analysis, but does not change the model and 

the flow of the processes itself. The structure of the model is independent of the observer and the task. 

The Object is observed in certain Conditions of Observation. The combination of both categories creates in 

fact the core of the sensory perception of the object by a person. While the Object has some absolute 

properties, total appearance is impacted by the various Conditions of Observation. Anything that can impact 

the perception of the appearance of an object is considered a Condition of Observation. While usually 

conditions impact the object appearance, the interaction is both-ways, as an object could also impact the 

conditions (e.g. produce caustics, evoke particular memories).  The category Methodology is at the heart of 

the observation. In fact, we observed how the participants perform the task and describe their actions and 

decisions. Indeed, the Object and Conditions of Observation constrain the Methodology. However, we 
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observed that there are major contributions from Comparison and the Decision-Making which define or 

constrain the Methodology, and in our data, they might be as important as the perception part because they 

are very general. Both of them are induced by the Task given to the observer. The Comparison is required to 

analyze the samples, and this is done by Reference to something. As we shall see, the observation that a 

reference is systematically used is a crucial piece of information, which is both very positive from a perspective 

of metrology, but also a great challenge when it comes to selection of an appropriate reference. Decision-

making is required when a Task leaves room for interpretation, and is based on the Task Interpretation. It is 

closely related to the Task itself, the way it is conveyed by the Experimenter, and constrained by the Structure 

Expectation on the data. The latter was observed in our experiment, but it is hard to anticipate whether this 

will be observed in a more free context. Observers applied various decision-making models to come up with an 

efficient strategy and select a particular Methodology to complete a mission [41]. Based on the Methodology, 

the visual task is solved and the observer reaches the Completion of a Visual Task. We also observe that the 

Methodology is used to structure the Vocabulary Search, that led to a selection of Vocabulary used to come 

up with a Semantic Description. Several methodologies were observed to be pre-selected, in order to find, 

choose, and convey the Vocabulary necessary for Semantic Description. Semantic Description can be a 

substantial prerequisite for the Completion of a Visual Task. We observed that subjects tend to describe 

objects in the process of Completion of a Visual Task even if they are not explicitly instructed to do so. In 

order to assess appearance, they seem to construct a semantic image of the target in their mind with or 

without explicit oral expression. In addition, the description of the objects might already include the draft 

solution of the visual task (for instance, object A is described as glossier than B and as less glossy than C, while 

the visual task is to rank the three by glossiness). Finally, we should highlight that a significant impact of 

Learning and Adaptation was observed throughout the experiment and it impacts all other categories.  

Verification and Analysis 

In order to demonstrate how the model is rooted in the data, we describe an example case in Appendix 2, 

where the observer is asked to rank five spheres by their glossiness. We recall that this model is a model of our 

data. However, it is interesting to study how those data compares to general models of material or object 

appearance by Hutchings [16], Choudhury [11], and Eugène [13]. They all referred to the scene context, 

supported by the CIE definition that also includes scene concept into the total appearance [9, 13]. In our data 

we can observe how this context is verbalized by the observers. The context is summarized in the Conditions 

of Observation. These conditions were experienced by the observer, but explicitly mentioned only when these 

conditions constrained successful completion of the task. Otherwise, the impact of the scene was 

encapsulated in the Semantic Description and in the Completion of a Visual Task. For example, observers 

ranked an object by gloss, using distinctness-of-image gloss when the light was low enough, without further 

discussing the environment. However, when intense direct sunlight made it impossible to observe distinctness-

of-image gloss, the observers discussed the scene and mentioned that the sunlight in the scene made task 

completion difficult. 
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Figure 3: Qualitative Model of Material Appearance Assessment. The primary Visual Part of the model details 

the flow of the process from introduction of an object in particular conditions to semantic description of its 

appearance and completion of a visual task using this object. Auxiliary Decision-making part illustrates 

categories impacting methodology selection in the Visual Part, while Learning and Adaptation impacts the 

entire process as a function of time (f(t)). 

Eugène [13] supports the idea of total appearance implying higher level semantics, for instance concepts like, 

"visually assessed safety", "visual identification of the scene", "visually assessed usefulness of the scene" etc. in 

addition to Hunter’s attributes. In our data, this appears in the Semantic Description when observers describe 

the objects as "like food", "fragile", "pricy". In addition to appearance attributes, they also referred to high 

level semantics, like usefulness ("decoration", "soap"), safety ("fragile"), in order to express and communicate 

the appearance of the objects and materials. 

Apart from that, Hutchings considers that "there are two classes of appearance images: the impact (or 

Gestalt) image, and the sensory image. The impact image is the initial perception of the object plus an initial 

opinion or judgment." [16] This is also present in our model, where the sensory image is limited by the Object 

and the Conditions of observation. This is also the case for Choudhury’s model [11], where the three first 

stages correspond to the sensory image of Hutchings and the fourth one is related to higher cognitive 

interpretation. Choudhury also emphasizes the physiological phenomena as an explanation of the process, 

which we do not consider. 

To conclude on those comparisons, it appears that the works discussed above focus much more on the 

sensory analysis, while we observe more on the human behavior, semantic description, decision-making and 

task-solving than them. Compared to their works on those aspects, which are a formulation of opinions, what 

we observe is rooted in our data. Our model is centered around the completion of a visual task, while there is 
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no motive of appearance interpretation introduced in those other works. We, however, all agree on the idea 

that conditions of observation (including environmental or individual background aspects of a human subject) 

have a tremendous impact on perceived appearance. 

Three key behavioral observations 

The omnipresence of a reference 

Comparison with a reference turned out to be a pivotal point of all methodologies applied for visual task 

performance, as well as for semantic description. The reference varied and was any of the following, but 

perhaps not limited to: 

a) Comparison to the appearance of another object (e.g. comparing two objects to decide 

which one is glossier).  

b) Comparison of the appearance of the same object under different conditions of observation 

(e.g. move an object from shadow to direct sunlight to assess its translucency).  

c) Comparison of the perception of the background through the object or by direct view (e.g. 

try to read a text through the object and see how much is it distorted to assess 

transparency).  

d) Comparison to memory of familiar objects (e.g. comparison with an appearance of a favorite 

childhood candy).  

e) Comparison to a hypothetical idealistic object or material (e.g. comparison of a glossy object 

to a perfect mirror).  

f) Comparison to a definition (e.g. "gloss, n. — angular selectivity of reflectance, involving 

surface-reflected light, responsible for the degree to which reflected highlights or images of 

objects may be seen as superimposed on a surface" [8] - thus, only the surface is analyzed, 

rather than the actual sensation of gloss). 

Comparison with a reference is a measurement process. The standardization of this reference as a unit of 

measurement is the fundamental aspect of metrology. In order to quantify and communicate visual 

appearance, subjects need such a reference that will be used for quantification of the appearance. If one does 

not exist, we have observed that they try to create one themselves. However, the process to come up with a 

standard is difficult. For instance, a standard for length implies the usage of one unit, and a standard for speed 

is based on two units (distance and time), while the standard for appearance should regard many components 

considering the complicated nature of appearance as a phenomenon. Even though the selection of references 

is very subjective by nature, the process is still conditioned by the physical world. We have observed that 

people without much training perform surprisingly well on complex tasks that are impossible nowadays for 

machines and tools [27, 29, 42]. We believe that in case appropriate physical measures and references are 

used, we should be able to mimic this ability. Even though Eugène [13] argues that "it is unlikely that any 
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physical scale called "appearance" will be possible", he admits that "it is necessary to find physical parameters 

that can be measured and the most obvious area for exploitation is that described in terms of the optical 

properties". References vary depending on the context: comparison can be with a local reference (e.g. with 

another object), or with a global reference (e.g. the appearance of marble according to the subject’s memory); 

comparison can be with objective things (e.g. definition of blue), as well as subjective ones (e.g. a gummy bear 

that tastes very good). However, communication of appearance requires generalization and some objectivity - 

in most cases, we have a common understanding and agreement on the definition of the words we use to 

communicate appearance (e.g. "green" refers to a set of colors most of the general populace agree upon with 

some marginal exceptions, e.g. [43]). 

When global references are not enough for a given visual task, the Human Visual System (HVS) might use a 

local reference. Simultaneous contrast and dynamic range adaptation are a good demonstration of this. We 

have observed in our data that the reference is floating, i.e. varying across situations. We believe that this can 

be a general pattern for material appearance assessment. In other words, the reference could be application-, 

material-, or situation-specific. We have observed that references have been selected based on the 

peculiarities of a given scene. When observers were asked to assess the translucency of an object, they usually 

looked through the object towards the brightest light source (usually the sun), comparing the original 

appearance with the appearance of the same object under back-lit illumination geometry (back-lit geometry is 

typically used for measuring "through translucency" [44] or transmission of translucent materials [45]). When 

the sunlight was not visible observers tended to use an artificial light source of the room instead. Change of 

reference depending on the illuminance of the artificial light sources has also been observed in [46]. As this 

was subject to presence of the bright light source, some observers also moved their fingers behind the object 

comparing the cues between blocked and non-blocked light source conditions. This supports the notion that 

illumination and room interior, i.e. Conditions of Observation, impact Methodology, thus reference selection. 

Back-lit illumination geometry has been already demonstrated to increase the perceived translucency of the 

materials [23, 25]. 

Although the HVS is very sensitive, it is not capable of stand alone quantitative measurements. Humans can 

discriminate perhaps 5 to 10 million colors when seen side-by-side [47]. However, when the stimuli are seen 

with long time intervals, it is difficult to tell the difference, unless the difference is very large - proposedly, our 

memory stores only around 300 colors [10]. While memory as a global reference has limited capacity, 

presence of a local reference in a particular point of time, could dramatically enhance the discriminative 

capabilities of the HVS. 

For such a high dimensional problem, probably the reference should not be very different from the target. 

Deborah [48] addresses the importance of reference selection in the context of spectral differences, 

considering it an important aspect for a metrological hyperspectral image analysis. The author represents an 

image as spectral sets falling within a convex hull and argues that if the reference is far outside of the convex 

hull, the distance to all cluster centers will be nearly identical and discrimination will be poor. Drawing a 
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parallel with appearance, we have observed that a transparent reference medium is a poor measure of 

apparent translucency differences [49]. 

Fleming discusses "statistical appearance models" as a potential mechanism for material appearance 

perception [50]. The author argues that instead of estimating physical properties of materials, our visual 

system identifies salient features of a given material and creates an internal generative model to estimate how 

these features behave (i.e. vary across conditions), in order to identify a material in different contexts. The 

model "seeks to discover in what ways different material samples look different from one another", where 

comparison process and need for a reference seems inevitable. He further argues that our brain tries to 

characterize systematic changes in the look of materials and the model is "refined and corrected through 

experience with other samples". This process highlights the importance of reference in material perception, 

and resembles searching for the optimal reference in our data. The author also describes two pivotal forms of 

material perception: estimation - assessment of potential characteristics, and categorization – assigning a 

particular label or material name. Considering his explanation that "material estimation is the process of 

establishing the true position of a given sample within the feature space, and material categorization is the 

process of identifying the boundaries separating different classes of material", it becomes obvious that neither 

process is possible without comparison with a reference. Furthermore, material perception as a categorization 

process has another interesting aspect - it implies "access to stored knowledge about other members of the 

same class". This phenomenon has been observed in our data and we describe it as a reference to memory. 

Multisensory impact on appearance 

While reference selection and change might imply direct interaction with the object, the interaction can itself 

provide additional information for appearance assessment, because relying on visual stimuli might still not be 

enough for material identification, as demonstrated in [51]. We noticed that observers frequently failed to 

guess the material without touching the object, even though they could move themselves and inspect fixed 

objects from various viewpoints. Multisensory information, like auditory (knocking objects on the table), tactile 

information (examining the surface with a finger), or weighting them by hand, have been used to identify 

material and to describe it [52]. However, it is worth mentioning that after some time, observers 

demonstrated adaptation, as they got familiarized with the dataset and concluded that the collection is 

composed of resin materials only. 

Choudhury notes that "although visual perception apparently seems to be independent of human sensation, 

some properties are perceived in different ways by more than one sense. Individual visual attributes may arise 

from combination of signals from different senses." [11] Limited multisensory interaction in computer graphics 

might lead to material metamerism and unrealistically large constancy of appearance attributes [52]. This 

supports our idea that physical objects are important for studying appearance. While we have observed in our 

data that multisensory information facilitates material identification, neither of the following is clear: whether 

material identification impacts the perception of the appearance, or whether auditory or tactile information 

impacts visual appearance. For instance, does the object identified as glass look glossier because this is a 

typical look for glassy objects? Or if we feel with our finger that the surface of a material is smooth, will it look 
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glossier? It has been shown that priors and expectations regarding familiar-looking materials might actually 

impact the perception of various mechanical and optical properties of materials [53]. To what extent this 

applies to visual appearance attributes definitely deserves further study. 

Semantic aspects 

Analysis of the semantic description has also revealed interesting trends. In [41] we have introduced a 

hierarchy of the criteria used to assess appearance similarity. Interestingly, it resembles to the vocabulary used 

for semantic description of the appearance of the objects. The observers have taken different approaches for 

semantic description that could be diversified into several categories either by tactics, scale, or semantics of 

the description. 

Tactics: 1. Material identification (e.g. amber, ice, silicate, glass, plastic) 2. Attribute-based (glossy, blue, 

transparent) 3. Familiar object and function identification (e.g. soap, fortune-telling crystal ball, souvenir sold 

in shops, eraser) 4. Any combination of the previous. 

Scale: 1. Absolute (describe just the object) 2. Relative (glossier than this; rougher than that surface). 

Semantically: 1. Description as quantification of appearance attributes - the same routine for all objects, e.g. 

"this object is blue and somewhat glossy". 2. Description as a creative process (comparison with unusual stuff 

like sorcery; analyzing and describing impact of artifacts on caustic formation; conveying appearance with 

emotions, like "this looks boring"). 

All these approaches to semantic description involve comparison with various references. It is worth noting 

that selecting the attributes to communicate the appearance might be dependent on the similarity or 

dissimilarity within the corpus. For example, when the shape of all objects under question was identical, shape 

was mentioned less frequently in semantic description than in the cases, where observers had to describe 

objects with different shapes. 

Formulation of the research hypotheses 

While the above discussion refers to our data only, the model and the observations might be general to 

some extent. We formulate 20 research hypotheses (H1-H20 in the rest of the paper), which, if validated 

quantitatively, can help us to understand the generality and the limits of our model. The verification of the 

hypotheses is usually based on quantitative experiments. Some related experiments are already reported in 

the literature and we use this literature to have a critical reading on those hypotheses. We want to make clear 

that the verification of the hypotheses do not challenge the existence of the qualitative model, since this is a 

model of the collected data.  
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Reference 

H1: It is possible to measure and predict perceived appearance. There should be reference(s) and comparison 

protocol(s), presumably specific to a given material and conditions, that permit objective instrumental 

measurement of perceived appearance. The critical challenge is to discover these references and comparison 

protocols. 

H2: Human subjects limit one comparison to a single reference at a discrete point of time in appearance 

assessment process. We have observed that oftentimes, ranking, clustering and ordering visual tasks were 

broken down into several pair-comparison tasks. For instance, when a subject was asked to rank objects by 

glossiness, they compared a given object with other objects individually, one by one. 

H3: A general appearance ordering system (empirical) cannot exist in sensibly low dimensions. It should be 

either application specific, local, or most probably unintelligibly high dimensional. If such system would ever 

exist, it will be strongly non-uniform by nature. There have been several studies in context of material 

appearance, where n manually selected attributes, i.e. features, have been quantified psychophysically to 

learn how materials relate with one another in a given n-dimensional feature space [28, 52, 54]. However, it is 

observed in [41] that a manually defined system often fails to accommodate new out-of-the-corpus objects. 

Conditions of observation 

H4: Multisensory information and interaction level impact the robustness of appearance constancy. On 

multiple occasions we observed multisensory impact on visual assessment. Although visual information is 

unarguably essential to visual appearance, the role of other senses is yet to be understood. It has been shown 

that different senses, such as visual, tactile and olfactory impact each other in aesthetics impression [55], 

object recognition [56], material identification [57, 58] and material perception [59]. However, the exact way 

multisensory information contributes to visual appearance is not understood yet.  

Object 

H5: Shape difference can dramatically impact appearance difference even for identical materials. This 

observation is consistent with the state-of-the-art. Vangorp et al. [60] illustrated that difference in shape, 

particularly tesselated geometry, diminishes material matching accuracy and comparison is easier between 

identical shapes. It also impacts perceived translucency differences [49]. As perceptual attributes, such as gloss 

[61-63] or lightness [64] vary across shapes, it is no surprise that total appearance is also impacted. 

H6: Confusion between subsurface and surface scattering might lead to equivalent appearance through 

different physical material properties. We believe this point boils down to the question whether the HVS can 

separate contributions of surface and subsurface scattering to the image information. If this is not the case, it 

could support our proposal that translucency impacts gloss perception. We think the confusion can be 

minimal for gloss if a sharp image of the environment is reflected from the surface, which is subject to 

presence of well-structured real-world illumination [65]. However, the orientation of the reflected image can 

also cause confusion between transmission and reflection phenomena [66]. 
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Translucency perception 

H7: The amount of transmitted light and preservation of the light structure after transmission are 

independent, but core dimensions for translucency assessment. From the perspective of hard metrology, this 

observation can be related to concepts such as, direct, diffuse and total transmittance, as well as clarity and 

haze [9, 45]. However, perceptual dimensions of translucency are yet to be understood.  In a translucency 

classification system proposed by Gerardin et al. [67] independent orthogonal dimensions of diffusion and 

absorption are roughly equivalent to these quantities. However, the authors argue that increasing scattering 

(i.e. diminishing light structure preservation) makes transparent material to some extent translucent and 

finally opaque; while increasing absorption (i.e. amount of light) does not cause translucency and ranges from 

transparency to opacity without translucency in between. This is contradictory to some of our observations 

that people consider absorbing objects less translucent, even in case of identical scattering properties. We 

have observed that the assessment procedure of perceptual translucency difference depends on the 

subjective interpretation of the term and needs to be standardized.  

H8: A given material looks more translucent when an object made of it has thin parts. This phenomenon is 

illustrated in Figure 4 below. The observers considering objects with thin-parts more translucent, instead of 

referring to low level image cues, explicitly mention that they understand and see that the light is being 

transmitted through the object. This can be an indication that Fleming and Bülthoff’s [25] conclusion that the 

HVS does not invert optics to assess translucency might not hold for thin objects. In general, shorter the 

distance a photon needs to travel through a medium, easier to detect light transmission. Scale and thickness of 

the object impact perceived translucency and thin parts, such as edges, are usually informative translucency 

cues [17, 25]. In addition, thin parts, such as fine surface details and bumps, might blur the background image 

and make transparent materials appear translucent (Figure 5). Therefore, this hypothesis can be reformulated 

as a more general statement that object shape and size impact perceived translucency of the material.  

 

Figure 4: Three Blue Objects Used in the Experiment. The cuboid and the female sculpture have equal density 

of the blue colorants, while the sphere has less blue colorants in the volume. On the other hand, the surface 

coarseness of the sphere and the sculpture is identical, while the cuboid has rougher surface than the other 

two. Combination of the two factors, led the vast majority of the observers to consider the cuboid least 

translucent. On the other hand, there was no statistically significant difference in apparent translucency of the 

sphere and the female sculpture, despite higher density of the colorants in the latter. This can be explained with 

the fact that a sphere has a dense shape, while the sculpture has thin parts letting the light through. 
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Figure 5: Same Material, Different Transparency. Although the material is identical in both objects, meso-scale 

geometry of the right objects removes see-through cues impacting perceived transparency and translucency of 

the material and object. The images have been reproduced from [49]. Reprinted with permission of IS&T: The 

Society for Imaging Science and Technology sole copyright owners of, “CIC27: Twenty-seventh Color and 

Imaging Conference 2019.” 

H9: Back-lit is a preferred lighting geometry for translucency assessment. We have observed that observers 

tend to locate the illumination source in the scene (typically the sun in our context) and look towards it 

through the object to assess translucency. One interpretation of this behavior can be a potential attempt to 

invert optics and observe transmission. Xiao et al. [23] have shown that materials typically look more 

translucent when they are back-lit. The magnitude of difference between translucent and opaque objects is 

expected to be larger in this condition and moving them from front- to backlight has stronger impact on 

translucent objects’ appearance, as translucent objects, unlike opaque ones, start to shine or glow on the 

backlight. This is related to the above-discussed notion of comparison with a reference. A typical reference can 

be the appearance of the same object under different illumination conditions. On the other hand, it is worth 

mentioning that transparent objects might look less transparent on a high-illuminance backlight, as observers 

do not see the scene through the object due to the limited dynamic range of the HVS. [46] 

H10: Dynamic and heterogeneous backgrounds enhance perceived translucency or transparency. We have 

observed that human observers frequently use object and background relative motion to estimate light 

transmission properties of a material. This implies both - moving an object over a heterogeneous background, 

e.g. checkerboard, as well as moving background objects behind a static object, e.g. moving one’s own fingers 

or a pen behind the object. While in a static scene the HVS has a reduced ability to separate reflection and 

transmission components of the visual stimulus, human subjects try to observe and estimate the magnitude of 

the changes induced by the background change. Commercial measurement systems measure transmission 

from a static point perspective (e.g. ISO 13468 for plastics [68]) limiting the capability of measured quantities 

to adequately describe visual sensation in real life encounters. 

H11: Lightness impacts perceived translucency (lighter objects look more translucent). Many translucent 

materials, such as snow, cream, milk, wax and soap, are typically light-colored and have diffusive, hazy 

appearance usually described by observers as "milky". Therefore, "milkiness" of light-colored objects might be 

the cause for perceived translucency (refer to Figure 6). Lightness has been shown to be correlated with 

luminance [69, 70]. Subsurface scattering can contribute to luminance and highly scattering media usually look 
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lighter. However, lightness information alone cannot be discriminative enough for assessing translucency. 

Marlow et al. [71] demonstrated that if luminance gradients co-vary with surface geometry, surface looks 

opaque, while if luminance information seems independent from surface geometry, perception of subsurface 

scattering is evoked. This indicates that in addition to lightness, interpretation of the 3D shape is also involved.  

 

Figure 6: “Milky” Translucent-looking Objects. With their light and "milky" appearance, the objects evoke 

perception of translucency in some human observers. 

H12: Glossiness impacts translucency perception. Some of our observers considered glossy objects more 

translucent. It has been shown that gloss enhances perception of translucency [72] and realism of translucency 

appearance (refer to Figure 8 in [25]), proposedly because many translucent materials we interact with on a 

daily basis are glossy and "the human visual system may "expect" translucent materials to exhibit specular 

reflections" [25]. Hence, contribution of gloss to translucency perception might come down to the material 

identification problem. Schmid et al. [73] propose that neural aspects of gloss perception should be addressed 

in the context of material identification. However, the role of material association should be taken with care. 

Some materials (e.g. glass) appear glossy and translucent, but others (e.g. metals) can be glossy and opaque 

[28, 54]. 

H13: Presence of caustics is a cue to assess translucency and may increase perceived degree of translucency. 

We noticed that caustics were often used as a cue for translucency and transparency assessment by the 

observers, and in some scenes, might be the sole cue about translucency of the material, as illustrated in 

Figure 7. Caustic pattern projected by an object onto a different surface contains interesting information 

regarding its properties (refer to the top image in Figure 8). It was shown that when the floor and the caustic 

pattern projected onto it are removed, the material is judged less translucent. [74]  

Gloss perception 

H14: Translucency impacts the perceived glossiness of an object. We observed that gloss-based ranking has 

been possible for the objects with identical surface reflectance but different translucency. It has been 

demonstrated that translucency can impact gloss and the magnitude of this impact depends on the shape and 

surface roughness of the object [75]. Translucent objects with complex shape might produce highlights that 

originate from inside the medium - like, internal reflections, scattering and caustics. Considering the limit of 

the dynamic range perceived by the HVS, these highlights might be mistaken for specular reflections evoking 

glossiness perception [32], as shown in Figure 8. Objects can look very glassy and glossy due to internal 

reflections and caustics even if specular reflections are negligible (refer to Figure 8 in [51]). Additionally, 

Pellacini et al. [76] have shown that contrast between specular and non-specular regions is an important factor 
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for gloss "light colored surfaces appearing less glossy than dark ones having the same finish". The amount of 

subsurface scattering can affect lightness of the non-specular regions, while having little impact on specular 

ones. Hence, for some shapes, they can modulate contrast gloss of translucent objects [75]. 

 

Figure 7: Translucency and Caustics. Caustic pattern might provide information regarding color and light 

transmission properties of the material. For object E, it is the sole cue that makes us deduce the material is 

translucent. The figure has been reproduced from [46]. Reprinted with permission of IS&T: The Society for 

Imaging Science and Technology sole copyright owners of, “CIC27: Twenty-seventh Color and Imaging 

Conference 2019.” 

 

Figure 8: Objects Used in Gloss Ranking Experiments. We identified three groups of people: those who tied 

all spheres (top image) due to similarity in surface coarseness (35.29% of the observers); those who considered 

translucent objects more glossy, because of higher luminance and "shininess" (35.29%); and those who 

considered opaque ones glossier due to higher contrast and more visible distinctness-of-image gloss on them 

(29.42%). In the follow-up experiment with female sculptures (bottom image) the majority of the observers 

(78.50%) stated that the transparent ones were glossier. [32] The complex macro-geometry of the surface 

made it impossible to observe distinctness-of-image gloss, while these objects produced complex caustic 

patterns that could be mistaken for specular reflections. The top image has been reproduced from [40]. 

Reprinted with permission of IS&T: The Society for Imaging Science and Technology sole copyright owners of, 

“CIC26: Twenty-sixth Color and Imaging Conference 2018.” 

H15: Complex shape makes materials look glossier. Some observers noted that a complex bust figure looked 

glossier than a sphere and a cube, because it shines more and has more specular regions. The state-of-the-art 
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shows that shape can considerably impact gloss perception, even if surface reflectance is identical. It has been 

shown that surface reflectance constancy of the HVS fails across shapes [22] and perceived gloss is correlated 

with perceived surface bumpiness [62, 63, 77]. However, we see two challenges that need to be addressed:  

• What is the threshold between shape change and surface change? What scale do we mean 

with the hypothesis mentioned earlier? Can we really change a shape without changing a 

surface, and if so, to what extent can we change shape not to impact the surface?  

• All shape changes are due to a manipulation of a controlled parameter (e.g. RMS height 

deviation). Can we have a shape descriptor statistic that could predict the glossiness of a 

given material for any random shape? 

H16: Motion facilitates gloss perception. We have observed that motion was widely used for glossiness 

estimation by the observers. They either moved their head or moved the objects to monitor the motion of the 

highlights. This is consistent with the state-of-the-art. Impact of head motion has been already observed to be 

important for gloss, as "temporal changes of the retinal image caused by the observer’s head motion" and 

"image differences between the two eyes in stereo viewing" both significantly increase perceived gloss [78]. 

Motion seemingly helps the HVS distinguish specular reflections and surface texture. Unlike texture, specular 

reflections remain static relative to the observer on rotating spheres [79] and "objects with normal specular 

motion to appear shinier than those with sticky reflections" [80]. Motion improves gloss constancy [80] and can 

even increase the magnitude of perceived gloss [81]. 

Opacity perception 

H17: Opacity does not imply a complete absence of transmission. We have observed that some objects 

manifesting translucency cues when exposed to high illuminance directional backlight were considered opaque 

under diffuse and low intensity illumination. While perceived opacity is proposedly impacted by the amount of 

transmitted light, the latter itself depends on the amount of light incident on the back side of the object. The 

amount of transmission tolerated for classifying the object opaque varied across observers. We concluded that 

opacity perception or more likely the interpretation of the concept depends on the thresholds that are floating 

and subjective by nature. The same trend was observed in [46]. Moreover, Marlow et al. [71] argue that the 

HVS relies on the co-variance between shading and surface orientation for distinction between translucent and 

opaque objects. They demonstrated that optically translucent object might look opaque ”if the light 

transported through the material accidentally preserves the co-variation of intensity and surface orientation”, 

as if it was a result of reflection rather than transmission which again supports our hypothesis that opacity can 

be perceived even if subsurface scattering event occurs. 

Appearance attributes and subjective material properties 

H18: Glossy objects look more fragile and precious. Glossy objects with the complex shape have been 

described as fragile, expensive and precious. Our observations are partially consistent with the state-of-the-

art. Fujisaki et al. [82] found that for wooden materials gloss and expensiveness are positively correlated. 

Contrasting results have been reported on the correlation between gloss and fragility, which was either 

positive [28] or negative [54] on different occasions. Additional role can be played with the positive correlation 
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between glossiness and prettiness [52, 54], although some authors found no significant correlation between 

the two [28, 82]. We believe material identification is also an important factor, as metal, glass, and plastic can 

all be very glossy, they are not necessarily perceived equally fragile, neither equally precious. Material 

recognition and semantic interpretation of objects’ function have been major contributing factors to subjective 

perceptual qualities in our experiment. Although observers, by visual inspection, described glossy bust figures 

as glass or precious stone decorations “found in a fancy store” (per contra, spheres have been described as an 

"ice ball", "candy", or a "billiard ball"), the auditory and tactile information made them revise their 

descriptions ("ah, this sounds like a cheap plastic" noted an observer after knocking the figure on the table).  

H19: Darker objects look heavier. This phenomenon is correlated with brightness-weight illusion meaning that 

when lifted, a light-colored object feels heavier than a darker object of the same mass, because of the 

anticipation that darker objects are generally heavier [83]. Bullough [84] demonstrated that darker-colored 

objects are perceived heavier, proposing an explanation that darker colors evoke a perception of "more of it", 

potentially referring to "more pigments". Interestingly, our observers provided similar justification. This finding 

has been supported by numerous studies [85-87]. Another intriguing explanation is that in English the same 

adjective light is used to describe both properties - low weight and high brightness [85]. 

Artifacts 

H20: Complex surface geometry can mask imperfections and artifacts. We have observed that scratches, 

bubbles and other imperfections were mentioned more often when describing spheres and cuboids, and rarely 

for a complex bust shape. Considering that the retinal image is actually a 2D projection of the 3D object, we 

believe this phenomenon is related to the concept of visual masking in image quality, when noise is more 

apparent in homogeneous parts of the image, while it gets masked in high frequency areas [88].  

Conclusion 

While the vast majority of appearance studies focus on either instrumental measurement or psychophysics, 

we analyzed material appearance from a social science perspective. We propose that appearance is a social 

interaction that implies communication. We have conducted interviews where people were asked to perform 

visual tasks on objects of different appearances, describe the objects, explain their actions and interact with 

the interviewer and the objects. Those interviews were videotaped. This large collection of data was analyzed 

with the Grounded Theory Analysis and we constructed a model to have a structured representation of the 

observations. This qualitative model and its implications were described in the corresponding section. We 

conducted an analytical survey of the literature in the perspective of this model, and formalized future 

research hypotheses. In particular, we found that selecting a reference and the comparison with this reference 

have been the essential instruments for appearance assessment and communication in our scenario. In this 

work we addressed the appearance of objects, which have context, rather than the appearance of abstract 

materials.  
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Our results are to be taken with care because no level of generalization can be assumed or stated from the 

specific research methodology we used. Indeed, we used an inductive research method, while deductive 

research methods are more common in the study of appearance. The observations are limited to the 

conducted experiment, but when we compare our work with the state of the art, we found encouraging 

echoes.  

Further quantitative verification of the hypotheses is a straightforward follow up of this work. Psychophysical 

experimental design might also benefit from our behavioral observations on natural ways of object 

appearance assessment. For instance, the use of extended reality technologies might permit more freedom in 

future experimental processes.  
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Appendix 1 

Different ways to display stimuli in appearance research 

There are three ways to generate the visual stimuli: direct view to the real physical objects, photographing 

the real objects, and using computer graphics to generate synthetic images. However, the ways to present 

them to the observer are two: either present the object directly, or to display it through an intermediate 

medium - e.g. computer display or VR headset. By presenting the stimulus on an intermediary display the 

dimensionality of the stimulus reduces (e.g. from infinite dimensions in a natural scene to 5D in 2D displayed 

color image). Therefore, the way of stimuli introduction should be carefully chosen. The advantages and 

disadvantages of different methods for displaying the stimuli is summarized in the table below. 

Table 1. Advantages and disadvantages of using tangible and displayed stimuli. 

 Advantages Disadvantages 

Physical  
Objects 

•  Subjects can freely interact with the 
physical objects - i.e. possibility to 
apply all behavioral patterns we use in 
our daily lives for appearance 
assessment (move head, move object). 

• Multisensory information is present 
(e.g. tactile, auditory). 

• Binocular vision. 

• Realistic environment. 

• Artifacts make objects realistic. 

• In the real world we have access to full 
scene context that is often not possible 
in graphics. 

• Difficult to model, measure, and replicate. 

• High cost of manufacturing. 

• Unpredictable effects of aging. 

• Unwanted artifacts. 

• Risk of damaging. 

• Limited access across the scientific 
community. 

• Limited reproducibility of the experiments 
(due to access, aging). 

Displayed 
Images 

• Full control of the material parameters 
(e.g. phase function, absorption and 
scattering) and scene (illumination, 
background). 

• Simplicity of manipulation of any 
material or scene parameters. 

• Relatively low cost of 
production/generation. 

• Better reproducibility. 

• Easier to share the data across the 
scientific community. 

• Realistic photographs can be used. 

• Free from aging effects. 

• Graphic rendering is based on a model that 
might be limited and might significantly 
impact result of the experiment. Physically 
based rendering is extremely time-
consuming. 

• It is very difficult to relate a radiate image 
and stimuli to the optical model due to 
digitization of the information and 
calibration of the display. If it is relative to 
display (and full calibration, even though 
might be reproducible), it is still not 
correlated to the optical model. 

• Many factors, like resolution, color gamut or 
heterogeneity of the display might impact 
the results. 

• Dynamic range of the displays are lower. 

• Interactivity is limited in computer graphics. 

• Multisensory information is absent, or 
extremely limited. 

• Often no stereo vision is possible. 

• The environment is often unrealistic in 
computer graphics (e.g. neutral gray 
background). 

• No virtual system replicates fully the 
complex lighting environments we 

Virtual  
Reality 

•  All display-related advantages apply to 
VR as well. 

• VR might enable binocularity and 
motion. 

• More realistic interactivity than in case 
of displays. 

• Not affected by the ambient 
illumination. 

• Less distraction from the ambience. 
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 Advantages Disadvantages 
encounter in real lives, especially 
characterizing directional spectral variation 
in natural environments. 

• Lack of imperfections in computer graphics 
not only reduce naturalness of the stimuli, 
also undermines robustness of the models 
built based on them. 

• While photographs are realistic and superior 
to synthetic stimuli in several above-
mentioned aspects, they do not contain the 
information regarding the physical material 
properties, and we are limited to image 
statistics extraction. 

Appendix 2 

An example of the observations, with the transcript, the action performed and their interpretation 

within the model  

We introduced 15 categories that unify conceptually similar observations. Afterwards, we also presented the 

qualitative model that not only shows how the categories relate with one another, but also explains the entire 

pipeline of the material appearance assessment in context of our tasks. At first glance, it might be ambiguous 

in what way the videotaped experiment is processed using the Grounded Theory Analysis. In order to illustrate 

exactly how the model is rooted in the data, below we present a detailed transcript of the 6.5-minute excerpt 

from the actual experiment where the observer tries to rank five spheres by glossiness (refer to Table 2). The 

first column shows the time frame (in mm:ss format) the comments in the corresponding row are referring to. 

The second column contains the speech from a given time frame - either quoted, or paraphrased. The third 

column describes the actions happening within a given time frame. The fourth column comments the content 

and explains the process in context of our model. 

Table 2. An example task transcript illustrating how the model describes the data. 

Time  Speech Action Comment 

00:00 
to 
00:20 

The experimenter introduces 
objects to the observer. 

 

The experimenter puts 
objects in front of the 
observer. 

Object enters the scene under 
given Conditions of Observation. 
The Experimenter starts 
impacting the process. 

00:20 
to 

00:30 

 The observer starts 
inspecting the objects. 

The appearance perception is 
evoked by the combination of 
two factors: characteristics of the 
Object, and the Conditions of 
Observation, like illumination 
conditions. 

00:30 

to 
00:45 

The experimenter says that 
as the observer has got used 
to this dataset, he can again 
describe them by 
appearance. 

 The Experimenter contributes to 
Task Interpretation. The 
experimenter means that the 
observer has already seen similar 
objects in previous tasks, and 
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Learning and Adaptation 
facilitates the process. 

00:45 
to 

01:20 

Observer describes: ”even 
without taking them and 
looking through them 
towards the sun, which is an 
usual way for translucency, 
even without that, I see that 
this is yellowish and very 
translucent, these are 
opaque, opaque I do not 
know color, bluish and 
somewhat translucent, 
orange and very 
translucent”. 

Observer moves his head to 
the sides while examining 
objects. Points one by one to 
the caustics of the objects 
with an index finger, while 
describing the appearance. 
The judgement is based 
solely on the caustic pattern 
projected onto the table. 

The observer has come up with a 
particular Methodology (that 
involves assessment of the 
caustic pattern). He needs a 
Reference for Comparison. In this 
case, he compares appearance of 
the two objects between the two 
observation geometries (when 
moving the head), where the 
Reference is the appearance in 
normal sitting condition that is 
compared with the appearance of 
the same object seen with a head 
tilted to the side. For Semantic 
Description, the observer needs 
Vocabulary Search. His 
professional background in 
material appearance is a 
Condition of Observation that 
contributes to his Methodology 
and Vocabulary Search, coming 
up with a particular Vocabulary 
that is composed of appearance 
attribute terminology related to 
color, and light transmittance 
properties. When exact word was 
not found with Vocabulary 
Search, the Comparison with the 
nearest Reference is used to 
express uncertainty, like words 
”yellowish”, ”bluish”, and 
”somewhat translucent”. 

01:25 
to 

01:35 

The experimenter asks: ”so, 
you put them against light, 
so you can see the shadow 
in front of you as a color 
palette?”. The observer 
confirms. 

 The Experimenter clarifies the 
Task Interpretation and selected 
Methodology. 

01:35 

to 
01:47 

The observer continues 
description: ”well, they are 
pretty glossy. No texture, 
they have all spherical 
shape”. 

The observer moves his head 
to the sides, looks from the 
top to observe the image in 
the reflections. 

The Vocabulary is still strongly 
impacted by the Conditions of 
Observation - the background of 
the observer, and the 
illumination conditions in the 
room. The observer continues 
using Comparison between two 
observation geometries. 

01:47 
to 
02:28 

The observer continues 
description: ”I see some kind 
of artifacts. Here the 
scratches are deeper. This 
one has more severe 
artifacts. Apart from 

Observer picks one object 
and looks closely. Then picks 
the next one. 

As the time passes, Learning and 
Adaptation helps the observer to 
include more details in the 
Semantic Description. 
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artifacts, they are all glossy, 
those three are translucent, 
those two are opaque. They 
differ in color, yellowish, this 
is kind of yellow too, orange, 
dark blue, light blue. ” 

02:28 
to 
02:45 

The experimenter introduces 
the visual task: ”now I will 
ask you a very specific task. 
Rank them by glossiness 
again. As you said, they are 
very glossy, so it might be 
more difficult. ” 

 The Task is presented. 
Experimenter conveys the 
message and the observer starts 
Task Interpretation. 

02:45 
to 
02:55 

”That’s true” - the observer 
admits the task is difficult. 

The observer picks two 
objects up, and looks at them 
from the side, holding them 
next to each other. 

The observer has Structure 
Expectation. The task is 
considered ”difficult”, because 
the observer assumes the ranking 
should be possible and there is 
the ”right answer”, even though 
all objects look ”very glossy”. This 
impacts the rest of Task 
Interpretation. After Task 
Interpretation, the observer has 
taken his time for Decision-
Making and came up with a 
Methodology (that will be 
refined over time due to Learning 
and Adaptation). The observer 
clearly needs a Reference for 
Comparison to quantify 
appearance of a particular object. 
So, he picks two objects and 
compares them against each 
other. 

02:55 
to 
03:16 

Experimenter gives further 
instructions: ”one thing you 
could consider is artifacts, if 
you can’t find any other 
difference; but, first of all, I 
want to ask you to classify 
without taking them into 
account.” 

 This is a pure improvisation by 
the Experimenter that impacts 
Task Interpretation and further 
Decision-making. 

03:16 
to 
03:21 

 The observer continues 
picking pairs of objects and 
inspecting them. Comparing 
each other. 

Comparison with a Reference. 

03:26 
to 

03:31 

 The observer puts two 
spheres next to the third 
one, and compares the three. 

Comparison with a Reference. 

03:31 
to 
03:41 

 The observer moves his hand 
atop the objects, and looks at 
the reflections. 

New details appear in selected 
Methodology. In addition to 
picking objects up and comparing 
them, the observer starts a 
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different kind of Comparison with 
a different Reference - he 
compares reflection image on the 
same sphere among several  

conditions - among several 
positions of his hand. According 
to the selected Methodology, 
better the hand movement is 
depicted in the surface reflection 
image, glossier the object. 

 Observer: ”this is I think the 
most glossy one, without 
considering the artifacts.” 

The observer picks the dark 
blue object and examines 
from close. Then puts it on 
the right hand side of the 
table, as being ranked most 
glossy. 

The Semantic Description is 
regularly used for Completion of 
a Visual Task. 

03:41 
to 
03:46 

 Puts his hand close to the 
sphere surface and observes 
closely. Then puts the blue 
one next to the one ranked 
first. Then chooses the third 
one. 

 

03:46 
to 
04:02 

The observer explains his 
decisions: ”these specular 
reflections look the same on 
all of them. Except for the 
damaged areas. The way I 
am going to classify them is 
whether I see myself on 
them. Whether it has a 
mirror effect or not. ” 

 The observer explains the 
Methodology, and the Decision-
making process that lead him to 
this particular Methodology. 

04:02 
to 
04:08 

Experimenter: ”so you are 
not using specular effect, 
but how you can use them 
as a mirror.” 

 The Experimenter clarifies the 
Task Interpretation and selected 
Methodology. 

04:08 
to 
04:18 

Observer: ”yes, I tried to use 
specular reflections, but 
they all look the same.” 

 The combination of Object and 
Conditions of Observation have 
impacted Methodology selection. 

04:18 
to 
04:28 

 The observer blocks direct 
sunlight with his hands 
towards two translucent 
spheres, and looks at them in 
the shadow. Then picks them 
up and inspects closely. 

Again, Comparison with a 
Reference in several conditions. 

04:28 
to 
04:35 

 The observer takes decision 
one of them is glossier. Puts 
it on the fourth place, while 
the last one is put on the fifth 
place. 

The Comparison with a Reference 
using particular Methodology 
leads to Visual Task Completion.  
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04:35 
to 

04:40 

Experimenter: artifacts 
would have changed this 
order, or not? 

  

04:40 
to 
06:14 

The observer explains the 
process: ”it depends how 
you look at it. At first, I did 
not pay attention to them, 
because I know they are not 
intended to be there. So, I 
judged just the normal part. 
But between this two”, - 
points to the last two ones - 
”when I did not have any 
other choice, because I 
couldn’t use them as a 
mirror, and specular 
reflections are same, so I 
look at them and decided 
which one has more 
damaged areas that reflects 
less light. It’s very very last 
cue, I looked specular 
reflections first of all, but 
they are the same. Then I 
saw my gloves on this one 
[most glossy one], here it’s a 
bit blurry second and third 
ones]”, - moves his hand 
atop the object. ”And here 
[two least glossy ones] very 
little bit. Here (first two 
ones), I even see my face, 
while here [last two ones], I 
just see my gloves when I 
bring it very close to the 
surface.” 

Picks the two objects again 
and shows the areas, which 
do not reflect in a specular 
direction due to scratches. 

The observer explains the 
Methodology, and the Decision-
making process that lead him to 
this particular Methodology. Also 
names particular References 
used. 

06:14 
to 
06:30 

 The experimenter thanks the 
observer, the result is 
recorded 
(photographed),and they 
switch to a new task. 
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Perceived Glossiness: Beyond Surface Properties
Davit Gigilashvili, Jean-Baptiste Thomas, Marius Pedersen, Jon Yngve Hardeberg;
Department of Computer Science, Norwegian University of Science and Technology; Gjøvik, Norway

Abstract
Gloss is widely accepted as a surface- and illumination-

based property, both by definition and by means of metrology.
However, mechanisms of gloss perception are yet to be fully un-
derstood. Potential cues generating gloss perception can be a
product of phenomena other than surface reflection and can vary
from person to person. While human observers are less likely
to be capable of inverting optics, they might also fail predicting
the origin of the cues. Therefore, we hypothesize that color and
translucency could also impact perceived glossiness. In order to
validate our hypothesis, we conducted series of psychophysical
experiments asking observers to rank objects by their glossiness.
The objects had the identical surface geometry and shape but
different color and translucency. The experiments have demon-
strated that people do not perceive objects with identical surface
equally glossy. Human subjects are usually able to rank objects of
identical surface by their glossiness. However, the strategy used
for ranking varies across the groups of people.

Introduction
Appearance is a complex psychovisual phenomenon that is

defined as ”the visual sensation through which an object is per-
ceived to have attributes as size, shape, colour, texture, gloss,
transparency, opacity, etc.” [1] Due to its multiplex nature ap-
pearance is usually split into distinct attributes. According to
CIE, there are four major appearance attributes: color, gloss,
translucency and texture [1, 2]. Eugène [3] cites CIE defini-
tion of gloss as: ”the mode of appearance by which reflected
highlights of objects are perceived as superimposed on the sur-
face due to the directionally selective properties of that surface”
and adds that ”gloss perception is particularly depending on the
way that light is reflected from the surface of the object at and
near the specular direction.” [1] ASTM Standard Terminology
of Appearance [4] defines gloss as ”angular selectivity of re-
flectance, involving surface-reflected light, responsible for the de-
gree to which reflected highlights or images of objects may be
seen as superimposed on a surface.” In computer graphics the
Phong reflection model [5] (that is a simplification of bidirec-
tional reflectance distribution function - BRDF) is widely used
to model glossy appearance. The component responsible for
this effect is the ratio of specularly reflected and incident light.
However, the model does not account for transmission or sub-
surface scattering and no translucency is considered. Ho et al.
[6] have demonstrated correlation between perceived glossiness
and perceived bumpiness, describing gloss as a ”surface prop-
erty”, while Hunter [7] distinguishes six different types of gloss:
1. Specular gloss - ”identified by shininess”; 2. Sheen - ”iden-
tified by surface shininess at grazing angles”; 3. Contrast gloss
- ”identified by contrasts between specularly reflecting areas of
surfaces and other areas”; 4.Absence-of-bloom gloss - ”identi-

fied by the absence of reflection haze or smear adjacent to re-
flected high lights”; 5. Distinctness-of-reflected-image gloss -
”identified by the distinctness of images reflected in surfaces”;
6. Absence-of-surface-texture gloss - ”identified by the lack of
surface texture and surface blemishes.” He proposes that glossi-
ness might be correlated with surface specular reflectance and
concludes that reflectance distribution functions ”offer the only
means by which the reflectance properties of surfaces responsible
for their glossiness may be completely specified.” On the other
hand, Motoyoshi et al. [8] propose that simple image statistics,
like skewness of luminance histogram or similar metric of his-
togram assymetry, are used by the human visual system to assess
surface properties and glossiness without knowledge of the re-
flectance distribution function [9]. The authors explicitly mention
gloss as a surface-related property without discussing the pos-
sibility that the histogram might be affected by transmission or
sub-surface scattering of the light. They further conclude that
average luminance has a significant impact on perceived light-
ness, but not on perceived glossiness and demonstrate the two
images of Michelangelo’s St Matthew sculpture that have iden-
tical mean luminance but substantially differ in perceived glossi-
ness, while comparing grayscale images of the opaque surfaces.
Nishida and Shin’ya [10] propose that a combination of mean
luminance, luminance contrast, maximum and minimum lumi-
nance, as well as spatial structure of luminance gradients, might
be cues for perception of surface properties. They also demon-
strate that surface-reflectance constancy of the human visual sys-
tem fails when shape is changed. Chowdhury et al. [11] have
shown that perceived mesoscopic shape differs between translu-
cent and opaque objects due to difference in luminance gradients.

Pellacini et al. [12] have explored dimensionality of gloss
perception, introducing a percetually uniform gloss space and
psychophysically-based light reflection model that should en-
able cross-object description and matching of apparent gloss.
Using mutlidimensional scaling the authors came up with a 2-
dimensional space with orthogonal axes that are ”qualitatively
similar to the contrast gloss and distinctness-of-image gloss at-
tributes”. They also claim that CIELAB ligthness parameter im-
pacts apparent gloss and demonstrated that ”apparent gloss is

Figure 1. The objects used for the preliminary experiment.

© 2019 Society for Imaging Science and Technology
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Figure 2. Boxplots for observer scores showing how observers ranked the five (A, B, C, D, and E) objects (Figure 1). 1 means least glossy, while 5 means

most glossy. In case of ties, the mean score was taken. Central mark -median; bottom and top edges - 25th and 75th percentiles, respectively; Whiskers extend

to the extreme data points excluding outliers; red ’+’ symbol - outliers. We can observe clear separation for both groups.

affected by the diffuse reflectance of a surface, with light col-
ored surfaces appearing less glossy than dark ones having the
same finish”. Although the proposed framework performed well
for their dataset, the study is limited to opaque spherical objects
assuming that chromaticity and apparent gloss are independent,
without mention of any possible impact from translucency.

The paper is organized as follows: in the next section back-
ground information is provided. Afterwards, we conduct detailed
analysis of the first experiment [13] followed by the experimen-
tal setup of the new one. Subsequent section covers results and
discussion. Finally, we conclude and outline the future work.

Background and Motivation
In an earlier paper [13] we summarized a psychophysical

experiment where observers were asked to rank five spheres by
their glossiness which had identical surface smoothness but dif-
ferent color and translucency (Figure 1). Aggregate frequency
analysis did not show statistically significant differences in ob-
server scores, making us hypothesize that similar gloss perception
can be achieved with similar surface smoothness, but more thor-
ough insight into the interviews of the observers has outlined three
groups of people of roughly same size: 1. Subjects who consid-
ered all spheres to be equally glossy; 2. Subjects who ranked the
spheres considering translucent ones more glossy. Those people
mentioned shininess of the translucent spheres as the reason for
their apparent glossiness. In this case brightness was the cue for
them; 3. Subjects who ranked the spheres considering opaque
ones more glossy. Those observers used distinctness-of-image
gloss and contrast gloss (for the dark ones) as a cue. The three
groups used different cues to reach the conclusion, and some of
those cues may be impacted by other material properties, not only
the shape and surface geometry.

In this paper we want to challenge the established opin-
ion that gloss perception is solely surface-based quality. While
translucency and color can contribute significantly to the cues like
mean luminance as well as luminance contrast and luminance his-
togram, associated with perceived gloss in the literature [8, 10],

it has been proposed [8, 14] that the human visual system has
poor ability, if any, to invert the optics. Therefore, we propose
that translucency and color, particularly lightness, have significant
impact on perceived glossiness. Translucency is a point of partic-
ular interest due to two reasons: first of all, light transmission
and back-reflections increase overall luminance and shininess of
the object that might be consciously or subconsciously associ-
ated with gloss; and secondly, caustics could play significant role
too. According to Lynch [15], caustic is ”three dimensional en-
velope of imperfectly focused rays” or ”two-dimensional pattern
formed when a caustic falls on a surface.” Internal and external
caustics and the glittering effect of the caustic highlights might be
mistaken for specular highlights and thus, for gloss, considering
their similarity in luminance, and proposedly poor optics inver-
sion ability of the human visual system. We conducted series of
psychophysical experiments asking people to rank objects by their
glossiness. The objects had nearly identical surface smoothness
but different color and translucency. As the observers were explic-
itly instructed that they could have ties among objects including
tying all of them, if our hypothesis is false and perceived glossi-
ness depends solely on the surface geometrical properties, the vast
majority of them should have said that all objects have the same
glossiness. In the previous paper [13] different cues used by sub-
jects in opaque and translucent spheres compensated each other
leading to statistically insignificant difference among perceived
glossiness when analyzed the aggregated data. In order to clear
up this ambiguity, we: 1. Analyzed the data from the first experi-
ment [13] separately for different groups of people. 2. Replaced
spheres with a complex object shape that decreases predictability
of caustics and makes it impossible to observe distinctness-of-
image gloss. As the cross-shape failure of reflectance constancy
has been shown in [10], we used objects with an identical shape.

Group-based analysis of the first experiment
The first experiment using five spheres is discussed in [13].

The observers were asked to rank five spheres by their glossiness.
Although the spheres had different colors and translucency, sur-
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face geometry among them was nearly identical. While aggregate
analysis of the overall data did not illustrate statistically signifi-
cant differences in perceived glossiness, more thorough insight in
the data revealed three different groups of the people using dif-
ferent strategies. Below we will illustrate group-based analysis of
the data. The spheres used in the experiment are shown in Figure
1. 17 observers participated in the experiment. Six observers con-
cluded that all spheres have the same glossiness; six people used
luminance-based strategy (later referred as ”luminance group”),
and five people used distinctness-of-image gloss or contrast gloss-
based strategy (”contrast group”). The boxplots for the latter two
groups are illustrated in Figure 2. Due to low number of tests,
it is difficult to assess statistical significance of the differences.
However, the boxplots show very interesting trends. The ”lumi-
nance group” has a very clear separation between shiny transpar-
ent A and B spheres, and opaque C and D spheres. The dark blue
but semi-transparent sphere E has overlaps with both groups as it
demonstrates characteristics of the both. On the other hand, for
the ”contrast group” there is a clear separation between A, B, and
C spheres on the one hand, and D and E spheres, on the other
hand. Dark blue and fully or significantly opaque spheres are
considered more glossy, because this group of the subjects used
a combination of distinctness-of-image gloss and contrast gloss
that are stronger than in case of translucent or opaque but very
light yellow spheres. Nevertheless, it is impossible to draw solid
conclusions due to low number of subjects and test objects. We
conducted a second experiment to verify the results.

Experimental Setup & Methodology
Task and Stimuli

The subjects were introduced to nine plastic female sculpture
objects placed on an A3 white paper with a printed scale and two
extremes: ”Least Glossy” and ”Most Glossy” points. Afterwards
the following instruction was given: ”Please, rank the objects by
their glossiness: from the most glossy to the least glossy. You can
have any number of ties, including the case, when all objects are
tied and no ranking is possible.” The observers were allowed to

Figure 3. The female bust objects used for the the experiment. The corre-

sponding 2-symbol codes are for reference purposes only. 3-digit codes are

their IDs used by Thomas et al. Cuboid objects have been used for transmit-

tance and relative radiance measurements discussed below. [16].

interact with the objects, touch and move them freely. No explicit
definition has been given for gloss. However, they were allowed
to check the definition in case of uncertainty. We used a subset of
the Plastique artwork collection [16]. The collection has been cre-
ated by an independent artist Aurore Deniel to support research
on material appearance. The samples are illustrated on Figure 3.

Experimental Conditions
We made an assumption that impact of the illumination con-

ditions is less than that of cross-individual differences. Psy-
chophysical experiments have been conducted on several occa-
sions in controlled and uncontrolled conditions, and similar trends
have been revealed under all conditions. In total, 107 observers
participated in the experiments. 7 experiments were conducted
in uncontrolled conditions, namely: 1. 2018 Color and Imag-
ing Conference, Demonstration Session (8 observers, attendees
of the conference); 2. 2019 IS&T International Symposium on
Electronic Imaging, Demonstration Session (17 observers, atten-
dees of the conference); 3. Material Appearance 2019 Conference
(8 observers, attendees of the conference); 4. Internal academic
activity at the Norwegian University of Science and Technology
(NTNU), Trondheim (5 observers, master and PhD students); 5.
Internal academic activity at NTNU, Gjøvik (11 observers, high
school students); 6.Internal academic activity at NTNU, Gjøvik
(7 observers, bachelor students); 7. Internal academic activity at
NTNU, Gjøvik (7 observers, bachelor, master and PhD students).
In addition, two experiments took place in controlled conditions,
in two different viewing booths with a distance of roughly 50 cm:
8. VeriVide Color Assessment Cabinet 60-5 under D65 illumina-
tion with 1392 lux and 6180K color temperature (30 observers of
mixed backgrounds). 9. GretagMacbeth Spectralight III viewing
booth under Ultralume 30 (U30) illumination with 665 lux and
2865K color temperature (14 observers of mixed backgrounds).
The experiments were anonymous and no further demographic
information has been collected.

Analysis of the Collected Data
The rank order of the object is recorded as a numerical value.

For instance, if the object was ranked most glossy, it was assigned
”1”; in case it was ranked second most glossy, the object was
assigned ”2”, and so on. In case of ties, a mean score was as-
signed to all objects. For example, if the second and third objects
were tied, each objects got rank equal to 2.5. If no ranking was
done, each object was assigned ”5”. For visualization’s sake, re-
sults of similar ranking strategies were grouped together, and the
ranks given to the each object by different observers were plotted
as a graph to visualize the variation of a position for a partic-
ular object among different trials (Figure 4). Besides, the rank
scores for each object are illustrated as box-plots (Figure 5). An
alternative method for analyzing the ranking could be consider-
ing each experiment a pair-comparison among all objects, where
selected object gets 1, the other one gets 0, and both objects get
0.5 in case of a tie. As the both methodologies lead to nearly
identical results, we report the former for consistency’s sake with
[13]. Afterwards, k-means clustering was conducted using MAT-
LAB kmeans() function 1 to identify which objects were ranked
together. That could help us to identify the right attributes that

1MATLAB R2017b version.
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Figure 4. The aggregate results from all individual experiments. Each colored line corresponds to a particular object. For the majority of the subjects, we can

see a clear separation between more transparent (marked with green hue lines), and more opaque objects (marked red hue lines).

made observers rank objects in a similar manner. Observations
in this case were nine objects and variables were 107 ranks from
107 experiments. The cluster was defined as the centroid being
the mean of all points in that particular cluster. Maximum num-
ber of iterations was set to 1000. Cluster centroids were initialized
using k-means++ algorithm [17]. Finally, material luminance has
been measured and correlated with mean ranking scores.

Results & Discussion
Graph Results

Identically to our previous experiment, three different rank-
ing strategies have been observed:

1. 10 people (9.35%) mentioned that gloss was identical
among objects, and thus, considered ranking impossible.

2. 84 people (78.50%) ranked more transparent objects over
the ones closer to opacity.

3. 8 people (7.48%) opted for the objects closer to opacity.

The ranking of five people (4.67%) did not fit in any of the
above-mentioned categories. It is worth mentioning that the trend
has been similar in all illumination conditions. Clusters of the
objects ranked similarly by each group of the people is further
substantiated below by kmeans clustering results. The overall re-
sults are illustrated in Figure 4. The graphs for transparent ob-
jects are coded with the greenish hue, while the ones with more
opacity are represented by reddish hue, and the dark blue translu-
cent object that stands out from the rest of the dataset is repre-
sented by light blue graph. Each object can be identified with
its two-symbol code from Figure 3. For clarity’s sake, similar
results are grouped across the horizontal axis. There is a very
clear separation between green and red graphs for the vast ma-
jority of the cases, while blue graph oscillates between the two.
In the majority of the cases, transparent objects have lower rank
orders, i.e. are ranked more glossy. This group of observers is
followed by the group of observers that have tied all objects. Fi-
nally, the red and green parts, still clearly separated, swap places.
This part corresponds to the observers, who considered objects
with more opacity being more glossy. By the right extreme of the
plot, some chaotic arrangements are illustrated that did not follow

transparency-opacity cue. On the other hand, it is difficult to see
patterns within transparent and opaque groups that makes us think
that impact of chromatic information might be negligible.

Clustering
Clustering has been repeated 1000 times by new centroid

initialization and the solution with the least sums of point-to-
centroid distances was selected out of the 1000 trials. By ob-
servation of the graphs above, the number of clusters was set to 3.
This lead us to the following clusters (illustrated in Figure 3):

1. Transparent and shiny objects: W1, B1, Y1, Y2.
2. Dark blue translucent object: B3.
3. Objects with more opacity and less shine: W2, W3, Y3, B2.

Rank scores and statistical properties
Rank scores have been illustrated as boxplots (Figure 5) for

two major group of the observer population, and as an aggregate
for all 107 observers. Objects from the same cluster are coded
with the same hue. We can observe a very clear separation be-
tween transparent-shiny and more opaquish objects both for ”Lu-
minance Group” as well as for ”Contrast Group” of the people,
with a few outliers included, while object B3 from a separate
cluster has some overlap with both clusters. In case of aggre-
gate results, separation remains visible due to significantly higher
number of observers in the ”Luminance Group” and number of
outliers increases due to inclusion the observers making no rank-
ing or doing that with unique strategies. Statistical properties for
each cluster of objects for each group of population are illustrated
in Figure 6. For the Luminance group, as well as for the entire
population, mean and median observer scores for more transpar-
ent objects are lower. Standard deviation of B3 for luminance and
contrast groups is higher, as it oscillates between the two groups.

Transmittance Measurements
Transmittance spectra for each material has been measured

in backlit illumination geometry and relative colorimetric values
have been calculated. Due to the complexity of the surface of
the female bust objects, measurements have been conducted on
cuboid shapes of the identical material shown in Figure 3. The
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Figure 5. Boxplots for observer scores showing how each group of the observers ranked the objects. More transparent objects are given with greenish hue,

objects closer to opacity are illustrated with reddish hue, while the object B3 is sky blue. 1 means most glossy, while 9 means least glossy. In case of ties,

the mean score was taken. Central mark -median; bottom and top edges - 25th and 75th percentiles, respectively; Whiskers extend to the extreme data points

excluding outliers; red ’+’ symbol - outliers. We can observe clear separation for both groups.

Figure 6. Statistical properties by cluster for each group of observers.

white paper seen through the object and caustics should have con-
tributed to shiny appearance. Hence, transmitted luminance in-
formation, (Y from measured CIE XYZ), is seemingly correlated
with mean rank scores for the ”luminance group”. This can be
seen in Figure 7, where separation among high and low luminance
objects is apparent, also supported by k-means clustering. Al-
though luminance for B3 dark blue object is low, it has very high
contrast gloss, observers explicitly mentioning that ”highlights
are more clearly visible on this object”. Figure 8 illustrates mean
ranking scores as a function of relative radiance expressed as a
CIELAB L* value measured in reflectance setup, where cuboid
objects were placed on the white background. This enables us to
draw parallels with Pellacini’s statement that objects with higher
lightness in diffuse areas appear less glossy.

Discussion
While the impact of illumination conditions is still to be stud-

ied, cross-individual differences might have significantly affected
the results. The most obvious illustration of this fact is abundance
of ”no ranking” scenario for Material Appearance and Electronic
Imaging Demonstration Session experiments, where the majority
of the subjects had expertise in color, vision, or related fields.
Those who considered all objects equally glossy were explic-
itly asked to justify their decision. All of them defined gloss as
surface-only property, limiting themselves to surface judgment.

Figure 7. Mean ranking score as a function of transmittance expressed as

luminance value.

Figure 8. Mean ranking score as a function of relative radiance expressed

as CIELAB L* value.

In general, still 97 out of 107 observers were able to rank the ob-
jects even though they had explicitly given a possibility not to.
After analyzing the data, three groups of people pop out: the ones
that judge surface only; people who consider transparent-shiny
objects more glossy; and the people who considered objects with
more opacity being more glossy. The justification of ranking more
opaque ones more glossy were clarity of the highlights and higher
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contrast gloss, while people opting for transparent ones associate
gloss with overall shine and high brightness without scrupulous
study of the details. In contrast with the previous experiment,
where the two groups were of the equal size, here shininess-
based decisions prevail significantly. This could be explained by
the absence of distinctness-of-image gloss on the complex sur-
face of the female bust objects, in contrast with a sphere. This
confirms Nishida’s claim [10] that perceptual surface-reflectance
constancy fails when shape is changed, and challenges Pellacini’s
sphere-based model [12]. Clustering supports our hypothesis that
translucency-related attributes as transmittance-measured lumi-
nance are common within a cluster. This leads us to hypothe-
size that gloss and translucency might impact each other. Several
observers explicitly complained that it was impossible to isolate
translucency/transparency and gloss for above-mentioned objects
and thus, to judge them independently. Translucency difference
between the two clusters was very large making it challenging to
discard its effect. However, the ranking pattern for the B3 object
was more irregular. In some cases it was ranked most glossy, jus-
tified by high contrast gloss. We can draw a parallel with the first
experiment, where sphere ”E”, made of the similar material, also
had substantial confidence interval overlaps with the both groups.
This is in agreement with Pellacini’s [12] finding that ”for the
same specular energy, contrast gloss is smaller for lighter ob-
jects”. Assuming that specular reflections are identical, higher
relative radiance in the diffuse part (Figure 8) leads to higher per-
ceived lightness in non-specular areas, and thus, lower contrast
gloss. Contrast and clarity of the highlights were mentioned as a
cue when they came from surface reflection only, while being less
reliable in case of ambiguity whether the light originated from
surface reflection or from sub-surface scattering. In total, light
transmission properties have impacted perceived gloss in several
ways. While contributing to specular gloss by transmission and
caustics, contrast gloss is impacted by lightness of the diffuse ar-
eas in opaque materials.

Conclusion and Future Work
We have observed that glossiness perception function varies

among subjects. While some people try to stick to the literature
definition, the vast majority of them ignore surface similarity and
sort out objects by gloss using their own criteria. Whether they
completely ignore the surface similarity, or they consider it but
look for the additional criteria, needs to be explored in the future.
There is a very clear indication that perceptual gloss cannot be es-
timated by surface properties only and light transmission among
others might have impact on it. However, the data at hand does not
enable us to analyze what is the exact way translucency strength-
ens glossiness perception and whether the effect comes from over-
all increase in luminance after light transmission, or due to inter-
nal and external caustics that are mistaken for the specular re-
flections. In future work we should isolate those phenomena and
study their impact separately. The hypothesis needs further inves-
tigation with more dense sampling across translucency-opacity
scale possibly using computer graphics. However, it comes with
the compromise that tactile information - a widely-used cue for
surface estimation will be lost. Although darker colors enable
higher contrast-gloss and contribute to gloss perception, the role
of chromatic information is still to be determined by measuring
and studying reflection properties. We hypothesize that higher

transmittance will lead to stronger gloss perception in the majority
of the naı̈ve observers, but low brightness/shine for dark opaque
objects could be compensated with increased contrast gloss. Par-
ticular interest will be measurement of scattering coefficient and
inclusion of the multi-material objects with an eventual goal to
model a correlation between material properties and perceived
gloss. Development of this work will be reported in the future.
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This study investigates the potential impact of subsurface light transport on gloss perception for the purposes of broadening
our understanding of visual appearance in computer graphics applications. Gloss is an important attribute for characterizing
material appearance.We hypothesize that subsurface scattering of light impacts the glossiness perception. However, gloss has
been traditionally studied as a surface-related quality and the findings in the state-of-the-art are usually based on fully opaque
materials, although the visual cues of glossiness can be impacted by light transmission as well. To address this gap and to test
our hypothesis, we conducted psychophysical experiments and found that subjects are able to tell the difference in terms of
gloss between stimuli that differ in subsurface light transport but have identical surface qualities and object shape. This gives
us a clear indication that subsurface light transport contributes to a glossy appearance. Furthermore, we conducted additional
experiments and found that the contribution of subsurface scattering to gloss varies across different shapes and levels of
surface roughness. We argue that future research on gloss should include transparent and translucent media and to extend
the perceptual models currently limited to surface scattering to more general ones inclusive of subsurface light transport.
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Fig. 1. Examples of materials and shapes used in the study of the impact of subsurface scattering on gloss.

shiny and matte objects, or whether a material transmits light. Assessment of material appearance has a vital
importance in our daily lives—just by visual inspection, we know whether food is edible or spoiled, whether the
road is slippery or not. Tactile expectations derived from the visual appearance can guide our haptic interaction
with the surrounding objects—for instance, we touch glossy, transparent crystal-looking objects with more care
than we do for jelly-looking, matte objects; expecting the latter to be soft and elastic, while the former is deduced
to be fragile. How the human visual system (HVS) calculates these appearance properties from the physical
stimulus is far from being fully understood. Comprehending the physical processes and inverting optics [51], as
well as the calculation of image statistics by our brain [44] have been named among the potential explanations,
both criticized on several grounds [13, 14, 32].

Gloss is among the most important visual attributes of a material [11, 20]. It is usually associated with shini-
ness [21] due to the specular reflection and is formally defined as an “angular selectivity of reflectance, involving
surface reflected light, responsible for the degree to which reflected highlights or images of objects may be seen as
superimposed on a surface” in the ASTM Standard Terminology of Appearance [1]. The six distinct dimensions
of gloss—specular gloss, contrast gloss, distinctness-of-reflected-image gloss, absence-of-bloom gloss, absence-
of-surface-texture gloss, and sheen—have been proposed by Hunter [29] back in 1937. Since then, gloss has been
accepted as a surface-related quality, and perception of gloss has been studied in the context of surface scatter-
ing models [49, 62, 71]. Various image cues have been proposed to be used by the HVS for gloss perception (for
instance, the total area covered by specular reflections, contrast between specular reflections and surrounding
areas, the sharpness of the edges of the specular regions [38, 39]). Although it has been demonstrated that shape
and illumination co-vary with the image cues proposedly used for gloss estimation [38], these cues can also be
affected by the subsurface light transport (See Figure 1).
When a light ray reaches a boundary between two media with mismatching indices of refraction, part of it is

reflected specularly (i.e., the light re-emerges back toward the incidence hemisphere but on the opposite side of
the surface normal) or refracted (i.e., changes the direction and continues propagation inside the new medium).
The light can either get absorbed or scattered by scattering particles when propagating through amedium. An av-
erage distance a photon travels before it gets either absorbed or scattered depends on the extinction coefficient
of the material. Many rendering techniques use the concept of diffuse reflectance (i.e., scattering the incident
light from a surface into many different angles) for modeling opaque media. However, the optical phenomenon
known as “diffuse reflectance” actually involves subsurface scattering of light—a photon penetrates the superfi-
cial layer of the material, where it quickly gets either absorbed by the pigments or scattered backwards toward
the incidence hemisphere, defining the color of the material and generating an opaque appearance. However, if
the extinction coefficient is low or the object is thin enough, then a photon might re-emerge from a different side
of the object—generating transparent or translucent appearance. The process is illustrated in Figure 2. While
primarily specular reflection has been thought to be responsible for glossy appearance (see Reference [36] for
a review), diffuse reflection has been shown also to be playing a role [49]—assuming negligible or non-existent
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Fig. 2. Light gets either reflected specularly or refracted at the boundary of the two media with mismatching indices of
refraction. What is known as diffuse reflection is actually light scattered backwards from the superficial layers of the sub-
surface due to high extinction coefficient. However, if the extinction coefficient is low, then light can re-emerge far from the
point of incidence, considerably affecting the visual appearance.

subsurface light transport most of the time. In other words, the studies addressing gloss perception have been
traditionally limited to surface reflection and fully opaque media (e.g., References [15, 38, 39, 47, 49, 53, 54, 62,
64, 66, 69–71]), while a lot of materials we interact with on a daily basis, are both glossy and light-transmissive—
water, glass, marble, or human skin can be named among many. The knowledge about the peculiarities of gloss
perception on transparent and translucent materials is very limited.
In this article, we hypothesize that subsurface scattering impacts glossiness perception. The hypothesis is

reasoned from the following notions:

(1) Due to the limited dynamic range and poor capability of the HVS to comprehend and invert the complex
optical path of the light [14], human observers might have difficulty unmixing transmitted and surface-
reflected light. Hence, caustics, direct transmission or volume scattering can be mistaken for specular
reflections. Imagine a transparent crystal vase with a complex shape. It shines, has sparkles and highly
luminant areas. Is it possible to tell whether the highlights are due to the reflection, direct transmission,
or subsurface scattering of light? Do not all these shiny parts evoke a feel of glossiness regardless of their
origin?

(2) It has been demonstrated that darker objects look glossier than lighter ones [49, 62] due to higher contrast
between specular and diffusely-reflecting areas (Hunter’s contrast gloss [29]). As volume scattering and
absorption can impact the contrast between specular and non-specular areas, they might also impact
apparent gloss.

(3) Observation of the mirror-like reflection image on the surface has been identified to be a strong glossiness
cue [21] (Hunter’s distinctness-of-reflected-image gloss). While it has been thought to be correlated with
surface roughness only [49], the distinctness of the reflected image can be dependent on light transmission
properties as well. The same applies to the sharpness of the highlights, which is another glossiness cue
[38, 39].

(4) Subsurface light transport can influence the size of the highlights on complex-shaped objects. It has been
demonstrated multiple times that the size of the highlights is correlated with perceived glossiness [4, 31,
38, 39].
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(5) For transparent objects, as the transmitted and reflected light integrate, overall luminance reaching the
human retina is higher and the object shines more [19, 21]. Overall shine as an inherent characteristic for
gloss, might evoke a perception of glossiness.

(6) Finally, caustics and light transmission might facilitate material identification. If a stimulus is associated
with a familiar, usually glossymaterial, then the expectations about thismaterial can impact the perception
of glossiness [58].

To test this hypothesis, we have conducted a series of pair-comparison experiments. In the first (pilot) ex-
periment, we studied how surface and subsurface scattering affect gloss perception on the example of spherical
objects. The results of the pilot experiment have indicated that the impact of subsurface scattering on gloss varies
among different levels of microfacet-scale surface roughness. This can be explained by the fact that glossiness
cues vary dramatically between mirror-like and Lambertian-like surfaces [29, 53, 70]. We have interviewed sev-
eral participants (members of our lab) in the pilot study. They noted that if the shape of the stimulus were
different, it could have affected their answers. This correlation was deemed reasonable by us, as the macro-scale
shape of the object can impact translucency and subsurface light transport [14, 19, 22]. To investigate further,
the second experiment was arranged, studying objects with five different shapes each with five different levels
of surface roughness. We analyzed the depth and curvature of object shapes and identified interesting trends
in how the contribution of subsurface scattering to gloss varies among object shapes. Our contributions in this
article are the following:

• We experimentally test the hypothesis that subsurface scattering impacts gloss perception for materials
with identical shape and identical surface scattering.

• We identify whether the contribution of subsurface scattering to the glossiness perception varies among
differentmacro-scale andmicro-scale (microfacet-level) shapes, and characterize this impact qualitatively.

• We discuss the need for inclusion of subsurface scattering in future studies, opening a new avenue in
gloss perception research.

The article is organized as follows: in the next section, we summarize the related work. In Sections 3 and 4,
we present the two experiments and their results, respectively, followed by the Discussion section. Finally, we
summarize the conclusions and overview the open points for future work.

2 RELATED WORK
The perception of gloss and translucency has attracted scholarly interest in vision, psychology, and computer
graphics alike. While substantial progress has been achieved on both topics, the two attributes have usually been
studied separately from each other.

2.1 Gloss Perception
One of the most widely discussed hypotheses about gloss perception is that the HVS calculates skewness of
luminance histogram or a similar measure of asymmetry when assessing gloss [18, 35, 44]. Interestingly, many
glossy objects have positively skewed histograms. However, it has been shown by Anderson and Kim [3] that
non-glossy images can also produce similar histograms and image statistics do not fully explain the complex
neurophysiological processes of gloss perception (e.g., References [18, 32, 37]). Other widely studied image met-
rics that are proposedly related to gloss are contrast [38, 39, 49, 62], sharpness [38, 39, 49], and coverage area [4,
31, 38, 39] of the highlights. The glossiness of a given material has been demonstrated not to be constant and
can vary to a great extent, e.g., across different shapes [39, 48, 66]. In some particular cases, even Lambertian
surfaces are capable of evoking gloss perception [52, 53, 70]. Gloss has been shown also to be impacted by
illumination geometry [15, 48], motion [9, 56, 69], and color [46, 69]. Pellacini et al. [49] have used multidi-
mensional scaling (MDS) and identified two perceptual dimensions of gloss that are similar to contrast and
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distinctness-of-image. They conclude that “darker objects look glossier than lighter ones.”Wills et al. [71] tried to
embed bidirectional reflectance distribution functions (BRDFs) into the perceptual space. These percep-
tual dimensions have been modeled with physical material properties in Ward’s reflectance model [68], ignoring
subsurface light transport. Toscani et al. [64] have recently proposed that surface reflection has at least three per-
ceptual dimensions: lightness, gloss, and metallicity. However, the authors did not address how these dimensions
behave on highly transparent and translucent media.

2.2 Translucency Perception
Translucent appearance is a result of subsurface scattering for the materials where the light can penetrate
into the volume. Although Chadwick et al. [5] have reported yet imperfect still reasonable perceptual unmixing
of absorption and scattering by humans in “milky tea” images, Fleming and Bülthoff [14] argued that the HVS
has poor ability to reconstruct complex processes of light and matter interaction and instead it relies on simple
image cues to perceive translucency. These cues co-vary with various properties of an object. Image cues as well
as the amount of light exiting the volume depend on the shape complexity and thickness of a given object. For
instance, it has been shown that sharp geometric details of the object impact apparent translucency [74] and the
other way round, translucency affects perception of geometric edge sharpness [6]. Sawayama et al. [57] have
reported that “sensitivity to translucent discrimination was high when the object has rugged surfaces.” Furthermore,
Gigilashvili et al. [19] have observed that objects with thin parts look more translucent and that the HVS is more
sensitive to translucency differences when an object has thin parts [22]. Motoyoshi [43] observed that luminance
statistics of the non-specular regions are essential for apparent translucency and that decreasing local contrast
in these regions of an opaque material renders translucent appearance. Nagai et al. [45] discussed luminance
statistics of potential “hot spot” image regions that are especially informative about translucency. Later, partic-
ularly edges have been proposed to contain a vital portion of the information for translucency assessment [23].
Similar to gloss, the translucency of a material is not constant either. It has been shown to be dependent on the
illumination geometry [17, 73] and shape [14, 19]. Gkioulekas et al. [24] have examined translucent appearance
in the context of computer graphics and found that the phase function of volume scattering affects translucent
appearance.

2.3 Impact of Translucency on Gloss
Gigilashvili et al. [19] reported no significant differences in gloss perception of five physical spherical objects with
identical surface roughness but different translucency and color. The authors revisited the study in Reference
[21] and after analyzing the observer interviews, they discovered that different people rely on different cues.
The authors have identified three groups of people with different approaches to solve the gloss-based ranking
task. While objects with identical surface were automatically considered equally glossy by some subjects, two
other groups used different cues for ranking, either overall shininess of the object—mostly present in transparent
and translucent spheres, or distinctness-of-image and contrast—that were higher for more opaque ones. When
the experiment was conducted using complex-shaped objects instead of spherical ones [21], the majority of the
observers considered translucent objects glossier than their opaque counterparts. The authors hypothesize that
this happens due to the complex shape, which generated more caustics and back-reflections for translucent and
transparent materials, while lacking distinctness-of-image for the opaque ones. They refer to the reasoning by
Fleming and Bülthoff [14] about poor optics inversion ability of the HVS and propose that subjects might have
mistaken caustics for specular reflections. If that is possible for physical objects during direct interaction, then
confusion can be even larger in computer graphics, where haptic interaction is impossible and tactile information
is absent. It is worth mentioning that these works have been primarily of a qualitative nature. To the best of our
knowledge, this is the first work quantitatively evaluating the impact of translucency on gloss.
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Fig. 3. Spheres with the same surface roughness (alpha = 0) but different subsurface scattering properties. [σt , albedo]
parameters of these spheres are equal to [0.10,0.50]; [1.00,0.90]; [2.00,0.60]; [3.00,0.30]; [3.00,0.95]; [4.00,0.90], from left to
right, respectively.

Fig. 4. Spheres with the same subsurface scattering properties (σt = 0.10 and albedo = 0.50) but different surface roughness,
with alpha equal to 0.00, 0.05, 0.10, 0.25, 0.50, from left to right, respectively.

3 EXPERIMENT 1: PILOT STUDY

3.1 Methodology
3.1.1 Objectives. The objectives of this experiment are twofold: first, we test a hypothesis that subsurface

scattering impacts gloss perception when surface scattering and object shape are identical; second, we observe
how surface and subsurface scattering impact perceived gloss together.

3.1.2 Stimuli. We began our study by considering different scenes to use for our experiments. For illumina-
tion, we followed the previous work [24] using the side-lighting by rotating Bernhard Vogl’s museum environ-
ment map provided by Mitsuba [30] to a proper angle. We created synthetic images of spherical objects using a
physically based rendering in Mitsuba. Spheres have been widely used in the past for studying gloss perception
(e.g., References [15, 19, 49, 62, 72]). For surface reflectance, we used an isotropic rough dielectric microfacet
model with the Beckmann distribution [30]. The model is defined by roughness alpha (the root mean square
slope of microfacets) and an index of refraction IOR. As we restrict our attention to subsurface scattering effects,
we use a fixed IOR of 1.5, which is typical for translucent media such as glass, wax and polymeric materials
[42, 59]. All objects were placed on a Lambertian checkerboard. It is important to highlight that the rendering
technique we used [30, 67] has accounted for Fresnel effects. Fresnel effects imply that the amount of observed
reflectance varies with the observation angle, which have been shown to be important for gloss perception [12]
and for appearance of dielectric materials, in general [26]. The experiment was conducted in two rounds: Since
our primary goal was to explore whether subsurface light transport influences gloss perception, in the first
round, we compared objects with an identical surface roughness parameter (also referred to as alpha) and dif-
ferent parameters of subsurface scattering. To explore how the impact of volume scattering on gloss perception
varies among the different levels of surface roughness, we have repeated the experiment for the different alphas
separately. In the second round, we compared the stimuli with different alphas. We select roughness from the set
{0, 0.05, 0.1, 0.25, 0.5} to cover a wide range of surface reflectance behavior. Some of the stimuli are illustrated in
Figures 3 and 4.
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We used a homogeneous isotropic subsurface scattering model to simulate the translucent appearances. For
this pilot, we assume an isotropic phase function and wavelength-independent scattering and absorption for
subsurface light transport. The subsurface scattering parameters are the extinction coefficient σt and albedo.
For the extinction coefficient, we found through experimentation that increasing σt over 10 does not yield sig-
nificant differences in appearance for our shape, because the material becomes opaque. Therefore, we selected
σt ∈ {0, 0.1, 0.5, 1, 2, 3, 4, 5, 10}. For albedo, we selected albedo ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}.
Such a dense sampling of parameters covers a wide range of appearance but would require an enormous num-
ber of comparisons to be evaluated. Although the parameters have been selected based on visual inspection
in a trial-and-error manner, many pairs of parameter values still lead to indistinguishable appearances, which
are redundant for the user study. To select a smaller set of parameter combinations for stimuli with the same
surface reflectance, we used the K-means clustering algorithm to find six distinctive clusters based on different
subsurface scattering parameters. We used the averaged Euclidean distance of pixels from the rendered images
as a metric to perform K-means clustering. We have explored other clustering algorithms, such as affinity prop-
agation [16], but K-means has provided the best clustering results according to the silhouette coefficient. We
used the cluster center as our stimulus for the user study. Since the K-means has been conducted separately
on different groups of surface roughness, the cluster centers were not identical for all surface roughness levels.
The variation in the cluster centers was small, however, and so we selected identical subsurface scattering pa-
rameters for all levels of surface roughness. Thirty different stimuli were used in total (five different levels of
surface roughness {0.00, 0.05, 0.10, 0.25, 0.50} and six different combinations of σt and albedo, where [σt ,albedo]
∈ {[0.10, 0.50]; [1.00, 0.90]; [2.00, 0.60]; [3.00, 0.30]; [3.00, 0.95]; [4.00, 0.90]}). We used the volumetric path trac-
ing integrator of Mitsuba to render the stimuli with 512 × 512 pixel resolution and 16,384 samples per pixel.
The tonemapped (clipped) low-dynamic-range images have been used to ensure the compatibility with the user
displays. All images can be found in supplementary materials (Figure 23).

3.1.3 Experimental Design. We considered two different designs of two alternative forced-choice task: either
displaying two stimuli and asking the subjects (also referred to as users) to select a glossier stimulus, or displaying
three stimuli and asking to select two stimuli closer to each other in terms of gloss (a setup similar to Wills
et al. [71]). We ran a preliminary study with both designs. Eight members of our lab completed the tasks and
participated in informal post-experiment interviews. Seven of eight subjects mentioned that selecting a glossier
stimulus between the two was an easier task than comparing the three by similarity. They also admitted that
oftentimes they had found it difficult to isolate gloss from total appearance and were tempted to judge similarity
by overall appearance or lightness. Therefore, we selected the former option for the task design.
First, we conducted separate paired-comparison experiments for each level of alpha. The users were shown

two spherical objects with the same surface roughness and different subsurface scattering parameters. They
were asked to select the one with a glossier appearance. The user interface is illustrated in Figure 5. The proper
command of English among subjects was ensured with the AmazonMechanical Turk average approval rate filter
(see Section 3.1.6). Only the users with a positive track record of similar tasks were allowed to participate. The
following instruction was given to them:“Click on the image that contains the glossier object. You can click
after taking two seconds to look at the images.” No further definition or guidance was provided. The reason
for abstaining from a definition is the following: any particular definition for gloss could have biased subjects’
decisions. For instance, as mentioned above, the ASTM Standard Terminology of Appearance [1] defines gloss
as “angular selectivity of reflectance, involving surface reflected light, responsible for the degree to which reflected
highlights or images of objects may be seen as superimposed on a surface.”Reference to the definition that highlights
gloss as a reflectance property might have had an implication for some subjects that subsurface scattering effects
should be ignored. This contradicts the objective of this experiment. The research objective of this study was
the identification of the factors impacting the overall sensation of gloss, not the psychometric measurement
of an internal function for a given visual cue. It is worth mentioning that seminal works on gloss perception
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Fig. 5. The user interface identical to this one has been used to conduct the experiments on the Amazon Mechanical Turk.

(e.g., References [49, 71]) usually have no mention that the term was defined for the subjects, unless the objective
is a psychophysical measurement of a particular, explicit cue (such as specular contrast and specular sharpness
in Reference [38]).
There was no time limit for each trial. Each user was asked to complete 100 trials in random order, of which

75 were unique trials (6 different materials yield 15 trials for each roughness level, totalling to 15 × 5) and 25
were repeated trials with images in reverse order. We used the repeated trials to assess intra-rater reliability
by counting the number of pairs (of 25) the subject selected the same stimulus on both trials. We designed our
system with a delay mechanism: the users could only select the candidate image two seconds after the pair was
displayed. This mechanism makes sure that users take time to examine the images. The users, on average, took
about 5 min to assess 100 comparisons.
To understand how surface reflectance and volume scattering influence gloss perception together, we con-

ducted a second round of paired-comparison experiments, where the two candidate images had different surface
roughness. Instead of dividing the 30 stimuli into five groups and conducting experiments separately for each
roughness level, this time the users had to compare the stimuli from different roughness groups, yielding 360
unique pairs in total (each of the 30 stimuli was compared with other 24 stimuli of different alpha; from the first
round of the experiment, we already had the data for the objects with the same alpha). Twenty-five percent of
the pairs were shown twice for controlling intra-rater reliability.

3.1.4 Analysis: Hypothesis Testing. We formulate a null hypothesis that subsurface light transport has no
impact on gloss perception. To test the null hypothesis, we conducted Binomial exact statistical significance tests,
as our outcome is binary. Under the null hypothesis, the expected probability of each stimulus being considered
glossier is 0.50. We assess observed frequencies and calculate the probability of observing those frequency values
when the null hypothesis is true. As it is not important at this stage which of the two stimuli is glossier (we just
want to show that subsurface scattering makes them look different in terms of gloss), we conduct a two-tailed
test—i.e., it does not matter whether the observed frequency is larger or smaller than the expected one. If the
probability of observing given frequencies is less than 0.05 under the null hypothesis, then the difference is
deemed significant and the null hypothesis is rejected. To avoid falsely rejecting the null hypothesis due to
multiple testing (type I error), we applied Holm-Bonferroni [28] correction to the data.

3.1.5 Analysis: Z-scores. A further method to analyze the pair-comparison data is Z-scores (Standard
scores) [10, 65]. It is based on Thurstone’s law of comparative judgment [63]—assuming that each sample has a
quality that is being assessed by a subject and these qualities are Gaussian random variables. Each time a subject
compares the two samples, realizations from both random variables are drawn and compared, selecting the one
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with higher quality. The probability of selecting a given option is found using the standard normal cumulative
distribution function (CDF). The inverse CDF of the standard normal is a Z-score showing howmany standard
deviations away is a given option from the mean. Usually, Thurstone’s simplified Case V model is used assuming
that all samples are independent and have equal variance [65]. For all samples, we present the mean Z-scores
and their 95% confidence intervals as error bars (calculated using MATLAB Colour Engineering Toolbox [25]).
The mean Z-score shows how far a given stimulus is from the mean of the set of stimuli being assessed. If the
95% confidence intervals of the Z-scores do not overlap, then we can tell with 95% confidence that the qualities
of the two stimuli are significantly different.

3.1.6 Subjects. The sample size is found by desired statistical power, significance level and effect size for the
Binomial null hypothesis testing. The desired statistical power was set to 0.8 (the probability of rejecting the null
hypothesis when the alternative hypothesis is true) and the significance level was set to 0.05 (the probability of
falsely rejecting the null hypothesis when it is actually true). As per the null hypothesis two stimuli are equally
glossy, the expected probability is 0.5. To decide on alternative proportion, two different effect size metrics [55]
were used: Cohen’s g—usually used for the cases where the expected proportion is 0.5 and simply found as a
difference between the proportions, and Cohen’s h—that is found as

h = 2 (arcsin√p1 − arcsin√p2) , (1)

where h is Cohen’s h (sometimes reported as an absolute value) and p1 and p2 are the two proportions. Under
an alternative proportion of 0.75, д = 0.25 and h = 0.52, being interpreted by Cohen [7] (cited in Reference [55])
as large and medium effect sizes, respectively. Thus, we set an alternative proportion to 0.75. Considering these
values, the needed sample size was approximated as 29.
We conducted our experiments on Amazon Mechanical Turk (MTurk) and collected responses from 50

users per pair. In total, around 250 subjects participated in both rounds. The users were compensated for par-
ticipation. The compensation varied from experiment to experiment and was within the range of 2–3 USD per
100 comparisons. To ensure the reliability of the users, two filters were applied: first, only the MTurk users with
an average approval rate above 50% were allowed to participate; and second, the participants were ranked by
their performance in the intra-rated reliability test, i.e., by the consistency of their responses on the validation
set (how many times they selected the same stimulus in the pairs shown twice). Eventually, 30 most consistent
subjects were considered per stimuli pair, around 150 subjects in total. The reason for users’ inconsistency can be
not only their inattentiveness but also the stimuli that are visually indistinguishable. The number of such pairs
is unknown before the experiment and hence, it is not possible to set a threshold for “acceptable consistency”
in advance. For this reason, we had to rely on ranking instead of absolute values of consistency. Interestingly,
the top 30 users turned out to be consistent in at least 70% of the cases. Finally, it is worth mentioning that the
results with concurrent clicks from the same IP address were discarded, because it was impossible to calculate
their intra-rater reliability and to identify how many unique subjects were responding.

3.2 Results
The results for the fixed roughness experiment are shown in Figures 6 and 7. Figure 6 shows that the difference is
significant and the null hypothesis can be rejected for a substantial number of image pairs. This is especially true
for smooth objects. The number of pairs that are significantly different gradually decreases, but for alpha = 0.50
it starts increasing again. While the two-tailed Binomial tests can just tell whether the difference is significant,
the Z-score plot in Figure 7 illustrates which stimuli have been deemed glossier. If the null hypothesis were true,
then all stimuli were expected to end up with similar Z-scores. However, the observed trend is consistent with
the Binomial tests—the difference among some stimuli is significant and it is large for smooth objects while the
difference gradually diminishes but starts increasing again for the highest alpha. The materials either with low σt
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Fig. 6. Significance tables for each roughness level. Each lower triangular matrix shows which of the stimuli pairs are sig-
nificantly different. Green cells—statistically significant difference; white cells—no statistically significant difference. The
number of significantly different pairs is larger for smooth objects (alpha equal to zero).

Fig. 7. Z-scores for fixed roughness experiments. A red cube corresponds to the mean Z-score for a given object, while the
error bar corresponds to a 95% confidence interval. The variation among Z-scores decreases with the increase of roughness,
i.e., Z-scores of five different materials are more equal when alpha is high. However, this trend is not monotonic and it does
not hold for alpha = 0.50.

or albedo were considered glossiest, while the ones with high albedo turned out less glossy. The results including
all comparisons among the 30 stimuli are shown in Figure 8 and 9. The significance table shows that the vast
majority of the differences between different roughness levels are significant, while no significant differences are
usually observed among the objects with the same roughness. However, there are a few exceptional instances—
the materials with high albedo (0.95) are not significantly glossier than some other objects with a rougher surface
(Figure 8). Examples of the objects with different surface roughness but equivalent (not significantly different)
apparent gloss are illustrated in Figure 10.
A clear trend is visible in Z-score plots (Figure 9)—with the increase of surface roughness, the perception of

glossiness is decreasing monotonically, being consistent with the prior works [27, 54]. It is worth noting that
although it is the identical data, the Z-score differences among the stimuli within each roughness group decreases
when considered together with all other stimuli (compare Figures 7 and 9). This can be explained by the fact that
a Z-score for a given stimulus is relative and depends on the judgment against all other stimuli in the set.Within a
larger pool of stimuli and various alphas, the subjects tend to focus more on the surface reflectance instead of the
subtle effects of subsurface light transport. All these observations demonstrate that even though the subsurface
light transport has an impact, the surface reflectance still plays a major role in the perception of glossiness.
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Fig. 8. The significance table for all 30 stimuli. The lower triangular matrix marks the stimulus pairs with statistically signif-
icant difference. Green cells—statistically significant difference; white cells in the lower triangle—no statistically significant
difference.

Fig. 9. Z-scores for the comparisons of all 30 stimuli. As we observe, surface scattering is dominant over subsurface scattering
and smoother objects usually look glossier. However, in some cases, high albedo makes objects no glossier than some of the
rougher ones.

ACM Transactions on Applied Perception, Vol. 18, No. 3, Article 10. Publication date: May 2021.



10:12 • D. Gigilashvili et al.

Fig. 10. The difference between apparent gloss of the objects A and B, as well as between C and D, has been shown not to
be significant. We can consider them having equivalent apparent gloss. Even though A has smoother surface (alpha = 0.00)
than B (alpha = 0.05), low albedo of the latter compensates for the difference in surface scattering. Similarly, C has relatively
smoother surface (alpha = 0.25) than D (alpha = 0.50), but in this case, it is the high albedo of the latter that is responsible
for the equivalent apparent gloss despite substantial difference in surface scattering.

Fig. 11. The number below the images corresponds to their albedo. Although all of the objects have identical surface rough-
ness in each row (alpha = 0.00 in the top row; alpha = 0.50 in the bottom one), the users have distinguished them in terms
of glossiness. According to user responses, the top row can be ranked in terms of apparent gloss, from left to right, the
rightmost one being the glossiest. The bottom row can be ranked in the opposite way—the leftmost one being glossiest (but
the difference between the two rightmost ones is not significant).

3.3 Discussion
While surface roughness has a strong negative impact on gloss (being consistent with References [49, 62]), for
numerous pairs of the stimuli with identical surface roughness, we have rejected the null hypothesis and observed
a significant gloss difference induced by subsurface scattering of light. The way subsurface scattering impacts
gloss perception differs among different levels of surface roughness and changes non-monotonically.
When alpha is low and σt is high, gloss increases as the albedo decreases. This phenomenon is illustrated

in Figure 11 (also supported by the plot in Figure 16). With a high extinction coefficient, the subsurface light
penetration is reduced, yielding appearance closer to diffuse reflectance. This scenario can be paralleled with
a diffuse component in Ward’s surface reflectance model: decreasing the diffuse reflectance leads to glossier
appearance—proposedly due to increased contrast, making our observations consistent with that of Pellacini
et al. [49].

When the stimuli are rough (high alpha) and do not have strong glossiness cues (such as specular highlights),
caustics or the overall shinier look created by high volume scattering could potentially be considered a glossiness
cue. This might explain why people can still tell the difference between the stimuli with high alpha in our
experiments, and why Lambertian surfaces are capable of evoking perception of glossiness [53, 54]. In general,

ACM Transactions on Applied Perception, Vol. 18, No. 3, Article 10. Publication date: May 2021.



The Role of Subsurface Scattering in Glossiness Perception • 10:13

the stimuli with low σt and smooth surface (alpha = 0) were selected as the glossiest (see the leftmost image in
Figure 3). The caustics and back-reflections from the background might be reasons for this (a similar trend has
been observed for some subjects in Gigilashvili et al. [19, 22]). Furthermore, the glass-like appearance can also
evoke a stronger perception of glossiness due to material identification and the association with the properties
of a familiar material, as proposed by Schmid et al. [58]. Several important points have been learned from this
experiment that guided the subsequent experiments:

• Since theway subsurface light transport contributes to gloss depends on the surface scattering, we decided
to study this contribution for each surface roughness level individually.

• If the change in surface scattering induced by subtle changes in microfacet slopes has a dramatic impact
on the behavior of subsurface scattering, then we believe the same will be true for macro-scale changes
of the object shape. Therefore, we decided to study the contribution of subsurface scattering for multiple
different shapes individually and to compare the trends among them.

4 EXPERIMENT 2: IMPACT OF SHAPE

4.1 Methodology
4.1.1 Objectives. Experiment 1 provides evidence that subsurface scattering can impact gloss perception for

spherical objects, and this impact depends on the amount of surface scattering. The objective of Experiment 2
is to quantitatively study whether subsurface scattering impacts glossiness perception in shapes other than a
sphere, and to explore qualitatively how these effects vary with the shape complexity expressed in depth and
curvature.

4.1.2 Stimuli. The same scene and rendering technique was used as in Experiment 1. To study a broad spec-
trum of stimuli, we varied the same three parameters as in Experiment 1 and also the shape of the object, where
shape ∈ {sphere, spiky sphere, Stanf ord Lucy, low resolution Lucy, cylinder } and alpha ∈ {0, 0.05, 0.1, 0.25, 0.5}.

The sphere had already been studied in Experiment 1, while Experiment 2 was conducted on four new shapes.
Several factors were considered when selecting the shapes: we need a shape that differs from a sphere by surface
complexity and curvature, i.e., does not have large curved areas and does not reflect the mirror image of the
environment (if you pick it up, you cannot see yourself); has many fine details; is not compact, has thin parts
that transmit light well; we selected the Lucy from the Stanford 3D Scanning Repository [33], as it satisfies these
conditions and has been used in other works for studying the appearance of translucent materials (e.g., Reference
[24]). Afterwards, we wanted to isolate several features and selected the following objects: is as thick as a sphere
but hasmore complex surface geometry—spiky (bumpy) sphere; has little thickness, similar to Lucy, has thin parts,
but lacks fine details, has relatively simple surface geometry and lower curvature—the low-resolution Lucy; the
main body is as thick as that of Lucy, but lacks thin parts and has very simple surface geometry and a very low
curvature—a cylinder. The objects are illustrated in Figure 12.

We defined the initial pool of subsurface scattering properties as σt ∈ {0, 0.1, 0.5, 1, 2, 3, 4, 5, 10} and albedo ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. We performed a clustering process similar to that used in
Experiment 1 (described in Section 3.1.2). As the clustering was conducted for each individual shape and
surface roughness, the cluster centers were not identical among them. Although the difference was neg-
ligible among the surface roughness levels, it was substantial between the sphere and the Lucy. There-
fore, we selected two sets of [σt -albedo] pairs, {[0.1, 0.5]; [1.0, 0.9]; [2.0, 0.6]; [3.0, 0.3]; [3.0,0.95]; [4.0, 0.9]}
for spiky sphere (identical parameters had already been used for a sphere in Experiment 1), and
{[0.5, 0.8]; [1.0, 0.4]; [3.0, 0.4]; [3.0, 0.7]; [3.0, 0.9]; [5.0, 0.1]} for the Lucy, low-resolution Lucy and the cylinder.
All images can be found in the supplementary materials (Figures 23–27).

4.1.3 Experimental Design. The experimental design was identical to the first round of Experiment 1. The
objects were compared only with the objects of similar shape and alpha.

ACM Transactions on Applied Perception, Vol. 18, No. 3, Article 10. Publication date: May 2021.



10:14 • D. Gigilashvili et al.

Fig. 12. Five different shapes have been studied throughout the experiment. Left to right: sphere (3.00; 0.30), spiky sphere
(3.00; 0.30), Stanford Lucy (5.00; 0.10), low-resolution Lucy (5.00; 0.10), and cylinder (5.00; 0.10). The numbers given in the
parentheses are σt and albedo, respectively. Alpha = 0.00 for all of them.

Fig. 13. The results for Lucy. Significance tables for each roughness level. Each lower triangular matrix shows which of the
stimuli pairs are significantly different. Green cells—statistically significant difference; white cells—no statistically significant
difference. The number of significantly different pairs is larger for rough objects.

4.1.4 Analysis. Similarly to Experiment 1, Binomial tests were conducted to test the null hypotheses for each
pair, and Z-scores were calculated to assess the big picture. In addition to this, a scatter plot of Z-scores as a
function σt and albedo was plotted to identify how these individual parameters of subsurface light transport
affect gloss. Finally, we used the variance of the Z-scores and the number of significantly different pairs for a
given shape and alpha, to compare the magnitude of the subsurface scattering impact on perceptual gloss. The
shapes have been quantified in terms of depth (thickness) and surface curvature. The 3D models were presented
in dimensionless units—the radius of a sphere was considered 1, and all other shapes were quantified relative to
that. Depth was defined as a range of coordinates in all three dimensions separately, covered by the point cloud
of a given object. Local surface curvature (Gaussian and mean) has been calculated for all points on the object
surface [8, 41] and average values have been reported.

4.1.5 Subjects. The procedure was identical to Experiment 1.

4.2 Results
With this experiment, we wanted to answer three questions:

(1) Does subsurface scattering affect gloss for object shapes other than a sphere?
(2) How does the impact of subsurface scattering on gloss co-vary with surface roughness for object shapes

other than a sphere?
(3) How do σt and albedo relate with the perceived glossiness and how does this differ across the shapes?

4.2.1 Does Subsurface Scattering Impact Gloss? In Experiment 1, we demonstrated with spherical objects that
subsurface scattering impacts gloss perception. The results for the Lucy are shown in Figures 13 and 14. Although
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Fig. 14. Z-scores for Lucy. A red cube corresponds to the mean Z-score for a given object, while the error bar corresponds
to 95% confidence interval. The difference among Z-scores grows with the increase of roughness.

Fig. 15. The variance (left) of the mean Z-scores and the number of significantly different pairs (right). The two metrics are
consistent.

the results are not one-to-one comparable with that of a sphere due to the differences in subsurface scattering
parameters, the following contradiction in the overall trends still stands out (compare with Figures 6 and 7): the
impact is subtle for smooth Lucy objects and the contribution of subsurface scattering increases with alpha, while
the opposite is true for spherical objects. The null hypothesis was rejected for 13 of 15 pairs when alpha = 0.5,
while it was rejected for one pair only when alpha = 0. The results for the spiky sphere and low-resolution Lucy
closely follow the trends of a sphere and Lucy, respectively. Interestingly, a cylinder was the least affected object
by the change in subsurface scattering. The detailed results for those shapes can be found in the supplementary
materials (refer to Figures 28–36 for all results).

4.2.2 Impact of Alpha Across Different Shapes. We compared the variance of the mean Z-scores, as well as
the number of statistically significantly different pairs (of 15) for each shape and alpha. The results are shown
in Figure 15. As expected, the results are very consistent between the two metrics. The large variance of the
Z-scores or the higher number of significantly different pairs means that the variation in subsurface scattering
leads to larger gloss differences. The σt and albedo parameters used for rendering, although subtly, still differ
between a sphere and spiky sphere, on the one hand, and the Lucy, the low-resolution Lucy and the cylinder,
on the other hand. This makes it challenging to directly compare the results between the two groups. However,
we can still observe how the variance changes with alpha for a given shape. For spherical objects, the impact of
subsurface scattering on gloss is larger when alpha = 0. The impact gradually diminishes as alpha increases, but
interestingly, the impact starts climbing again when alpha = 0.5. Conversely, the impact of subsurface scattering
on Lucy-shaped objects increases with the alpha. It is also worth noting that the cylinder remains the least
affected object for all alphas.
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Fig. 16. Z-score as a function of the extinction coefficient (top row) and albedo (bottom). Sphere (red circles) and Lucy (blue
diamonds). Linear correlations are apparent for Lucy.

Fig. 17. The results for a sphere. Larger circle diameters represent a higher mean Z-score. Lower albedo and σt lead to a
glossier look for smoother objects, while the trend changes as the roughness increases. Note that Z-scores are relative to
the objects of the same roughness and circles of the same color are not directly comparable among the five plots.

4.2.3 Gloss, σt and Albedo. Till now the impact of subsurface scattering on gloss perception was discussed as
a whole, single phenomenon. However, for modeling purposes in the future, it is of vital importance to identify
how each particular physical attribute relates to the perceived gloss. Mean Z-score as a function of σt and albedo
is shown in Figure 16, and the mean Z-scores in the σt -albedo space are shown in Figures 17 and 18. Interestingly,
for Lucy, there is a negative linear correlation between Z-scores and σt , and a positive linear correlation between
Z-scores and albedo (refer to Figure 19). As for the sphere, the albedo is negatively correlated with Z-scores when
alpha is low, but it becomes positive for large alphas (refer to Figure 11). Figures 17 and 18 show that for both
shapes the increase in alpha has a negative impact on low albedo materials and a positive impact on high albedo
ones. The results for all other shapes are reported in the supplementary materials.
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Fig. 18. The results for Lucy. High albedo and low extinction coefficient usually yield glossier stimuli.

Fig. 19. The numbers in the brackets correspond to σt and albedo. Alpha = 0.25 for all objects. They can be ranked by
glossiness from left to right, the rightmost one being the glossiest (difference between B and C is not significant though).
We can observe that although A, B, and D have identical σt , higher albedo makes them look glossier, because it generates
more highlights which apparently are mistaken for specular reflections. However, A and C have identical albedo, but differ
in σt . Low σt of C generates more caustics, which are also mistaken for specular reflections.

4.3 Discussion
The object shapes come in different surface curvature and thickness (depth). The thickness of the objects is nor-
malized to a unit sphere radius and is shown in Table 1 (columns 1–3). It is an important parameter, because the
extinction coefficient is meaningful in terms of object size—the larger the distance light needs to travel within
the medium, the larger the probability of absorption and scattering is. In other words, object depth directly im-
pacts the appearance of the dielectric materials. This explains why the trends are similar between a sphere and
a spiky sphere, as well as Lucy and low-resolution Lucy. Only subtle differences have been observed between a
sphere and a spiky sphere, and between Lucy and low-resolution Lucy. However, an essentially different trend
has been observed in cylinders, even though its thickness is nearly identical to the body of Lucy. This observa-
tion indicates that thickness does not account for all differences caused by shape and surface complexity—thus,
curvature should also be considered.
Local surface curvature has been found on all points of the 3D object and an average value has been calculated.

The curvature at a given point can have a positive or a negative sign. However, we are primarily interested
in how rugged the overall surface is, and not in the directionality of the curvature, neither in convexity or
concavity of the shape. Therefore, the average has been calculated among absolute values. The curvaturemeasure
is summarized in Table 1 (columns 4 and 5). Note that both Gaussian and mean curvatures are equal to 1 for a
unit sphere, and Gaussian curvature is equal to 0 for a cylinder. Marlow and Anderson [38] demonstrate that
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Table 1. The Depth of the Objects in X, Y, and Z
Dimensions and Their Curvature

X Y Z GC MC
Sphere 2 2 2 1 1
Spiky Sphere 2.09 2.10 2.10 742.81 22.48
Lucy 0.94 1.48 2.73 22691.61 58.44
Lowres. Lucy 0.88 1.48 2.68 89.11 7.61
Cylinder 0.45 0.45 1.90 0 2.48
A sphere and a spiky sphere are larger than the rest. Lucy is the tallest.
Although dimensions for Lucy and low-resolution Lucy look substan-
tially larger than that of a cylinder, this is due to the span of Lucy’s
wings. The approximate size of its body is 0.45 both in X and Y di-
mensions. The cylinderwas designed after the torso of Lucy. Gaussian
curvature (GC) and mean curvature (MC) are found locally for each
point of the 3D object. The average of the absolute values is reported.
Lucy is the shape with the highest curvature that is no surprise con-
sidering its level of fine details.

Fig. 20. Although objects A and B have identical shape and surface roughness, the lower albedo of subsurface scattering
makes object A more mirror-like. Although spectral reflectance is identical, object A looks darker due to higher absorption
inside the volume. Lucies in C and D have identical shape and surface roughness, but higher albedo of C generates more
highlights. It is difficult to tell whether the highlights on C are specular reflections, caustics, or result of volume scattering,
while specular reflections are easier to isolate on low albedo object D.

the weighted average of sharpness, contrast, and size of the highlights account for most of the variance in gloss
judgements. The authors argue that these cues are constrained by the macro-, meso-, and microscale shape of
the object. For instance, specular sharpness can vary as a function of curvature, as “specular reflections will be
sharpest in image regions that run parallel to local directions of high curvature, and will be most shallow (stretched)
along directions of low curvature.” Their experiments have shown that higher curvature leads to higher specular
sharpness and contrast, thus higher glossiness, albeit the correlation with specular coverage is subtle. However,
their findings are based on fully opaque media. Sharpness and contrast will certainly be dependent on the light
exiting the volume after subsurface light transport. The curvature of the surface can also influence the coverage
area (size of the highlights) due to subsurface scattering, as it has been the case for high albedo Lucy in our
experiment (image C in Figure 20). This indicates that their findings are not directly transferable to translucent
materials. In the future work, cross-shape comparisons are needed (e.g., sphere with Lucy) to identify whether
objects with higher curvature look glossier for translucent objects as well.
Interestingly, for low curvature objects, low σt materials (transparent) and materials with high σt and low

albedo (dark opaque) are considered glossiest (refer to the first and fourth images from the left in Figure 3).
We conducted an additional experiment with 15 smooth spherical objects and applied the nonclassical non-
metric MDS with raw user response frequency as a distance matrix. From the extracted features, we can see that
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Fig. 21. Curvature influences glossiness cues—thus, the perceived relative glossiness of the objects.

transparent low σt and dark opaquematerials were placed close to each other in 2D embedding (refer to Figure 37
in the supplementary materials). The same trend holds for higher dimensions. Marlow and Anderson [38] also
see similarities between the two types of materials and propose that similar mechanisms might be used in both
cases, as the clear image of the surrounding “inside or behind the depth” of the object body is visible in both
cases—although one is the result of direct transmission, while the other is a mirror reflection image. The mir-
ror reflections on dark opaque objects are intuitively associated with perceived gloss, but the link between the
background image seen-through the transparent media and gloss certainly deserves further study.
Curvature could, however, explain the primary difference, as well as similarities in trends between a sphere

and a spiky sphere (although we have not compared them directly). For low alpha, a low albedo dark opaque
sphere (image A Figure 21) is among the glossiest, while that is not that case for a smooth spiky sphere made of
the same material (image B Figure 21). This is because the high curvature of the spiky sphere does not permit a
clear mirror reflection to be observed. However, the transparent object is the glossiest for both shapes (images C
and D Figure 21). However, the image cues differ dramatically between the two. The transmission image is not
visible for a transparent spiky sphere (image D Figure 21), but the curvature of spikes produces shiny highlights
due to internal scattering (the resulting image is also affected by the limited dynamic range). Similarly, the lower
curvature of low-resolution Lucy makes transparent one glossiest for all alphas, while that is not the case for
Lucy, as its curvature does not permit clear transmission.

5 GENERAL DISCUSSION
The results of the two psychometric experiments have enabled us make the following observations:

• Subsurface scattering can impact apparent gloss. This impact depends on micro-scale surface roughness
and macro-scale shape of the object.

• Subsurface scattering had larger impact on apparent gloss of smooth spherical objects than on that of
rough spherical objects; for complex Lucy shape, the opposite was true—rough Lucy objects being more
impacted than smoother ones; the impact of subsurface scattering on apparent gloss was subtle for cylin-
drical objects.

• For smooth spherical objects, apparent gloss is negatively correlated with albedo, but the correlation is
positive for rough spherical objects. For Lucy, apparent gloss is negatively correlated with the extinction
coefficient and positively correlated with albedo, regardless of roughness.

• Surface scattering has generally stronger effect on apparent gloss than subsurface scattering. However, in
some particular instances, subsurface scattering could compensate for surface scattering effects, yielding
equivalent gloss appearance on the objects with different surface roughness.

5.1 The Impact of Subsurface Scattering and Its Dependence on Roughness
The effect of subsurface scattering was statistically significant for numerous material pairs. This is a clear indi-
cation that subsurface scattering is a contributing factor to perceived gloss and should be considered in future
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studies on gloss perception. However, this impact differs among the object shapes. We hypothesize that this dif-
ference comes from different image cues present in objects of different shapes and surface roughness. For more
opaque smooth spherical objects lower albedo led to a glossier appearance. As the lower curvature of a spherical
object produces a distinct reflected image of the environment, we believe that this is a widely used cue by the
HVS for glossiness perception. The darker the object, the more distinct the reflected mirror image is. Besides,
the contrast between specular and non-specular areas is also large and the reflections stand out more. This phe-
nomenon is demonstrated in Figure 20—objects A and B have an identical shape and surface roughness, but the
subsurface scattering albedo of A is substantially lower, which makes it easier to observe the mirror reflection
of the environment on it. This is consistent with the previous findings [49, 62]. As the sphere becomes rougher,
the reflection of the environment, as well as specular reflections, disappear and the cues used for judgment of
glossiness change. As rough objects look all Lambertian and non-glossy, the difference among them decreases.
However, objects with higher albedo look lighter and shinier, which could potentially become a cue for glossi-
ness [27, 52–54]. While the impact of alpha on gloss is monotonic, the impact of subsurface scattering is not. Qi
et al. [54] have demonstrated the monotonic relationship between alpha and gloss, while they showed that the
contribution of meso-scale roughness is non-monotonic. Further study is needed to explain why the impact is
non-monotonic for spheres and why it starts increasing for alpha = 0.5. It is interesting that for smooth spheres,
the materials with the lowest extinction coefficient looked glossiest. We have speculated above that the presence
of the transmission image inside the object can be reminiscent of mirror reflection, while the association with
familiar material (e.g., glass), as well as caustics could have also played the role.

5.2 Shape-dependence of the Effect
For Lucy-shaped objects, the opposite trend was observed. Usually, the albedo was positively correlated with
gloss, the extinction coefficient was negatively correlated, and the overall impact was increasing with the rough-
ness. If we inspect the Lucy-shaped images, then we will see that the surface geometry does not allow to observe
a clear reflection image, neither clear specular reflections. Subjects seemingly rely on highlighted areas that
result not only from the specular reflections, but from internal scattering and caustics as well. It is difficult to
tell which highlight is a specular reflection, which one is caustic, and which ones are produced by subsurface
scattering—especially in low-dynamic-range scenarios. Naturally, high albedo objects with lower extinction co-
efficient produce more highlights. Refer to images C and D in Figure 20. High albedo and limited dynamic range
make it challenging to tell whether the highlights of image C were produced by specular reflections or subsur-
face scattering. The same task is a lot easier when the albedo is low (image D). The size of the highlights has
been shown by Marlow and Anderson [38] to be positively correlated with perceived gloss. The curvature of the
surface (as in the case of Lucy) can lead to large highlight areas due to high subsurface scattering. Interestingly,
all smooth objects were considered equally shiny, while the differences between highlights start to prevail when
the roughness is increased, producing a broader range of gloss perception.
These observations are consistent with Gigilashvili et al. [21]. They observed that the impact of translucency

on gloss was different between spheres and complex female bust objects, qualitatively similar to Lucy. They in-
terviewed the subjects and learned that the cues used for gloss estimation were different for different shapes, but
they were also subject to individual interpretations. Further study is needed to investigate the reasons for the
dramatic difference between sphere and Lucy results. Interestingly, the trends were similar between a sphere and
a spiky sphere, as well as between Lucy and low-resolution Lucy. We believe this is correlated with the size of the
objects. First, spheres and spiky spheres cover larger field-of-view, having a more apparent reflection of the envi-
ronment than a low-resolution Lucy, which has simple surface geometry itself, but still occupies too little space
of the field of view to reflect clear images of the environment. Second, translucency varies with the thickness of
the object [14, 19] and the path light travels inside the volume is indeed more similar between a sphere and a
spiky sphere than between a thick sphere and thin Lucy. However, these speculations need concrete experimen-
tal evidence. However, a cylinder is the least affected shape by subsurface scattering. The reason for this could be
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Fig. 22. The structure of the image A provides more cues on how to segment reflection and transmission components, while
the task looks considerably more difficult for images B and C.

the fact that its curved surface enables a clear reflection image for all smooth ones, while the rough ones resemble
in highlight coverage cues—in the end yielding little difference among the cylinders with the same alpha.

5.3 Surface versus Subsurface Scattering
We have observed that surface roughness usually has a stronger impact on material glossiness than subsurface
scattering. However, we have also demonstrated notable examples when subsurface scattering effects compen-
sated for surface roughness and smoother objects did not appear glossier. Interestingly, both surface roughness
and subsurface scattering blur non-specular areas—both generating similar image-level measurements in these
regions. If the surface is smooth and sharp specular reflections are visible, then the two cases can be effortlessly
distinguished (because surface roughness, unlike subsurface scattering, blurs specular highlights too). However,
estimating the contribution of subsurface scattering becomes increasingly difficult with the rougher surfaces
(see B in Figure 22). It would be an interesting future direction to study, how adept the HVS is to estimate
the contribution of the subsurface scattering when surface scattering is high, or when specular highlights are
superimposed on the rendering of a rough object.

6 LIMITATIONS AND FUTURE WORK
This work has been the first attempt to explore how subsurface scattering contributes to apparent gloss. The
materials addressed in this study represent a tiny subset of all possible materials that can exist around us. To
keep the number of experimental stimuli within the manageable limits, we had to fix multiple intrinsic and
extrinsic parameters, which also implies that our findings come with particular limitations, which need to be
addressed in future works:

• We used isotropic phase function and wavelength-independent σt and albedo. Subsurface scattering in
most real materials has large spectral and spatial variation. Materials with wavelength-dependent sub-
surface scattering (chromatic effects) and non-isotropic phase functions should be studied in the future.
The phase function has been shown to be important for material appearance [24]. The authors provided
two-dimensional perceptual embedding of the phase functions, where the dimensions modulate diffuse
translucent and sharp, detailed, glass-like appearances, respectively. We hypothesize that the latter could
be correlated with apparent gloss.

• While the index of refraction has been fixed to 1.5 in our experiments, we believe other indices of refrac-
tion also deserve attention in the future.

• We used Beckmann microfacet normal distribution to modulate surface scattering parameter. It is inter-
esting to explore, whether our findings hold if the surface roughness is modeled with other distributions,
such as Phong [30] or GGX [67]. We hypothesize that the impact will be negligible, as the clustering of
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a large pool of parameters will converge to relatively similar appearances. However, this needs further
study and experimental evidence.

• Although we plot Z-scores as a function of σt and albedo, the effects of the two parameters need to
be studied separately and more in depth. The future experiments could include comparisons for each
σt and albedo, separately. It is also important to explore the potential interaction between these two
parameters. We believe that there is a significant interaction between the effects of the two parameters.
For example, the impact of albedo can be large for high σt , but it becomes negligible when σt is very
low. We believe a mixed effects statistical model is needed to describe the correlation between gloss and
subsurface light transport, while σt , albedo and alpha can be treated as fixed effects, random effects, such
as user physiological and display characteristics, should be also included.

• Illumination conditions have been fixed throughout the experiment. It has been shown before that illu-
mination geometry affects both translucency [14, 73] and gloss [15, 48]. Therefore, the study should be
extended to other illumination geometries.

• As a metric for clustering, Euclidean distance could be substituted with more perception-aware metrics,
such as L4-norm [50], the cubic root metric used by Gkioulekas et al. [24] or the appearance similarity
metric proposed by Lagunas et al. [34]. Additionally, the perceptual accuracy could be improved if the
comparisons were done in the CIELAB space instead of RGB [50, 61]. However, using RGB usually biases
chromatic information [50, 61]. As our stimuli have been mostly achromatic, we believe the comparison
in the RGB space has not introduced any significant bias in the clustering process.

Besides, addressing the research question from the perspective of image-basedmeasurements has been beyond
the scope of this work. However, we believe that future works should investigate how subsurface light transport
affects image structure and statistics, which proposedly are glossiness cues. This could bring to light why and
how subsurface scattering contributes to apparent gloss.

First, our results once again illustrate that no one-to-one correspondence between physical and perceptual
properties exists and that our ability to segment specular reflections from image structure is limited [40]. This
is why users might have mistaken caustics for specular reflections. The image-level intensities result from a
combination of reflection and transmission. Unmixing those is an ill-posed problem and the HVS uses different
constraints for this task, such as, apparent object shape [40]. While smooth spherical and cylindrical shapes fa-
cilitate separation of specular and non-specular components, the task becomes increasingly difficult for complex
geometries. For instance, in Figure 22, it is easier to separate reflection and transmission components in image A
than it is for images B and C.We hypothesize that additional factors that usually facilitate this segmentation, such
as motion, binocular vision or surface texture [9, 56, 69] could decrease the impact of subsurface scattering on
apparent gloss. This could explain why many users tied all physical objects in previous works when interaction
was permitted [19, 21].

However, the users still saw a glossiness difference, even when segmenting specular and non-specular com-
ponents should have been relatively simple—particularly, in the case of smooth spherical objects. We believe this
happened because apparent gloss is not a function of apparent specular reflection only, but it also depends on
extrinsic factors that are independent from specular reflections, such as lightness of the non-specular areas [49].
It remains an open question exactly which image cues and which psycho-visual mechanisms of gloss per-

ception are affected by the subsurface scattering, and rigorous future work is needed to answer it. Similarly to
Marlow and Anderson [38], psychophysical studies should be conducted in the future to measure how different
image-level measurements, such as perceived coverage, sharpness and contrast of the highlights co-vary with
the perceived glossiness of the materials of different shapes and light transport properties. This will help us
understand the differences observed in this article, and the robustness of the state-of-the-art will also be tested
in the context of light-transmissive media. Moreover, particular image statistics should be studied to quantify
and model the impact of subsurface scattering on the gloss cues in the image space. Additional interviews with
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the subjects could potentially help with the identification of the most salient cues and interpreting the results.
Particularly, eye tracking experiments in the controlled conditions could provide deeper insight into the actual
image cues used for glossiness assessment. And last but not least, we believe that perceived gloss is at least
two-dimensional—distinctness and contrast, as proposed by Pellacini et al. [49], being the major perceptual di-
mensions of gloss, even for translucent objects. However, the model quantifying these perceptual dimensions
should include σt and albedo along with other physical parameters, to enable accurate placement of the translu-
cent stimuli in the perceptual gloss space. We have observed in Experiment 1 that for high σt , when the light
does not penetrate deep into the volume, the processes and findings are phenomenologically similar to Ward’s
model used by Pellacini et al. [49]. MDS similar to Reference [49] could reveal how σt and albedo contribute to
distinctness and contrast, given that the stimuli are sampled densely enough in σt -albedo space. With that being
said, we believe a separate embedding might be needed for each alpha, as the HVS might apply different internal
perceptual functions to the stimuli with different roughnesses (i.e., with different gloss cues).
Our findings have practical implications for computer graphics, perception, as well as material appearance

measurement and reproduction research. They show that material appearance modelling should be done on
the shape we are particularly interested in and generalization of the findings based on one shape or surface
roughness should be taken with extreme care. We also propose that future gloss perception research should
include materials that permit subsurface light transport and the perceptual models of gloss should be updated
so that they could account for potential contribution from subsurface scattering. Finally, gloss measurement
protocols should accommodate translucent materials.

7 CONCLUSION
We have conducted psychophysical experiments to test whether subsurface scattering of light contributes to
gloss perception and to characterize this impact qualitatively and quantitatively. The results support our hy-
pothesis and provide ample evidence that gloss perception is impacted by subsurface scattering. The impact
varies across shapes and surface roughness levels; this we believe is the result of different low- and high-level
image cues being used (by the HVS) for different shapes to assess gloss. Our findings propose that modelling
appearance should be taken with care and findings should not be generalized to other shapes and surface scat-
tering models. Moreover, the state-of-the-art findings based on fully opaque materials might not be valid for
transparent and translucent media. Understanding why subsurface light transport contributes to apparent gloss
and how it is used by the HVS would be an important future direction. Eventually, a higher number of stim-
uli (ideally in HDR) will be needed to build a complete perceptual space of gloss. We believe the future work
addressing gloss perception should not be limited to fully opaque materials and the perceptual models should
account for subsurface scattering. Rigorous work is needed in the future to identify the exact mechanisms for
predicting perceptual gloss from materials’ surface and subsurface light transport properties.
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Fig. 1. All spherical objects used in the experiments. Columns correspond to σt and albedo, while rows correspond to
different alphas, respectively.
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Fig. 2. All spiky sphere objects used in the experiments. Columns correspond to σt and albedo, while rows correspond to
different alphas, respectively.

ACM Transactions on Applied Perception, Vol. 18, No. 3, Article 10. Publication date: May 2021.



10:4 • D. Gigilashvili et al.

Fig. 3. All Stanford Lucy objects used in the experiments. Columns correspond to σt and albedo, while rows correspond to
different alphas, respectively.
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Fig. 4. All low-resolution Lucy objects used in the experiments. Columns correspond toσt and albedo, while rows correspond
to different alphas, respectively.
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Fig. 5. All cylindrical objects used in the experiments. Columns correspond to σt and albedo, while rows correspond to
different alphas, respectively.
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Fig. 6. Results for the spiky sphere. A red cube corresponds to the mean Z-score for a given object, while the error bar
corresponds to 95% confidence interval. The difference among Z-scores diminishes with the increase in roughness.

Fig. 7. Results for low-resolution Lucy. The difference among Z-scores climbs with the increase in roughness.

A.2 Z-scores
Z-score plots have been reported for spherical and the Lucy shapes in the main body of the manuscript. Below Z-
scores are reported for three remaining shapes: spiky sphere, low-resolution Lucy, and a cylinder, in Figures 6–8,
respectively. The overall trends between a sphere and spiky sphere, as well as between Lucy and low-resolution
Lucy are largely similar. However, there are still some subtle differences. For instance, a low-albedo spherical
object is among the glossiest for lower alphas. However, that is not true for a spiky sphere. The absence of the
mirror-like reflection of the environment in spiky spheres due to surface curvature could be the explanation for
this fact. There is a difference between Lucy and low-resolution Lucy as well. For low alphas, the transparent low
σt low-resolution Lucy is the glossiest one, while that is not the case for the Lucy made of the identical material.
The transparent low-resolution Lucy, similar to a sphere, permits seeing the background through the object,
while that is not possible for Lucy due to high surface curvature. This can be an indication that background
plays a role in gloss perception and this similarity between a sphere and the low-resolution Lucy should be
scrutinized in the future studies. Finally, the impact of subsurface scattering on the glossiness of cylindrical
objects is minimal in comparison with spherical and Lucy-shaped objects.
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Fig. 8. Z-scores for a cylinder. Subsurface scattering has a subtle effect on the glossiness of cylinders and the majority of
the objects with equal alpha looks equally glossy, except for very high alphas.

Fig. 9. Results for the spiky sphere. Larger circle diameters represent a higher mean Z-score. Similar to a sphere, lower
albedo and σt lead to a glossier look for smoother objects, while the trend changes as the roughness increases. Note that
Z-scores are relative to the objects of the same roughness and circles of the same color are not directly comparable among
the five plots.

Fig. 10. Results for low-resolution Lucy. Similar to Lucy, high albedo usually yields glossier stimuli.
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Fig. 11. Results for cylinder.

Fig. 12. Z-score as a function of extinction coefficient (top row) and albedo (bottom) for the spiky sphere.

A.3 Z-scores in σt -albedo Space
The variation of the Z-scores in σt -albedo space shows how these individual parameters affect gloss (Figures 9–
11). The trends are similar between a sphere and a spiky sphere, as well as between the Lucy and low-resolution
version of it. For spiky sphere, the larger circles are concentrated on the lower end of the σt axis, meaning that
materials with lower σt usually look glossier. The tendency of black and brown circles in Figure 9 manifests
how the negative correlation between albedo and Z-scores gradually changes into a positive one as the alpha
increases. In the case of low-resolution Lucy, all large-diameter circles are concentrated in the high albedo part
of the space (Figure 10), while the diameters do not differ largely in the case of cylinders (Figure 11), being less
affected by σt -albedo variations.
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Fig. 13. Z-score as a function of extinction coefficient (top row) and albedo (bottom) for low-resolution Lucy.

Fig. 14. Z-score as a function of extinction coefficient (top row) and albedo (bottom) for a cylinder.
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Fig. 15. Two-dimensional embedding of the 15 stimuli. It is apparent that transparent and dark opaque materials are located
near each other. The same trend holds for higher-dimensional embeddings.

A.4 Z-scores as a Function of σt and Albedo
Z-scores are shown as a function of σt and albedo in Figures 12–14. In the case of a spiky sphere (Figure 12),
the negative correlation can be seen between Z-scores and both physical parameters, only when alpha is low.
In the plots of low-resolution Lucy (Figure 13), similar to Lucy, the negative correlation can be seen with the
extinction coefficient, and the positive correlation is apparent with an albedo that becomes even stronger as the
alpha increases. Being consistent with the prior reasoning, neither parameters affect the Z-scores of a cylinder.

A.5 Multidimensional Scaling
An additional experiment has been conducted using 15 smooth-surfaced spherical stimuli sampled in σt -albedo
space. Interesting proximity between transparent low σt and dark opaque (high-σt and low-albedo) objects has
been observed in two-dimensional, three-dimensional, as well as in the higher-dimensional embeddings.
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Caustics and Translucency Perception
Davit Gigilashvili, Lucas Dubouchet, Jon Yngve Hardeberg, Marius Pedersen;
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Abstract
Caustics projected onto the surface carry very interesting in-

formation regarding the material they are cast by. It has been ob-
served in previous studies that caustics could be a widely used cue
for translucency assessment by human subjects. We hypothesize
that changing the reflectance properties of the surface an object
is placed on, and removal of the caustic pattern might impact per-
ceived translucency of the material. We conducted psychophysi-
cal experiments to investigate the correlation among caustics, en-
vironment colors and translucency perception, and found very in-
teresting indications that materials appear less translucent under
the conditions where caustics are absent.

Introduction
According to Lynch [1], caustic is ”three dimensional en-

velope of imperfectly focused rays” or ”two-dimensional pattern
formed when a caustic falls on a surface.” According to Wand and
Straßer, ”caustics occur if light is reflected (or refracted) at one
or more specular surfaces, focused into ray bundles of a certain
structure, and then received as patterns of light on a diffuse sur-
face.” [2] As many translucent objects cast caustic patterns onto
other surfaces, and particularly, onto the surfaces they are located
on, we encounter this phenomenon on a daily basis - a glass of
water projecting caustic pattern onto the table can be one of the
simplest examples among many.

It has been identified in the previous study [3] that caustics
could be a significant cue for assessment of material subsurface
light transport properties. The observers were asked to order
objects from the Plastique [4] artwork collection. While many
observers used translucency as a primary attribute for ordering,
the caustic pattern cast through the object onto the white paper
was widely used to assess translucency of the material. This phe-
nomenon is illustrated in Figure 1, where caustic is visible under
translucent objects, while it is missing around the opaque one.

In some cases, caustics can be the only cue for translucency
perception. For instance, refer to Figure 2. While various cues
provide information regarding light transmission properties of the
spheres, caustics below sphere E is the only indicator that the ob-
ject is not opaque. Moreover, indications have been found in [5]
that as the human visual system has proposedly limited ability to
invert optics [6], and as many caustic patterns have high lumi-
nance similar to specularities, internal and external caustics and
the glittering effect of the caustic highlights might be mistaken for
specular highlights and thus, increase perceived glossiness. This
phenomenon is illustrated in Figure 3.

Little is known about the mechanisms of translucency per-
ception, and factors contributing to that. Fleming and Bülthoff
[6] proposed that translucency perception is a result of interpre-
tation of simple image cues without inverting the underlying op-
tics. Gkioulekas et al. [9] studied the role of phase function in

Figure 1: The caustics might carry rich information regarding the
material properties. Even without looking at the objects them-
selves, just by looking at the shadow and caustic pattern, we can
deduce the color of the object, as well as some information about
its light transmission properties. Illustration taken from [7].

Figure 2: Caustics cast by sphere E is the only indicator that it is a
translucent and non-opaque material. Illustration taken from [8].

translucent appearance, while Xiao et al. [10] extended the study
to interactions among phase function, illumination directionality,
and apparent translucency.

Rendering caustics in computer graphics is a computation-
ally costly process. Although caustics might have negligible role
in some contexts, they play an important role in photorealism
of some scenes [2, 11]. Kán and Kaufmann [12] have shown
that caustics increase perception of realism in augmented real-
ity, although it does not have the vital importance. However, Pa-
padopoulos and Papaioannou [13] illustrate that caustics play a
very significant role in realistic appearance of underwater scenes.

While, on the one hand, some studies highlight importance
of caustics in realistic appearance, and on the other hand, the stud-
ies about translucency perception focus on the translucent object
itself, to the best of our knowledge, no work has been done up-
to date to investigate the importance of the external caustics as a
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Figure 3: The caustics might contribute to glossiness perception.
While the surface properties of all nine objects are identical, many
subjects consider translucent ones more glossy, as caustics and
back-reflected light are either mistaken for specular highlights, or
increase total luminance and ”shininess” of the object.

cue for translucency perception. We have conducted a study to
identify whether presence of caustics and the reflection properties
of the surface they are projected onto play any role in perceived
translucency. The study revealed interesting trends that definitely
deserve further follow-up in the future.

The paper is organized as follows: in the next section we
present the experimental setup and stimuli generation process.
Afterwards, the results are presented and discussed. Finally, we
outline the directions for the future work.

Experimental Setup
We conducted psychophysical experiments in order to ob-

serve whether presence or absence of caustics could impact per-
ceived translucency of a given material.

Stimuli
We rendered 30 images using Mitsuba Physically-based ren-

derer [14]. We used bidirectional path tracer to render glass ob-
jects in 5 different shapes: sphere, cube, Stanford bunny, elephant,
and wineglass - all of them placed in the Cornell box. Each
object was rendered with 6 different degrees of transparency-
translucency. While intrinsic material properties remained the
same, translucency was manipulated using the alpha parameter,
which ”specifies the roughness of the unresolved surface micro-
geometry using the root mean square (RMS) slope of the micro-
facets” [14]. In other words, we manipulate light transmission
properties by changing surface scattering, while volume scatter-
ing properties remain the same. The material property was loaded
from the .mtl material library. For each of the color channels,
ambient component was set to 0, while diffuse and specular com-
ponents were set to 0.6 and 0.9, respectively. The refractive index
was set to 1.5. The alpha values were equidistantly sampled be-
tween 0 and 1.

The shapes are illustrated in Figure 4. The impact of the al-
pha value on the material appearance of the object, is illustrated in
Figure 5. It is worth mentioning that while smooth surfaces look
more transparent, rough surfaces start looking translucent never
reaching full opacity (although opacity does not necessarily im-
ply complete absence of transmission as observed in [8, 7]) and

even the roughest object has some degree of light transmission
property. In this case, we expect relative judgement of translu-
cency rather than an absolute one.

Afterwards we had to render identical objects but without
caustics in order to compare perceived translucency between the
two setups. We considered six different ways of removing caus-
tics:

1. Using a rendering technique that does not produce caustics
(with caustics ”off”). However, the results would have been
physically inaccurate.

2. Manually editing images in the graphics editor. This
methodology will end in physically inaccurate and unreal-
istic results.

3. Rendering a fully opaque object of the identical shape, crop-
ping the translucent object, and placing into the render in
place of the opaque object. This result is also physically
inaccurate and unrealistic.

4. Varying refractive index that is directly correlated with the
caustics phenomenon. This is an interesting direction that
we think of addressing in the future, but at this stage, we fo-
cused on single material property for all test samples avoid-
ing an additional degree of freedom.

5. Occluding caustics with other objects. The methodology
is promising, but considering that we had to accommodate
occlusion of objects with various shapes and sizes, judg-
ment of complex scenes that vary among images might have
caused confusion among subjects, and also might be chal-
lenging to interpret due to the unintended side-effects oc-
cluding objects bring into the scene.

6. Making the floor most of the caustics are projected onto
fully absorbing black. Although we cannot remove inter-
nal caustics this way, and some other cues are also impacted
(e.g. lightness) in addition to caustics, the result is physi-
cally accurate, the scene structure remains the same (unlike
the occlusion option), and understanding the impact from
the surface color itself might have an application in the real
world. Therefore, we opted for the latter approach.

Experimental Conditions
We hypothesize that introduction of the black floor makes

objects look less translucent. The example of the effects of the
floor color is shown in Figure 6. In order to test the hypothesis, we
conducted an online user study (also referred to as ”psychophysi-
cal experiment”) using QuickEval [15] web-based tool. We used
category judgement psychometric scaling protocol, where ob-
servers had to assign objects to one of the six categories vary-
ing from the most translucent to the least translucent, i.e. most
opaquish one. To facilitate decision-making for the observers, we
took two measures:

1. Placed an additional spherical object in all test images, in
order to enable subjects judge material consistently across
different shapes.
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Figure 4: Five different shapes have been used in the study. The illustrated images are rendered with alpha value equal to 0.2.

Figure 5: The impact of the alpha value on the material appearance illustrated with the example of the elephant shape. Alpha is equal to
0, 0.2, 0.4, 0.6, and 0.8, from left to right, respectively.

Figure 6: Although the material in both scenes is identical, the
floor color changes its appearance.

2. Illustrated the reference spheres with the two extremes of
alpha value under two different conditions, in order to fa-
cilitate scaling between the extremes. Having access to the
extremes of the dataset ensures that observers make relative
judgements, as they are not expected to perform absolute
judgement based on a very small subset of the transparency-
translucency-opacity spectrum. A sample scene from the
experiment is shown in Figure 7.

In total 50 observers participated in the study. 13 observers
were asked to rank objects by translucency, without providing a
definition or interpretation of translucency. 37 observers were
given more detailed instructions, as follows: ”Assess translu-
cency of the material in the left image on 1-6 scale using a drop-
down menu. 1 - most translucent, 6 - least translucent, i.e. closer
to opacity. Sample materials of maximum (left column) and mini-
mum (right column) translucency are illustrated on the right hand
side of the panel.” However, both groups demonstrated identical
trends, and thus, below we will only report aggregated results.

Results
If we assume that observers have used an equally spaced

scale for their judgments, we can compare mean observer scores
(category) for each shape and alpha value between the two se-
tups. The mean observer scores and their 95% confidence inter-

Figure 7: A sample scene from the experiment. The task is to
select a category from the dropdown menu for the test material
shown on the left side. The reference spheres with alpha equal to
0 and 1, are displayed for facilitating the judgement.

vals are shown on Figure 8. The lower category values correspond
to more apparent transparency-translucency, while higher values
correspond to more opacity. As we see in the figure, the mean
observer-assigned category is larger (i.e. more opaque and less
translucent) in the presence of the black floor for all shapes and
all levels of alpha. For the vast majority of the cases, there is
no overlap between the 95% confidence intervals that makes us
conclude that the difference is significant and deserves further at-
tention. The most apparent exceptions where confidence intervals
overlap are smoothly-surfaced objects. This might be explained
with the fact that these objects are transparent and highly specular
(glossy), standing out from the rest of the stimuli, making match
between the two setups easier for the observers. This might be
an indication that floor color and caustics removal have larger im-
pact on translucency perception rather than on transparency per-
ception, further supporting our proposal in [16] that translucency
and transparency cues differ significantly.

Considering the above-mentioned observation, it is likely
that the assumption about an evenly spaced scale does not hold.
Therefore, we applied Torgerson’s categorical judgement model
[17] (as cited in [18]), finding z-scores and corresponding scale
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Figure 8: Vertical axis corresponds to mean observer scores, while the results are grouped by shape horizontally (bottom horizontal axis).
The top horizontal axis corresponds to alpha values for a given shape. Squares correspond to mean observer scores for a given shape and
alpha value. The blue squares signify materials shown on a black floor, while red squares correspond to materials shown on a regular
Cornell box floor. The whiskers extend to the 95% confidence interval for mean observer scores. For clarity’s sake, the results for each
black-floor / white-floor pair of a given object are separated with a green rectangular frame from the results for other objects.

Figure 9: Vertical axis corresponds to scale values derived from
Torgerson’s categorical judgement model. Blue horizontal lines
mark category boundaries. Note that equal variance is assumed
for all samples.

values and category boundaries. The results are illustrated in Fig-
ure 9. The figure shows that the trend is identical to the one ob-
served for mean observer scores in Figure 8. Interestingly, despite
no overlap between the 95% confidence intervals, some materials
fall in the same category both in case of white – and black-floor
scenarios. This could indicate that 6 categories are not enough
to adequately quantify translucency levels within this dataset and
denser sampling of the potential categories is needed across the
transparency-translucency-opacity spectrum.

Furthermore, it is interesting to figure out, whether the im-
pact is identical for all shapes. For illustration’s sake, the latter
results are sorted by alpha value in Figure 10. Although the sep-
aration between two floor setups stands out, the confidence inter-
vals overlap among all or most shapes for a given alpha value and

floor color. Even if the shape could potentially impact the results,
presence of the spherical object in all scenes might have compen-
sated that effect. This should be considered in the future and the
material should be shown only in one particular shape at a time.
In some cases, e.g. Bunny with alpha=0.6, the impact of the floor
change is very apparent. One of the explanations for this fact is
the sequence the images were shown to the observers. When the
material or shape is identical between two consecutive trials, the
toggling effect impacts observer responses, and the assumption
that all observations are independent does not hold anymore (re-
fer to [19] about toggling and change blindness).

Finally, we plotted mean observer scores as a function of al-
pha surface roughness for each shape and floor color (Figures 11).
As we can observe in the figure, the mean observer scores are al-
ways lower when floor is “white”, i.e. caustics are visible. Per-
ceived translucency decreases monotonously with the increase of
alpha. The correlation between alpha and mean observer scores
look linear and Pearson’s linear correlation coefficient equals to
0.92 if all points are included, and increases up-to 0.98, if trans-
parent smooth objects are excluded. The apparent drop in mean
observer values when alpha equals to 0, is further indication that
transparency and translucency judgments might differ by nature.

Discussion
We see clear indications that objects shown on the black sur-

face look less translucent to human observers, even though the
observers had a reference where they could observe appearance
change between the two setups. The reference could potentially
help them match the identical material between the two condi-
tions, but we observe that the difference is significant even with
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Figure 10: The results reported in Figure 9 but grouped by alpha values. The icons in the top horizontal axis correspond to spherical,
Bunny, wineglass, elephant, and cube shapes, respectively. We observe no significant difference among shapes for a given alpha and floor.

this factor. It is worth mentioning that changing the floor color
does not only remove caustics, but also affects other cues, like
lightness - objects becoming darker, as no light is reflected back
from the floor. While the cues used for translucency perception by
the human visual system is not well understood, removal of caus-
tics might not be the only explanation for the observed trends in
the experiment. It is important to isolate caustics in future stud-
ies. However, the primary challenge is that either rendered im-
ages will be physically inaccurate that we never encounter in real
lives, or physically accurate techniques to remove caustics from
the scene will also affect cues other than caustics. As this work
is the first step towards this direction, the proper trade-off needs
to be found and implemented in the future for in depth analysis
of the question. In addition to this, changing floor color removes
just that portion of caustics which is projected on the floor, while
caustics projected onto other surfaces, yet less apparent, still re-
main visible (e.g. refer to Figure 4, middle image – the caustics
cast by the wineglass are visible on the green wall). Whether this
cue was used by subjects remains unanswered within the scope of
this study. Besides, we have observed the linear correlation be-
tween surface roughness and perceived translucency. The role of
surface scattering in translucent appearance and its relation with
subsurface scattering is an interesting question to be addressed in
the future.

Finally, the study comes with one limitation that is also worth
discussing. If we refer to Figure 5, the objects become darker as
roughness increases. This can be intuitive at first glance due to
facet shadowing and masking. However, model’s failure to take
interreflections between facets into account leads to energy loss,
and might be contributing factor in rougher objects’ dark appear-
ance. This is a common problem microfacet-based models usu-
ally suffer from at some extent [17]. No single straightforward

approach exists to solve this problem and several compensation
techniques have been proposed to mitigate its effect [18, 19].
However, different techniques might lead to perceptually differ-
ent results and assessment of their physical accuracy is beyond
the scope of this paper. Besides, we want to highlight that we do
not ask subjects for absolute translucency assessment. We show
the extremes, the brightest and darkest objects, and ask observers
to locate the test objects on a scale relative to these two. In this
case, we assume that the impact of the energy loss might not have
the critical importance. Although this question can be addressed
in follow-up studies.

Conclusion and Future Work
We hypothesize that placing objects on a black floor that

in itself leads to disappearance of the caustic pattern projected
onto it, makes objects look less translucent. We have conducted
psychophysical experiments to test this hypothesis. Considering
above-presented results, we have clear indications that introduc-
tion of the black floor decreases perceived degree of translucency
for a given material. However, whether this phenomenon can be
attributed to absence of caustics only, or whether other cues af-
fected by the floor color contributed to apparent translucency as
well, needs further investigation.

While we discussed fully absorbing black floor and a binary
case, between caustics and no caustics scenarios, floors with dif-
ferent reflection properties should be studied in the future in order
to observe, whether sharpness or shininess of the caustics matter
and at what extent. If we refer to Figure 1 again, we can see that
sharpness and shininess of the caustics can give us a hint about
translucency or transparency of the orange and yellow objects.
For this purpose, real as well as synthetic stimuli can be used,
where the floor will be colored in different levels of gray and have
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Figure 11: Mean observer score as a function of alpha with visible
linear correlation between the two. Visible caustics always lead
to lower mean scores. The line is fit for clarity’s sake.

different roughness as well. Furthermore, we believe that the im-
pact of shape deserves further attention in the future, in order to
understand how shape impacts perceived translucency and to iso-
late what is the role of caustics cast by a particular shape.

Finally, considering the richness of the information embed-
ded in caustics, we believe caustics could facilitate measurements.
In case the straightforward correlation between material proper-
ties, shape and 2-dimensional caustic pattern is found, caustics
can be used in image-based measurements of material properties.
On the other hand, the potential existence of “caustic metamers”,
i.e. two different materials producing identical caustics, might
limit the method. To the best of our knowledge, this methodology
has not been studied yet and its limits are yet to be understood.
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Blurring Impairs Translucency Perception
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Abstract
Translucency and factors impacting its perception is not yet

fully understood. Various studies have examined the correlation
between physical material properties and perceived translucency.
Furthermore, the concept of translucency constancy has been in-
troduced. However, to the best of our knowledge, no study has
been conducted to identify how image quality impacts perceived
translucency. In this study, we address to one particular image
quality attribute - blurriness. We quantified blur with objective
image quality metric and conducted psychometric scaling exper-
iments to identify how blurring impacts the perceived degree of
translucency. The analysis of the results show some indications
that blur impairs translucency perception.

Introduction & Background
Translucency is among the least studied appearance at-

tributes [1]. No single agreed definition of translucency exists.
According to Eugene [1], ”translucency occurs between the ex-
tremes of complete transparency and complete opacity... If it is
possible to see only a ”blurred” image through the material (due to
some diffusion effect), then it has a certain degree of transparency
and we can speak about translucency”; while Gerbino [2], defines
distinction between transparency and translucency as ”transparent
substances, unlike translucent ones, transmit light without diffus-
ing it.”

The most extensive survey of the image cues affecting
translucency perception has been carried out by Fleming and
Bülthoff [3]. They review a broad range of the factors affecting
the perceived translucency, like specular highlights, color, object
scale, image contrast and illumination direction.

Furthermore, the study by Xiao et al. [4] concludes that per-
ceived degree of translucency depends strongly on the illumina-
tion direction, phase function used in rendering (i.e. a probability
distribution over directions, which describes the angular distri-
bution of scattered light), and object geometric properties. In the
same paper, they introduce the concept of translucency constancy,
i.e. an ability of human beings ”to estimate translucency in a con-
sistent way across different shapes and lighting conditions.”

It has been illustrated that the background and the pattern
seen through the translucent material can also have dramatic im-
pact on translucency perception [5].

In computer vision, translucency perception is often con-
sidered within the broader problem of material identification
[6, 7, 8, 9]. Even though image quality has been considered an
important factor for identification tasks in other fields, e.g. bio-
metrics [10, 11], references to image quality as one of the factors
impacting material identification and object appearance, is lim-
ited. Motoyoshi [12] argues that blurring non-specular regions,
while keeping the specular highlights intact, increases the per-
ceived degree of translucency, but blurring the whole image is not
mentioned in the paper.

An interesting study has been conducted by Sharan et al.[9],
where the authors demonstrated that blurring impairs material cat-
egorization. They tried to study the role of surface properties,
like color, texture and gloss, in material categorization. They cre-
ated a database using images from Flickr image sharing website1

and sorted the images into nine material categories. The authors
conducted psychophysical experiments, where observers had to
categorize the materials. Afterwards, they introduced different
degradation in the images, which they believed removed or de-
creased the role of the different surface properties (e.g. they used
grayscale images to remove the role of color), conducted another
material categorization experiment with the degraded images and
compared the categorization accuracy with that of the original ex-
periment. In order to remove high spatial information and impair
texture recognition, the authors blurred the images and demon-
strated that blurring the images decreased categorization accuracy
from original 91% to 75.5%.

Sharan et al.[9] did not explicitly refer to image quality, but
the authors obviously degraded the quality of the images when
they blurred them. Blurring the images impairs not only tex-
ture recognition, but also makes surface geometry, shadings and
highlights more ambiguous, because the luminance histogram is
shrunk and the high contrast areas get smoother, as demonstrated
by Motoyoshi[12]. The fact that blurring the images decreases
material categorization accuracy on the one hand, and degrades
the cues that are demonstrated to be correlated with translucency
perception [3, 4, 12], on the other hand, we found it interesting
to investigate further, how image quality, in terms of blurriness,
impacts perceived degree of translucency.

The key research question is the following:”can blur of the
image impact perceived degree of translucency?”

However, dilemma was whether to blur the whole image,
or just the object. Therefore, as mentioned above, two different
experiments were held with different stimuli: one with the im-
ages with the whole scene and context, and another one with the
translucent objects cropped and displayed on neutral gray back-
grounds. Hence, another research question arouse:”do blurred
objects seen in the blurred scene demonstrate higher degree of
translucency constancy than blurred objects seen in isolation?”

There are two major points that motivated us study the cor-
relation between blur and translucency perception: first of all, in
broader perspective, we are interested how different translucency
perception is between the people with impaired and normal vi-
sion. Secondly, we want to identify how image quality impacts
the perception of appearance attributes - translucency, in this case,
and whether there is any threshold, when the quality becomes not
acceptable when addressing the images of the translucent objects.
In contrast with full scene images, isolated object images look un-
natural. However, in non-blurred versions of them, we still have

1https://www.flickr.com
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enough cues to consider the objects translucent. In the broader
perspective, we want to identify, what are those cues, when they
vanish and when a translucent object becomes a non-translucent
blob.

To the best of our knowledge, no study has been conducted to
examine the impact the blurriness of the image has on perceived
degree of translucency of the materials. The aim of the study is
to identify, and if possible, quantify, the impact blurriness of the
image has on perceived translucency. The subsequent chapters
are organized as follows: in Research Methodology & Experi-
mental Setup chapter, we will discuss the approach applied to the
problem. Afterwards, we will illustrate and discuss the results in
Results & Discussions and finally, draw the conclusions from the
latter and define directions for the future work.

Research Methodology & Experimental Setup
Design of the Experiments

The psychometric experiments were conducted using Quick-
Eval web-based tool[13] . The experiments were held in two
parts: one for the whole-scene images, and another one for the
isolated objects. As mentioned above, full-scene experiments in-
cluded the original images and blurred versions of them, while in
isolated-object experiments, the translucent objects were cropped
from the original images (and blurred versions of them), and
placed on the neutral gray background, in order to remove scene
and contextual information. Both experiments were pairwise
comparisons [14], where the observers were shown two images
and were given the following instruction: ”Select the object with
higher degree of translucency, i.e. transmitting higher amount of
light.” Additional oral instructions given, if needed. The experi-
ment was conducted in forced-choice regime, where the observer
necessarily had to select either object of the pair. The same pair
was displayed twice in a flipped order. No reference image was
displayed separately. Three different versions of each image were
used in each of the experiments: original, moderately blurred and
highly blurred. This totals to nine images within each experi-
ment. All the images were compared against each other - hence,
considering that the pairs were shown in a flipped order as well,
72 comparisons and about 10 minutes were needed for each of the
experiments.

The observers could recognize the objects shown in isolated
object experiments on the gray background were simply cropped
from the full-scene images that they had already seen in full-scene
image experiments. In order to discard the effect of this issue, we
used different triplets of the images for full-scene and isolated
object experiments. All the observers completed the experiments
in the following order: 1. Full Scene Image-based experiment. 2.
Isolated Object Image-based experiment.

Stimuli
We used the Flickr Material Database created by Sharal et

al.[9] As the focus of this research is translucency, we used the
images from the single category ”Glass”. Six different images
were selected in total - three for full-scene image experiments,
and three for isolated object image experiments. All images were
RGB color images, provided in JPEG format and with resolution
of 512×384 pixels. In order to avoid confusion among observers,
only images with a single translucent object were selected.

The images were randomly selected from the database (with

the constraint of including just single translucent object). ”Moder-
ate” and ”High” Gaussian blur was applied to each of the images,
with standard deviation of 5 and 25 respectively (with default ker-
nel size of MATLAB imgaussfilt function [15]). The examples
of the blurred images are illustrated on Figures 1 - 6. We under-
stand that the number of images is low. However, we focused on
the number of observers, rather than the number of images, as
according to Sharma [16] ”given the amount of time necessary
to perform these experiments,it is often more desirable to have a
larger number of observers.”

Display
The experiments were conducted in controlled conditions.

The images were displayed on EIZO CG246 display, with
1920x1200 resolution and 59 Hz refresh rate. The display
was calibrated according to the following parameters: Gamut:
sRGB; Gamma: 2.20; Brightness: 80 cd/m2; Black point: 0.19
cd/m2; White Point: 6502K, with the following x,y coordinates:
(0.3127,0.3293); Contrast Ratio: 412:1;

The experiment was held under dim ambient illumination.
The illumination was 27 lux in front of the keyboard and the color
temperature of the ambient illumination was 4450K. The distance
to the screen was approximately 50 centimeters.

Observers
20 observers, 12 males and 8 females, with normal, or

corrected-to-normal vision voluntarily participated in the experi-
ment. Average age of the observers was 28.1 years. The observers
had technical background, but were naı̈ve to translucency studies.

Analysis of the Collected Data
Collected subjective evaluation data was analyzed in the fol-

lowing way: first of all, Z-scores and their 95% confidence inter-
vals [14] were used to illustrate the responses of the observers.
Furthermore, binomial sign tests were conducted to examine the
significance of the difference between the observations [17, 18].
The raw data, as well as the p-values out of the binomial sign tests
are reported below.

On the other hand, objective metric was used to quantify the
degradation of the image quality. Namely, Structural Similarity
(SSIM) - Full Reference image quality metric [19] - where the
original image was considered a reference, with SSIM score of 1,
while the SSIM score was found for two blurred images. 1 is con-
sidered best score (full similarity), while 0 is the worst case (no
similarity). SSIM is one of the metrics used to measure Gaussian
blur degradations [20]. It’s worth mentioning that metrics, like
BRISQUE, or blur-specific [21, 22], CPBD [23] and JNBM [24]
failed to adequately quantify very high amount of blur.

Finally, Pearson’s Linear Correlation Coefficients were
found between the objective image quality assessment metric and
the mean z-scores obtained for each of the psychometric scaling
experiments.

Results & Discussion
Image Quality

SSIM metric reflects the changes in the image quality and the
score has a decreasing tendency as the image is blurred. Please,
refer to the Figure 7.
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Figure 1. ”Glass” full-scene image: Original (left), moderately blurred (mid-

dle), and highly blurred (right)

Figure 2. ”Horse” full-scene image: Original (left), moderately blurred (mid-

dle), and highly blurred (right)

Figure 3. ”Pot” full-scene image: Original (left), moderately blurred (middle),

and highly blurred (right)

Figure 4. ”Scull” isolated object image: Original (left), moderately blurred

(middle), and highly blurred (right)

Figure 5. ”Frog” isolated object image: Original (left), moderately blurred

(middle), and highly blurred (right)

Figure 6. ”Horse” isolated object image: Original (left), moderately blurred

(middle), and highly blurred (right)

Figure 7. SSIM score as a function of the amount of blur

Psychometric Scaling Experiments
Z-scores of the psychometric scaling experiments are illus-

trated on Figure 8 and Figure 9. Figure 8 summarizes the z-scores
of the three full-scene images with three different degrees of blur-
riness. As we can see on the figure, mean z-score for the undis-
torted image is always higher than that of its blurred versions. For
all three images, there is no overlap of the confidence intervals
between more blurred and less blurred versions of a particular
scene (although there is a substantial overlap between 95% con-
fidence intervals for different images (Cup, Horse, and Teapot)).
Considering this clear separation, we can conclude that perceived
degree of translucency decreases for a given object when the im-
age is blurred. This is logical and intuitive for the images with
high amount of blur, as high blur removes all the cues necessary
for translucency perception (highlights, shades, background that
is seen through, surface geometrical properties) and transforms
the translucent object into a nearly homogeneous patch. On the
other hand, when blur is moderate, translucency perception is im-
paired less dramatically in comparison with the original. There-
fore, we can conclude that translucency perception impairment is
correlated with the amount of degradation introduced.

Figure 9 illustrates z-scores for three isolated object images
with three different degrees of blurriness, when the objects are
seen in isolation on the neutral gray background. The trend re-
mains the same as in case of the full-scene images: mean z-scores,
i.e. perceived degree of translucency decreases, as the blurriness
increases. However, in contrast with the full-scene images, the
gap between mean z-scores, as well as between the confidence in-
tervals of the different versions of the same image is less than that
of full-scene images.

This is opposite to our expectation that access to the
full-scene context might lead to higher translucency constancy.
Whether impact of the full-scene information is statistically sig-
nificant, needs further examination with larger dataset. As the
images used for the two experiments are different, they are not di-
rectly comparable. The reason for the difference can be content of
the image and characteristics of the objects, rather than the lack of
access to the full context information. However, one of the expla-
nations for this indication is that cropped objects, in contrast with
the objects in blurred full-scene images, still stand out from the
homogeneous background, considering that the edges are clear,
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Figure 8. Translucency z-scores for each of the examined full-scene im-

ages. The number after image name indicates the standard deviation of the

Gaussian blur. The error bars and the blue circles show 95% confidence

interval and the mean z-scores respectively. Same variance assumed for all

the samples.

Figure 9. Z-scores for each of the examined Isolated Object images. Same

variance assumed for all the samples.

evoking a perception of the object as a hole transmitting light.
Besides, the highlights, texture other translucency cues might be
more apparent when observing on the homogeneous background.
This can be a topic for further investigation.

Pearson’s Linear Correlation
The fact that image quality distortion is correlated with im-

pairment of translucency perception, means that image quality
assessment is important while working on quantification of per-
ceived translucency and image quality metrics could be used to
predict the extent to which translucency constancy could hold. In
order to further examine this hypothesis, Pearson’s Linear Corre-
lation coefficients between SSIM values and mean z-scores were
found. For Full-scene images, the correlation coefficient was sig-
nificantly high - equal to 0.91. On the other hand, SSIM values
and z-scores for Isolated Object images demonstrated little corre-
lation, as the coefficient was equal to 0.36.

This can be explained with the fact, that the large area cov-
ered with neutral gray background in the isolated object images,
leads to high structural similarity even for highly blurred images,
while as we have already seen, blur significantly decreases mean
z-scores for those kind of images (refer to Figure 10). Therefore,
we found SSIM values from cropped objects only, disregarding
gray background in the SSIM pooling step. However, correla-

Figure 10. The Quality Maps for moderately (left) and highly (right) blurred

”Scull” (top) and ”Glass” (bottom) images. Lighter areas mean higher simi-

larity, darker areas mean less similarity with the original.

tion coefficient between new SSIM values and mean z-scores in-
creased insignificantly - up to 0.42. The reason for this could be
the content of the images: as shown on Figure 10, the scull has
very complex shape and fine details that lead to higher structural
dissimilarity when blurred. Hence, need for further investigation
with larger and more diverse dataset, as well as for the application
specific image quality metric arises and should be considered in
the future work.

In this particular case, we could have found correlation be-
tween z-scores and the amount of blur introduced (standard de-
viation of the Gaussian blur function) avoiding objective image
quality metrics. In this case, high correlation has been demon-
strated even for isolated images. However, in real-life situations
information about the distortion might not be available. This is the
primary reason, why it is very important to have objective metrics
that quantify the amount of degradation and correlate well with
the perceived degree of translucency.

Sign Tests
In order to further substantiate the credibility of our find-

ings, we studied the raw data and conducted binomial sign tests on
them. The raw data can be found in Tables 1 and 2, for full-scene
- and isolated object images, respectively. The number in the cell
signifies the number of the observers, which considered the object
of the corresponding row more translucent than the object of the
corresponding column. The names of the objects without numbers
represent the original images, while the names with the numbers
signify the blurred images with the number signifying the stan-
dard deviation of the Gaussian blur. The number of responses
for each pair sums up to 40, as there were 20 observers and each
pair was shown twice, in a flipped order. In order to compensate
the problem of multiple comparisons, we applied Bonferroni[25]
correction to our data.

As we observe for full-scene images, objects with high
amount of blur are mostly significantly less translucent, except
for the cases, when compared against other highly blurred images.
Moderately blurred images are also significantly less translucent
than the original ones. Refer to Table 1. The results are color-
coded: if object in the corresponding row is significantly more
translucent than the object in the corresponding column, the cell
is green; if it is significantly less translucent, the cell is red; while
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Table 1. The raw data of the observer responses for full-scene images. Raw p-values obtained from the binomial sign tests
are given in the parentheses. Green cell: object in the corresponding row is significantly more translucent than the object in
the corresponding column; Red cell: object in the corresponding row is significantly less translucent than the object in the
corresponding column; White cell: no statistically significant difference.

Cup Cup 5 Cup 25 Horse Horse 5 Horse 25 Teapot Teapot 5 Teapot 25
Cup 34(8.36e-06) 34(8.36e-06) 29 (0.0064) 35(1.38e-06) 36(1.86e-07) 17 (0.4295) 35(1.38e-06) 35(1.38e-06)
Cup 5 6 (8.36e-06) 35(1.38e-06) 16 (0.2681) 26 (0.0806) 35(1.38e-06) 14 (0.0806) 18 (0.6358) 36(1.86e-07)
Cup 25 6 (8.36e-06) 5 (1.38e-06) 7 (4.23e-05) 11 (0.0064) 18 (0.6358) 7 (4.23e-05) 7 (4.23e-05) 16 (0.2681)
Horse 11 (0.0064) 24 (0.2681) 33(4.23e-05) 34(8.36e-06) 35(1.38e-06) 11 (0.0064) 33(4.23e-05) 36(1.86e-07)
Horse 5 5 (1.38e-06) 14 (0.0806) 29 (0.0064) 6 (8.36e-06) 33(4.23e-05) 8 (0.0001) 11 (0.0064) 33(4.23e-05)
Horse 25 4 (1.86e-07) 5 (1.38e-06) 22 (0.6358) 5 (1.38e-06) 7 (4.23e-05) 6 (8.36e-06) 5 (1.38e-06) 22 (0.6358)
Teapot 23 (0.4295) 26 (0.0806) 33(4.23e-05) 29 (0.0064) 32 (0.0001) 34(8.36e-06) 33(4.23e-05) 36(1.86e-07)
Teapot 5 5 (1.38e-06) 22 (0.6358) 33(4.23e-05) 7 (4.23e-05) 29 (0.0064) 35(1.38e-06) 7 (4.23e-05) 37(1.95e-08)
Teapot 25 5 (1.38e-06) 4 (1.86e-07) 24 (0.2681) 4 (1.86e-07) 7 (4.23e-05) 18 (0.6358) 4 (1.86e-07) 3 (1.95e-08)

Table 2. The raw data of the observer responses for isolated object images. Raw p-values obtained from the binomial sign
tests are given in the parentheses. Green cell: object in the corresponding row is significantly more translucent than the object
in the corresponding column; Red cell: object in the corresponding row is significantly less translucent than the object in the
corresponding column; White cell: no statistically significant difference.

Frog Frog 5 Frog 25 Horse Horse 5 Horse 25 Scull Scull 5 Scull 25
Frog 36(1.86e-07) 35(1.38e-06) 19 (0.8746) 34(8.36e-06) 35(1.38e-06) 6 (8.36e-06) 29 (0.0064) 30 (0.0022)
Frog 5 4 (1.86E-07) 35(1.38e-06) 14 (0.0806) 25 (0.1538) 33(4.23e-05) 5 (1.38e-06) 17 (0.4295) 29 (0.0064)
Frog 25 5 (1.38e-06) 5 (1.38e-06) 12 (0.0165) 18 (0.6358) 30 (0.0022) 5 (1.38e-06) 10 (0.0022) 25 (0.1538)
Horse 21 (0.8746) 26 (0.0806) 28 (0.0165) 30 (0.0022) 29 (0.0064) 10 (0.0022) 21 (0.8746) 25 (0.1538)
Horse 5 6 (8.36e-06) 15 (0.1538) 22 (0.6358) 10 (0.0022) 29 (0.0064) 5 (1.38e-06) 18 (0.6358) 22 (0.6358)
Horse 25 5 (1.38e-06) 7 (4.23e-05) 10 (0.0022) 11 (0.0064) 11 (0.0064) 4 (1.86e-07) 9 (0.0006) 13 (0.0384)
Scull 34(8.36e-06) 35(1.38e-06) 35(1.38e-06) 30 (0.0022) 35(1.38e-06) 36(1.86e-07) 34(8.36e-06) 36(1.86e-07)
Scull 5 11 (0.0064) 23 (0.4295) 30 (0.0022) 19 (0.8746) 22 (0.6358) 31 (0.0006) 6 (8.36e-06) 36(1.86e-07)
Scull 25 10 (0.0022) 11 (0.0064) 15 (0.1538) 15 (0.1538) 18 (0.6358) 27 (0.0384) 4 (1.86e-07) 4 (1.86e-07)

white cells signify no statistically significant difference. The rows
of the original images (Cup, Horse, and Teapot) are composed of
16 green, 8 white, and 0 red cells. The number of green cells
decreases down to 8 for moderately blurred image rows, while
there are 7 red, and 9 white cells. Finally, the rows corresponding
highly blurred images are composed of just 17 red and 7 white
cells. There is a clear trend that less blurry versions are consid-
ered more translucent by the observers.

On the other hand, difference is not significant in many cases
when judging cropped objects. The original image rows are com-
posed of 11 green cells, and 7 out of them is accounted for the
”Scull” image that is considered the most translucent one among
the nine images.

Besides, the amount of blur does not make significant differ-
ence between the versions of the Horse image. It is very inter-
esting that this object at some extent demonstrates translucency
constancy. One of the reasons for this could be the dark texture
that can be perceived as being inside the object and that is present
even on the blurred image.

Furthermore, highly blurred version of the Scull is signifi-
cantly different only from other less blurry images of the Scull.
Considering this, we could hypothesize that the impact of blur on
the perception of very translucent objects is limited. However, the
observers might be biased with their knowledge about the origi-
nal Scull image - relying on that information regardless the ap-
pearance of the actual blurred version. Another reason could be
that the Scull is achromatic with a lot of specularities that as has
been demonstrated by another study [26] might also significantly
impact translucency perception.

It is also worth mentioning that many differences might be-
come more significant, if the experiment is conducted with higher
number of observes. Example of this is illustrated on Table 3.

Table 3. P-values decrease, when the number of observers
increases, but the portion of the observers with similar
response remains the same.

Number of observers
with similar responses P-values

15 out of 20 0.04138947
30 out of 40 0.002221434
45 out of 60 0.000134514
60 out of 80 8.58E-06
75 out of 100 9.58E-07

Conclusion and Future Work
To summarize, we have introduced different amount of

Gaussian blur to the Flickr Material Database images. After-
wards, the blurriness were quantified by objective image qual-
ity assessment metric and psychometric scaling experiments were
conducted to determine, how introduction of blur impairs percep-
tion of translucency.

The data analysis has shown that for given images, blur sig-
nificantly impairs translucency perception and the degree of im-
pairment is correlated with the amount of image degradation.

We have also demonstrated that for full-scene images, SSIM
objective image quality assessment has significant correlation
with the perceived degree of translucency, while introduction of
homogeneous background in isolated images, decreases this cor-
relation. As examined image quality metrics, like BRISQUE,
CPBD, and JNBM failed to adequately quantify high amount of
blur, needs for more application specific metric arise.

Furthermore, there are some indications that the effect of
blur is more dramatic when full scene is blurred. We hypothe-
size that cropped blurred images with sharp edges are unnatural
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and might evoke the perception of the object as a hole transmitting
the light. Besides, the translucency cues might be more apparent
on the homogeneous background. This can be a topic of the fur-
ther study comparing appearance of identical objects in those two
setups.

In order to model the impact of blur on translucency percep-
tion and identify the limits of translucency constancy, larger num-
ber of images, as well as smaller steps in blurriness variation are
needed in the future study. More diverse database will also help
figure out the fundamental reasons why blur impairs translucency
perception and what are the cues people use for translucency as-
sessment.

Finally, we were limited just to a single type of image distor-
tion in this paper. In further study, we will examine how distor-
tions other than blur, e.g noise, or compression artifacts, impact
translucency perception and translucency constancy.
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Abstract. We interpret our surrounding based on the visual stimuli,
and perceive objects and materials around us to have various attributes,
like color, glossiness, and translucency. We analyze the three-dimensional
world based on the two-dimensional images detected by our retina. The
state-of-the-art works conclude that the human visual system has a poor
ability to fully understand and invert the complex optical nature of light
and matter interaction. Some authors rather propose that the human
brain calculates image statistics to perceive appearance, demonstrating
correlation between perceptual attributes and various statistical metrics.
However, the illustrated examples are usually unrealistic nearly-perfect
stimuli, making real-life robustness of the findings questionable. In this
study, we analyzed image statistics of photos of real world objects, and
assessed the performance of statistical image metrics proposedly used by
the human visual system. We identified very interesting trends, as well
as limitations.

Keywords: Material appearance · image statistics · gloss · translucency

1 Introduction

Appearance is a complex psychovisual phenomenon that implies attributing par-
ticular characteristics to surrounding objects based on the interpretation of the
visual data. CIE 175:2006 [23] (as quoted in [5]) defines appearance as ”the visual
sensation through which an object is perceived to have attributes as size, shape,
colour, texture, gloss, transparency, opacity, etc.” The CIE identifies color, gloss,
translucency and texture as four major appearance attributes [23]. Appearance
measurement has been developed towards hard metrology, i.e. instrumental mea-
surements [12, 18, 30], and soft metrology relying on psychophysics [8, 22, 27].

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). Colour and Visual Com-
puting Symposium 2020, Gjøvik, Norway, September 16-17, 2020.
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While we orient ourselves in the 3-dimensional world we still interpret the en-
vironment based on the 2D retinal images. And we do pretty well: humans with
normal vision can easily distinguish glossy and matte or translucent and opaque
objects; furthermore, we are good at identifying materials, easily distinguishing
ceramics from wax or human flesh from plastic dummies. Although multisensory
information, like tactile or auditory, facilitate this process, the crucial amount of
information is extracted from the above-mentioned 2D retinal images. Fleming
and Bülthoff [6] have proposed that the human visual system (HVS) has poor
optics inversion abilities, and that it relies on simple image cues to interpret
material properties. Motoyoshi [21] tried to correlate image statistics with ma-
terial properties, and found indications that skewness, or a similar measure of
luminance histogram asymmetry, might be used by the HVS to judge surface
properties. The finding is further supported and manifested by Landy [15]. Mar-
low and Adelson [16] demonstrated that sharpness, contrast and coverage area
of the highlights are correlated with perceived level of glossiness. Qi et al. [24]
tried to find correlation between perceived glossiness and various statistics of
specular highlights, like spread, size, number, strength, and percentage cover-
age, and found a statistically significant correlation between the percentage of
the highlight coverage and perceived glossiness.

Image statistics have been used for studying perceived translucency as well.
Motoyoshi [20] manipulated images of various materials and concluded that
“spatial and contrast relationship between specular highlights and non-specular
shading patterns is a robust cue for perceived translucency of three-dimensional
objects”. On the other hand, it has been also shown that image statistics alone
do not entirely explain the complex nature of appearance perception and they
are usually subject to multiple photo-geometric constraints [2, 13, 14, 16].

Although the above-mentioned findings are interesting, they are oftentimes
based either on the synthetic stimuli, rendered in constrained and unrealistic
environments, or few photographs taken in limited conditions. The studies using
large photograph databases have no access to the physical ground truth of the
material (e.g. [25, 31]), while wherever the ground truth is available, the number
is stimuli is low (e.g. [21]).

The novelty of this study is using a photograph dataset with full access
to the ground truth physical stimuli. We had a particular motivation for using
photographs in this study. The vast majority of the authors using computer gen-
erated stimuli do not account for imperfections and artifacts present in the real
world. As computer vision emerges, with autonomous vehicles among the most
prominent applications, in-the-wild performance of particular metrics becomes
vitally important for material identification. Therefore, we decided to extract
image statistics not from the synthetic stimuli, but from photographs of real
world objects coming with unintended artifacts, and to study the robustness of
image statistics, as predictors for actual material appearance. We photographed
objects with varying degree of gloss and translucency and described them with
statistical metrics known to be correlated with them.
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The paper is organized as follows: in the next section, we present the acquisi-
tion setup and methodology. The results are presented and discussed in Sections
3 and 4, respectively. Finally, we draw conclusions and summarize the potential
directions for the the future work.

2 Methodology

2.1 Stimuli

We photographed spherical resin objects from the Plastique collection [28]. The
objects have been created by an independent artist with an intention to be used
in material appearance research. The resin substrate material is colored with
different combinations of blue, yellow and white colorants, followed by different
levels of surface processing (polishing). The objects come in three levels of surface
coarseness that affects apparent gloss of the materials. We photographed 30
spheres in total with 3 different levels of surface roughness, 3 hues, and various
levels of translucency (Fig. 1). It is worth mentioning that the objects have
several visible artifacts, like scratches on the surface and bubbles in the volume,
that make them good targets for testing the robustness of image-based metrics.
The close-ups of some of the objects are shown in Fig. 2. Renderings of spherical

Fig. 1. The resin objects used as targets. Column A - objects with smooth surface;
Column B - rougher objects; Column C - the roughest among the three. Objects in the
same row are made of the identical material and differ only in surface processing.
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objects are very commonly used in computer graphics for studying appearance
(e.g. [22, 29]), and a simple curved shape of a sphere ensures apparent specular
reflections, as well as distinctness of image gloss, that are very widely used cues
for glossiness assessment by the HVS [8, 9, 22].

2.2 Image Acquisition

The objects were photographed in a GretagMacbeth Spectralight III viewing
booth under diffuse D50 illumination with around 4900K color temperature. The
illuminant is placed on the ceiling of the viewing booth, placing all objects under
top-lit geometry - the most commonly encountered illumination geometry, both
outdoors under sunlight, as well as in an office environment. The light intensity
on the bottom of the viewing booth was 1858 lux, as it was directly exposed
to the light, while it was 900 lux on the background. The acquisition setup is
shown in Fig. 3.

The objects were placed on a white matte paper. Metal rings were used to fix
the position of the spherical objects. In order to avoid possible bias from highly
specular metal rings, they were covered with a white tape sticker. The imme-
diate background of the object was white for opaque objects, while translucent
objects were photographed twice, with black and white backgrounds. A Nikon
D3200 camera was used with ISO 100, shutter speed 1/250 sec., F-stop 2.2, and
50mm focal distance. The object was located around 50 centimeters away from
the camera. The camera was characterized using a MacBeth ColorChecker. The
estimates of CIE XYZ values were obtained by a regression-based method us-
ing manufacturer-provided and camera-acquired color coordinates of the color
checker patches. The color correction matrix was found by the least squares ap-
proximation. The spheres were segmented from the images of 3008×2000 pixels.

We are aware of the limitations related to the acquisition pipeline. Although
the camera response function (CRF) has not been measured or estimated, the
non-linearity of the CRF that is typical to consumer cameras might have affected
the results. It is especially worth highlighting that the limited dynamic range
of the acquisition system and clipping of the high luminance information could
have impacted the recorded luminance histogram and its statistical moments.

2.3 Analysis of the Data

Only manually segmented images were studied and the background is not in-
cluded in the statistics. It has been proposed that chromatic information has
negligible impact on gloss perception [9, 22, 27]. In depth analysis of this is be-
yond the scope of this work. We assume that the vital portion of the information
needed for glossiness estimation is embedded in luminance, and therefore, ana-
lyze the luminance channel Y from CIE XYZ. We found luminance histograms
for each of the segmented objects and calculated the first four moments of it.
Finally, the following statistical measures have been considered for the analysis:
skewness and kurtosis of the luminance histogram, coverage of the highlights,
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Fig. 2. The difference in contrast as well as in the reflected image is apparent between
the dark blue and yellow smooth-surfaced objects (A and B). The object shown in
illustrations C and D is the same, but its appearance differs due to the change in the
background color. Some artifacts and bubbles are visible in image D.

Fig. 3. The setup used for image acquisition.

mean luminance of the object, and standard deviation of the luminance distri-
bution. The coverage was defined as the percent of the total surface covered by
the areas which were larger than 20 pixels and had luminance value above 0.9
(luminance is normalized to 0-1 range, 1 corresponding to the largest luminance
recorded by the acquisition system. We do not report cm/m2 measurements). A
correlation between gloss and the size of the highlights has been reported in the
literature [16, 17]. Finally, we used these five statistical metrics for clustering the
objects.

3 Results

The images of the 30 objects are shown in Figure 1. Objects shown in rows 11
and 12 are the same as the ones in rows 6 and 8, respectively, but photographed
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Fig. 4. Luminance histograms for segmented images. Top row - dark blue objects (row 1
in Fig. 1); bottom row - white objects (row 7 in Fig. 1). Column A - smoothest objects;
Column C - roughest objects. The histograms show that the smoothest objects are
positively skewed. As the mean luminance is lower, the skewness is stronger for the
dark blue one. The histogram of the roughest white object is negatively skewed.
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Fig. 5. Skewness of the luminance histogram for each segmented object (as to be
counted from left to right, and top to bottom, in Fig. 1. Clear regularity of the triplets
is visible in the pattern.

with the black background. Two major histogram asymmetry metrics have been
studied: skewness and kurtosis. How the luminance histogram varies among dif-
ferent colors and levels of surface roughness is illustrated in Fig. 4. The results
for skewness are shown in Fig. 5-6. As we see from the plots, the luminance
histogram of the objects with smoother surface, i.e. higher gloss (difference in
perceptual glossiness is apparent among the three levels of surface coarseness,
although not quantified psychophysically), has always a positive skew, and the
skewness is higher than that of the rougher, i.e. less glossy objects. Skewness
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difference between the two other surface levels is visible, but not large. A clear
regular pattern for the triplets is visible in Fig. 5. If we refer to rows 1-4 in Fig. 1,
the objects vary from darkest blue in row one, to lightest blue in row four. As
we increase lightness of the object, the skewness of the luminance histogram
decreases. Row 7 stands out on the plot with its low histogram skewness. This
can be explained with the fact that the object is white, close to the illumination
color. As the specular reflections on the surface are also whitish, they cause less
skew in the luminance distribution, than for the low luminance bluish objects,
where the tail of the distribution was high luminance specular highlights.
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Fig. 6. Skewness of the luminance histogram for each segmented object. Each curve
corresponds to each level of surface coarseness, as shown in columns in Fig. 1. Numbers
in horizontal axis correspond to the rows in Fig. 1.

While skewness measures asymmetry towards particular direction, either pos-
itive, or negative skew, kurtosis measures general ”tailedness” of the distribution
in both directions. Kurtosis for glossiest class of the objects is highest, and gener-
ally follows the same pattern, as it is for the skewness (refer to Fig. 7). However,
the distinction between the two other classes is negligible with this measure.

The surface coverage by specular highlights was equal to zero for all rougher
objects (columns B and C in Figure 1). The only exception was row 7, where the
whitish color of the object biased our calculations and led to unreasonably many
false positives. On the other hand, the coverage did not differ significantly among
the smooth objects (column A), and the specular highlights covered around 0.8%
of the total visible area of the sphere.

Mean luminance for each object is summarized in Fig. 8. Studying mean
luminance can be interesting for two reasons: first of all, overall shininess of the
object, as observed in [9], can evoke gloss perception in itself; secondly, it has
been demonstrated [16, 22] that contrast between specular and diffuse areas, has
significant impact on perceived gloss. Considering that specular highlights are
white and nearly identical on all objects, we assume that mean luminance of
the object is inversely correlated with the contrast gloss - i.e. higher the mean
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Fig. 7. Kurtosis of the luminance histogram for each segmented object. Each curve
corresponds to each level of surface coarseness, as shown in columns in Fig. 1. Numbers
in horizontal axis correspond to the rows in Fig. 1.

luminance of the entire object, lesser is the contrast between specular and diffuse
areas. The objects with smoothest surface have less mean luminance than objects
made of the identical material but with rougher surfaces. This can be explained
with the fact that the substrate white material is exposed to the surface due to
scratches, artifacts and irregularities presented on the rough surface.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12

M
e
a
n

 l
u

m
in

a
n

c
e

Row in the figure

A B C

Fig. 8. Mean luminance for each segmented object. Each curve corresponds to each
level of surface coarseness, as shown in columns in Fig. 1. Numbers in horizontal axis
correspond to the rows in Fig. 1.

In contrast with the findings by Wiebel et al. [31], standard deviation of
the luminance distribution is a poor predictor for surface coarseness class in
our study (refer to Fig. 9). However, it significantly rises when the background
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of the object is changed from white to black. This might be a good indication
that impact of the background on the luminance variance is a result of volume
scattering - thus, used as a predictor of translucency for see-through objects.

In addition to this, we hypothesize that complexity of the scene might impact
the statistics. We photographed objects in one additional condition placing a
checkerboard-covered cube close to the object (the setup is shown in Fig. 10).
The general trend is that rougher the surface is, the smaller the impact of the
cube on statistical measures. This can be explained with the fact that the smooth
surface has a good distinctness-of-image reflection, and the image reflected from
the surface significantly impacts the statistics, while rough surfaces diffuse the
light and no pattern is visible on the surface reflections. This trend deserves
further attention.

Afterwards, we compared the metrics for the identical objects between white
and black background photographing conditions (the results for rows 6 and 8 are
compared with the results for rows 11 and 12, respectively). Interestingly, skew-
ness and kurtosis decrease when the background is changed to black. To some
extent, this can be accounted for many white-colored artifacts of the object which
are visible on the black background only. As expected, mean luminance is de-
creased for black background due to absorption of the energy by the background,
and thus, less back-reflections. Finding the ratio of the luminance measured on
white and black backgrounds is an established technique for transmittance mea-
surement of the flat objects (e.g. [10]). This observation holds at some extent
for spherical objects as well. Also, as already discussed above, standard devia-
tion changes significantly due to change in the complexity of the background.
It has been demonstrated [9] that translucency, when objects are placed on a
white background, can make objects look glossier. Here we observe that white
background leads to more skewed luminance histograms that itself is proposedly
related to gloss. Therefore, there might be a gloss-translucency cross-attribute
interaction that is described by changes in image statistics. However, this needs
further experimental evidence.

Finally, we conducted clustering to validate our hypothesis that the five sta-
tistical measures are good predictors for object class (smooth, moderately rough,
and highly rough surfaces). We used k-means clustering with 3 clusters. Falsely
detected highlight coverages for objects in the seventh row were manually set
to 0. The cluster was defined as the centroid being the mean of all points in that
particular cluster. Maximum number of iterations was set to 1000. Cluster cen-
troids were initialized using k-means++ algorithm [3]. All objects with rougher
surfaces (columns B and C) ended up in the same cluster. A small separate clus-
ter was objects 1A and 2A, i.e. dark blue objects with low mean luminance, with
the highest positive skew in luminance histogram. Four smooth-surfaced objects
7A, 10A, 11A, and 12A were clustered together with rough objects. While all
other smooth objects were grouped together in a separate cluster. Clustering
gives us an indication that five variables, the five statistical descriptors we use,
might be enough to separate very smooth and glossy objects from rougher and
less glossy objects. However, they fail describing intra-group differences.
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Fig. 9. Standard deviation of the luminance histogram for each segmented object. Each
curve corresponds to each level of surface coarseness, as shown in columns in Fig. 1.
Numbers in horizontal axis correspond to the rows in Fig. 1.

4 Discussion

We have observed that as the surface becomes rougher, skewness and kurtosis
of the luminance histogram decrease, and the distribution becomes less tailed.
While glossy objects look solid opaque, like billiard balls, rougher surfaces look
milkier, and at some extent evoke illusion of subsurface scattering via surface
scattering only that is not surprising considering that the HVS has poor optics
inversion ability [6]. This can be an indication in support for Motoyoshi’s pro-
posal [20] that blurring non-specular regions, i.e. squeezing the tails towards the
center, reflected in decreased skewness and kurtosis, can enhance translucency
perception. On the other hand, it has been observed earlier [7] that translu-

Fig. 10. A cube next to the object is covered with a checkerboard texture that is
reflected on the surface of the sphere affecting its image statistics and appearance.
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cency perception declines with blurring the entire object or image, i.e. when we
decrease variance and histogram asymmetry. However, this proposal certainly
needs validation psychophysically.

Although specular highlights are small and very simple in texture (just sat-
urated blobs), covering less than 1% of the total visible area of the sphere, they
strongly skew the luminance histogram, and evoke strong perception of gloss.
Interestingly, van Assen et al. [4] have studied photographs with various pat-
terns of highlights (disk, square, window etc.), and found that simpler specular
highlights evoke stronger gloss perception than more complex ones. However,
the role of the highlights should not be exaggerated, as the perception of gloss is
a complex cognitive process and neither specular reflections are the only source
of the highlights, nor all highlights evoke perception of glossiness. To demon-
strate this, we have superimposed specular highlights of a smooth surface to
a rougher surface of the identical materials (Fig. 11). In one case, the target
rough object has relatively homogeneous texture, while in the other case, there
are very apparent scratches and visual artifacts that help observers deduce the
surface composition of the object. While glossiness for the former object looks
reasonably realistic, the latter object does not look glossy as the highlights start
looking more like artifacts. Presence of roughness cues limit perception of glossi-
ness, although the statistical metrics are similar to that of glossy objects. This
once again demonstrates photo-geometric constraints limiting the usage of image
statistics as an appearance predictor. Interestingly, the HVS can still be tricked
in particular scenarios when additional cues are missing (the manifestation of
this phenomenon is the viral glossy legs illusion [19]).

Fig. 11. While both highlights are artificial, the left object looks glossier due to the
lack of artifacts, while the scratches help us know the right object is not smooth, i.e.
not glossy.

Hunter [11] names contrast gloss, i.e. contrast between specular and diffuse
areas, among one of the types, or dimensions of gloss. Pellacini et al. [22] have
demonstrated that darker objects look glossier than lighter ones, and this effect
has also been observed in other studies [9, 16, 29]. Although we did not have a
direct measure for contrast in this work, considering that highlights were nearly
identical among objects, we assumed that mean luminance of the entire object is
inversely correlated with the contrast gloss. It has been demonstrated that up-to
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some threshold rough and light surfaces might look glossy [8, 24]. Moreover, it
has been proposed that luminance information associated with shininess might
significantly increase perceived glossiness [9]. Although mean luminance alone
cannot be a good predictor for apparent gloss of the materials, it might carry
rich information regarding contrast and distinctness-of-image (another dimen-
sion of gloss according to Hunter [11, 12]), and could be eventually included in
the perceptual gloss model.

Standard deviation turned out a poor predictor of surface roughness class
in our study. This interestingly contradicts with Wiebel et al. [31], who studied
natural images, observed a strong positive correlation between standard devia-
tion of luminace histogram and gloss, and found it a better predictor for gloss
than skewness. Although we have not conducted perceptual measurements of
our stimuli, we can draw some qualitative parallels. The inconsistency can be
explained with the type of objects depicted in authors’ natural images. If we
examine the images illustrated in [31], we notice that images considered glossy
consist of large segments of contrasting luminances, i.e. photographed complex
shaped objects yield high number of pixels with highlights and also high number
of dark pixels with shading - leading to large standard deviation. Unlike theirs,
the highlights covered less than 1% of our stimuli, while the luminance gradient
on the rest of the sphere was relatively homogeneous. This led to strong skew but
was not enough for yielding high standard deviation in the luminance histogram.

Distinctness-of-the-reflected-image, the mirror image of the surrounding we
can see on very glossy surfaces is another cue for glossiness. The background
and surrounding vary dramatically in dynamic scenes, and hardly ever are as
simple in real life, as studied in the laboratory conditions. Image statistics are
neither static, nor consistent among different conditions. We observed that even
a minor change in the environment (Fig. 10) can affect image statistics that
makes its possible use by the HVS and even by machines, questionable. On the
other hand, appearance is also dynamic; even though the HVS has ability to
perceive some appearance attributes consistently across different conditions, i.e.
demonstrates some constancy (e.g. color constancy), the constancy is valid up-
to certain extent only, and completely fails in many conditions. While the vast
majority of the studies trying to explain appearance with image statistics rely
on a few images in very limited conditions, it remains an open question how
appearance and image statistics co-vary. We have shown above that particular
image statistics are promising and deserve further attention, but for more solid
conclusions, psychometric measurements are needed. Understanding how image
statistics correlate with perceived appearance can be beneficial in two ways:

– It can unveil further mechanisms that are used by the HVS to interpret the
surrounding.

– It can have commercially significant applications in computer vision. Many
image statistical metrics are extremely efficient computationally, and might
be used for material identification and quality assurance. Moreover, general-
ity across different conditions might not be the mandatory requirement for
image statistics. Many computer vision applications are limited to very spe-
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Fig. 12. The object shown in the left and right photos is the same. However, even a
slight change in illumination angle leads to dramatic changes in its appearance. If the
smoothest (region A) and the roughest (region B) surfaces are distinguishable in the
left image, they (regions C and D) look nearly identical in the right one due to dynamic
range limitations.

cific conditions by nature, and limits of particular statistics might not have
vital importance, as long as a correlation between statistics and appearance
is established for given (application-specific) conditions.

Finally, we should mention that above-discussed variation in luminance dis-
tributions was observed due to the curvature of the spherical objects. Our find-
ings might not be applicable to other surfaces, especially to the planar ones.
To demonstrate this, we tried photographing flat plastic and metallic samples
from the JIDA Standard Sample dataset [1]. We have observed two interesting
phenomena that made studying image statistics of these samples unreliable:

– Because the surface is flat, all points on small objects are under approxi-
mately the same illumination geometry that makes it impossible to see spec-
ular and diffuse areas separately, and the entire part of the patch looks rather
homogeneous, essentially cutting down the luminance histogram to a single
luminance value. This can be seen in the left image of Fig. 12, where the left-
most part of the patch (region A) is smooth and glossy, albeit homogeneous
under given conditions.

– The samples, especially the metallic ones, are extremely prone to appear-
ance changes even with a slight change in illumination geometry. This is
demonstrated in Fig. 12.

Although haze and absence-of-textures on low gazing angles (further dimen-
sions or types of gloss) could be observed on the flat patches, these phenomena
are beyond the scope of this work and should be addressed in the future.

5 Conclusion and Future Work

We have taken photographs of real world objects and studied correlation between
image statistics and actual physical surface properties. Although very clear pos-
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itive skew of the luminance histogram is characteristic for smooth (and presum-
ably glossy) surfaces, the robustness of the metric is challenged by complexity
of the surrounding and semantic understanding of the scene and surface geom-
etry. Furthermore, mean luminance can be correlated with contrast gloss, while
change in variance across different conditions can be a predictor for translucency.
It is worth mentioning that the dynamic range of our acquisition system was lim-
ited, and analysis of the high dynamic range data could reveal further interesting
trends. Complex shapes and wider range of the materials should also be covered.
While difference in perceptual gloss was assumed between smooth and rough sur-
faces, the statistics should be correlated with actual psychophysical measures in
the future. Finally, more statistical measures, like entropy, and chromatic infor-
mation should also be included in future studies and the performance of simple
image statistics should be compared with that of the complex machine learning
(e.g. deep learning) models. It has been demonstrated recently [26] that unsu-
pervised learning techniques outperform image statistics and even supervised
learning techniques in prediction of human perception. This is an interesting av-
enue that not only provides basis for reliable computer vision systems, but can
also reveal curious mechanisms of the human vision.
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Figure 1: We encounter materials permitting some degree of subsurface light transport, described as transparent or translucent.

Abstract
Translucency is an appearance attribute used to characterize materials with some degree of subsurface light transport. Although
translucency as a radiative transfer inside the medium is relatively well understood, translucency as a perceptual attribute
leaves much room for interpretation. Our understanding of the translucency perception mechanisms of the human visual system
remains limited. No agreement exists on how to quantify perceived translucency, how to compare translucency of multiple
objects and materials, how translucency relates to transparency and opacity, and what are the perceptual dimensions of it. We
highlight the challenges in perception research arisen by these ambiguities and argue for the need for standardization.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
—Standards J.4 [Social and Behavioral Sciences]: Psychology—

1. Introduction

When we speak of translucency, we usually mean materials that
at some degree permit subsurface light transport. Several opti-
cal material properties are used in the Radiative Transfer Equa-
tion [Cha60] to characterize the light propagation inside the
medium, such as, absorption and scattering coefficients, scattering
phase function, and index of refraction.

The human visual system is adept at detecting subsurface light
transport, perceiving materials to be translucent. For instance, we
do not need prior training to judge whether a material transmits
light, or to tell the difference between real human skin and a
plastic dummy, between translucent glass and opaque metal. Al-
though perceptual aspects of translucency is a topic of interest
in academia [FB05] and industry (e.g. in 3D printing [BATU18,
UTB∗19]) alike, our knowledge about the psychovisual mecha-
nisms of translucency perception remains limited. Fleming and

Bülthoff [FB05] proposed that the human visual system relies
on low level image cues to judge translucency. Gkioulekas et
al. [GXZ∗13] studied the impact of the scattering phase function
on translucency perception, while Xiao et al. [XWG∗14] demon-
strated that perceptual translucency is not a constant property and
it depends on the illumination direction. Despite those attempts, a
lot of uncertainties remain about the concept of perceptual translu-
cency. Below, we will discuss multiple challenges we have faced
due to this ambiguity throughout the process of psychophysical
studies of translucency perception, making results inconsistent and
difficult to interpret.

© 2020 The Author(s)
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2. Open questions about perceptual translucency

2.1. Definition and conceptual understanding

Translucency is considered a major appearance attribute by the
CIE [Poi06, Eug08] alongside color, gloss and texture. No sin-
gle standard definition of translucency exists. ASTM - Standard
Terminology of Appearance [AST17] defines translucency as "the
property of a specimen by which it transmits light diffusely with-
out permitting a clear view of objects beyond the specimen and
not in contact with it.". According to Gerbino [GSTdW90], "trans-
parent substances, unlike translucent ones, transmit light without
diffusing it." Eugène [Eug08] also highlights diffusing-blurring na-
ture of translucency, arguing that "if it is possible to see only a
"blurred" image through the material (due to some diffusion ef-
fect), then it has a certain degree of transparency and we can speak
about translucency". However, the author believes that "a single
and simple definition of translucency is unlikely to be achieved."
According to the CIE [Poi06], "translucency is a subjective term
that relates to a scale of values going from total opacity to total
transparency." In non-scientific contexts, translucent as an adjec-
tive can be used to describe the scattering, as well as clear transpar-
ent media [web]. While these definitions usually refer to the phys-
ical property of light scattering, the term is still vague in terms of
perception, as it does not reflect in what way physical properties
relate to appearance (except for "blurring"), making it subject to
individual interpretation.

2.2. Perceptual dimensions of translucency

One of the major challenges regarding translucency is to identify
its perceptual dimensions. For example, various perceptual dimen-
sions exist to describe color - such as, hue, chromaticity or light-
ness. The same is true for gloss. Hunter [Hun37] proposed six
dimensions of gloss (specular gloss, contrast gloss, distinctness-
of-reflected-image, absence-of-bloom, absence-of-surface-texture,
and sheen). Pellacini et al. [PFG00] identified two perceptual di-
mensions of gloss: contrast and distinctness. It is not clear yet what
would be similar perceptual dimensions for translucency, although
there is evidence that they might exist. The authors of this paper
have conducted psychophysical experiments studying translucency
perception [GTHP18, GUT∗19, GDPH20]. We have observed that
the subjects find it challenging to interpret the term and to identify
the dimensions for quantifying it. They could not decide which cue
to prioritize: complexity of light and matter interaction, i.e. preser-
vation of structure of the light - clarity of the image seen-through
the material, or preservation of the radiometric values (the amount
of transmitted light). What if we compare very dark transparent-
looking material with little scattering against the lighter one with
less absorption but higher scattering? (refer to Fig. 2). These ob-
servations are consistent with Eugène’s [Eug08] proposal that "the
concept of translucency can perhaps be regarded as a generic and
subjective term, combining the concepts of clarity ("ability to per-
ceive the fine details of images through the material") and haze
("property of the material whereby objects viewed through it ap-
pear to be reduced in contrast") - also admitting that much work is
still needed to clear up these uncertainties.

Figure 2: Objects in the same column are made of the identical
material. However, due to smaller scale and presence of thin parts,
the Bunny has more cues evoking perception of translucency. Ob-
jects in the first column have high scattering and low absorption. In
the second column - lower scattering and higher absorption. In the
third column - same scattering as in the second column - but higher
absorption. How can we compare their perceptual translucency?

2.3. Relation with transparency and opacity

Another reason why the term leads to confusion is the lack
of knowledge how it relates to transparency and opacity. Eu-
gène [Eug08] proposes that translucency is related to transparency
and opacity but does not discuss how. Gerardin et al. [GSF∗19]
propose that increasing subsurface scattering of the transparent ma-
terial makes it translucent and eventually opaque, while adding ab-
sorption to a fully transparent material gradually makes it opaque,
but never - translucent. This definition was not accepted by some
of our subjects.

It is not clear whether transparency, translucency and opacity are
on the same line of continuum, whether they are mutually exclusive
or they can co-exist. Can a material possess some degree of trans-
parency and translucency, or some degree of translucency and opac-
ity at the same time? When do transparent materials start to be con-
sidered translucent, or when do translucent ones become opaque?
Transparency and opacity seem to be ranges across the spectrum
of light transmission properties rather than extreme discrete points.
We have demonstrated that opacity is a subjective term and does not
imply complete absence of transmission [GTHP18] (further sup-
ported by [GMH19]). It seems that the conceptual boundary be-
tween transparency, translucency and opacity is fuzzy - although
the amount of translucency could be characterized with a bell-
shaped curve that gradually increases, reaching a peak and then
decreasing again while moving from transparency to opacity [Per]
(refer to Fig. 3).

2.4. How to quantify perceptual translucency?

Limited knowledge on how to quantify translucency and how it
relates to other perceptual properties of subsurface light transport
(transparency and opacity) makes it challenging to apply magnitude
estimation techniques [Tor58] to quantify translucency of a given
material, or psychophysical scaling methods, such as pair compar-
ison and rank order [Eng00], to compare the stimuli with one an-

© 2020 The Author(s)
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Figure 3: Translucency might be gradually increasing, reaching
its peak and decreasing between transparency and opacity. How-
ever, transparency and opacity are unlikely to be discrete points
and translucency can co-exist with them.

other. As there is an intuitive spectrum of glossiness properties from
a Lambertian matte to a perfect mirror, it has been demonstrated
to be feasible to estimate magnitude of glossiness [PFG00], or to
identify glossier and less glossy objects when comparing multiple
stimuli [THS17, GTPH19]. However, we faced a challenge with
interpretation of the term when similar approach was applied to
translucency. The subjects found it challenging to rank the stimuli
by translucency, from the most translucent to the least translucent
one [GTHP18]. What does more translucent mean? How would
we tell which stimulus is more translucent? (e.g. in Fig. 1 and
2) Is it the one closer to transparency, opacity, or the center of
the hypothetical transparency-opacity axis? Does higher scatter-
ing or absorption make materials more translucent? When does
translucency peak, is correlation between scattering and translu-
cency monotonous? These have been the questions we have not
been able to answer.

The state-of-the-art works experimenting on translucency per-
ception avoid quantifying translucency and abstain from comparing
more and less translucent stimuli. They rather encapsulate this in
matching and similarity detection tasks, asking observers to match
the stimuli by appearance [XWG∗14,XZG∗19,FB05] and/or to se-
lect similar ones by translucency [GXZ∗13, GUT∗19]. While this
task is less ambiguous and easier to interpret for the subjects, it has
not been demonstrated up-to date that the human visual system can
isolate translucency from total appearance. This creates the risk the
observers making up their own rules matching the stimuli by total
appearance, by lightness, or any property other than translucency.
If the definition of translucency is not clear, how can they judge
translucency similarity?

2.5. Translucency constancy of objects and materials

Similarly to our work [GTHP18], Nagai et al. [NOT∗13] asked sub-
jects to identify more translucent stimulus, interpreting it as having
stronger subsurface scattering. However, definition of translucency
as a material property does not adequately convey the complex na-
ture of translucent appearance. We believe that in addition to phys-

ical material properties at least three other factors - illumination
geometry, the size of the object and its shape should be considered.
An object looks more translucent [XWG∗14, FB05, GTHP18] and
less opaque [GMH19] in back-lit conditions. It has been shown that
scale and overall thickness of the object [FB05, UTB∗19], as well
as presence of thin regions [GTHP18, GUT∗19] impact perceived
translucency.

The majority of the observers in our studies [GTHP18,GUT∗19]
had difficulty comparing objects with different shapes due to the
ambiguity between object-specific translucency and translucency
as a shape-independent physical material property (e.g. what if a
material is fully transparent, but complex shape, surface geometry
or roughness do not permit to see-through the object - is it still
transparent?) Moreover, it was problematic to come up with a sin-
gle translucency measure for an object with a complex shape and
varying thickness (refer to a female bust with thick torso and thin
cloth areas in Fig.1). Hutchings [Hut94] proposes that heteroge-
neous material might have "more than one colour, perhaps more
than one translucency, gloss, or surface irregularity" that no ap-
pearance profile system can deal with. Should translucency of an
object be assessed as a whole, as a global attribute, or should it be
taken as a local, region-specific one?

We believe perceptual translucency is a context-dependent at-
tribute with limited constancy and mapping physical material prop-
erties with a visual attribute is a surjective but non-injective func-
tion - several different physical properties evoking identical per-
ception of translucency. If we draw a parallel with color, mate-
rial translucency could be analogous with spectral reflectance as
an objective physical material property, and object translucency -
with color, both being perceptual by definition. However, there ex-
ist physiological color matching functions with no interpretation,
while no physiological functions have been found or described
so far for perceived translucency. This could be explained with a
fact that perception of translucency is a more complex phsychovi-
sual phenomenon, involving spatial properties, contrast and vari-
ous image cues [FB05]. As it is possible to fix physiological state,
there exists a standard observer for color. However, physiology of
translucency perception is not understood, leaving room for fur-
ther research. While perceived translucency would more logically
be compared with color appearance, no translucency counterpart
is identified for colorimetry yet. It is likely that translucency mea-
surement will be context-specific, customized to individual circum-
stances.

3. Conclusion

To summarize, our experience with psychophysical experiments
has shown that there is an obvious need for translucency measure-
ment, comparison and definition standards. The lack of an estab-
lished procedure for perceptual translucency measurement makes
tasks ambiguous and inconsistent. There is a clear disagreement
among observers regarding its dimensionality. Although they al-
ways found a strategy to tackle a particular task, their "solutions"
do not necessarily express what they perceive. A rigorous future
work is needed to identify perceptual dimensions of translucency,
if any. Revealing particular dimensions will make psychophysical
measurements more consistent and easier to interpret. The defi-

© 2020 The Author(s)
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nitions of translucency imply an absolute, objective attribute of
a specimen. We believe the definition should reflect its situation-
dependence and perceptual nature, proposing the following re-
formulation of [AST17]: "translucency - the property of a specimen
by which it evokes perception of subsurface light transport under
given conditions."
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Translucency is an optical and a perceptual phenomenon which characterizes subsurface light transport through objects and

materials. Translucency as an optical property of a material relates to the radiative transfer inside and through this medium,

while translucency as a perceptual phenomenon describes the visual sensation experienced by humans when observing a

given material under given conditions. The knowledge about the visual mechanisms of the translucency perception remains

limited. Accurate prediction of appearance of the translucent objects can have a significant commercial impact in the fields

such as 3D printing. However, little is known how the optical properties of a material relate to a perception evoked in humans.

This article overviews the knowledge status about the visual perception of translucency and highlights the applications of the

translucency perception research. Furthermore, this review summarizes current knowledge gaps, fundamental challenges

and existing ambiguities with a goal to facilitate translucency perception research in the future.
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Introduction

How different objects and materials appear to human ob-

servers is important not only in commerce, where customer choice

and satisfaction are often influenced by the visual look of the prod-

uct, but also in trivial daily tasks performed by humans. For in-

stance, we use the visual appearance information to judge whether

materials are fragile or elastic, whether food is spoiled or edible.

By their appearance, we can effortlessly identify materials within

seconds (Sharan et al., 2009; Wiebel et al., 2013). According to

the International Commission on Illumination (the CIE - Com-

mission Internationale de l’Eclairage) total appearance ”points out

the visual aspects of objects and scenes.” (Pointer, 2006) Translu-

cency is among the most essential visual attributes of appearance,

along with color, gloss and texture (Pointer, 2006; Eugène, 2008),

remaining the least studied one among those (Anderson, 2011).

Although the color information incident on the human retina en-

codes important information about the objects and materials, over-

all sensation also depends ”on the appearance of that colour due

to the relationship between the light transmitted, the light reflected,

and the light scattered by the body of the object”. (Pointer, 2003)

Translucency is seen as a phenomenon ”between the extremes

of complete transparency and complete opacity” (Eugène, 2008).

doi: Received: May 26, 2021 ISSN 1534–7362 © 20?? ARVO
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According to the “ASTM E284-17 Standard Terminology of Ap-

pearance” (2017) translucency is ”the property of a specimen by

which it transmits light diffusely without permitting a clear view of

objects beyond the specimen and not in contact with it.”.

The etymology of the term is related to the Latin words:

”trans” (through) and ”lux” (light) - implying light penetration in-

side the body of the material. (Kaltenbach, 2012) Translucent ap-

pearance is usually the result of a visual stimulus incident onto a

retina from the objects permitting some degree of the subsurface

light transport. Translucency is impacted by multiple intrinsic and

extrinsic factors. The intrinsic factors are the physical parameters

found in the radiative transfer equation (Chandrasekhar, 1960),

such as the index of refraction, absorption and scattering coeffi-

cients, as well as the scattering phase function. They define how

the light propagates through the media. A photon can get absorbed

or scattered, i.e. redirected towards a different direction when there

is a change in the index of refraction, either at the external surface

of the object, or inside its volume (Tavel, 1999). How this passage

of light through a material relates to a visual sensation of translu-

cency remains unclear to date. The extrinsic factors include, but

are not limited to, the illumination direction (Fleming & Bülthoff,

2005; Xiao et al., 2014), object shape (Fleming & Bülthoff, 2005;

Gigilashvili, Thomas, et al., 2018) and the color of the surface

a translucent object is placed on (Gigilashvili, Dubouchet, et al.,

2020). The human visual system (HVS) is remarkably good at de-

tecting subsurface light transport - we can easily tell the difference

between a translucent glass and an opaque metal, translucent wax

and opaque stone. We can distinguish translucent human skin from

an opaque plastic dummy, translucent milk from opaque chalk.

One of the fundamental problems is to understand how the HVS

interprets the surface-reflected and subsurface-scattered light from

the stimuli incident on the human retina. The exact visual and

cognitive mechanisms of this ability are far from being fully un-

derstood. Since no model has yet been able to predict perceived

translucency of a given material in an accurate and robust man-

ner, translucency perception remains a topic of active research in

academia and industry alike.

We would like to highlight that the primary focus of this ar-

ticle is translucency, not transparency - a better understood con-

cept and visual attribute. While the two concepts are sometimes

used interchangeably (e.g. Merriam-Webster Dictionary (n.d.)), it

is usually accepted that ”transparent substances, unlike translu-

cent ones, transmit light without diffusing it.” (Gerbino et al.,

1990). According to the CIE, ”if it is possible to see an object

through a material, then that material is said to be transparent. If

it is possible to see only a ”blurred” image through the material

(due to some diffusion effect), then it has a certain degree of trans-

parency and we can speak about translucency.” (Eugène, 2008)

This implies that a given material might possess some degree of

transparency and some degree of translucency at the same time.

The contribution of this article is threefold:

1. Summary of the state-of-the-art about the perception of

translucency and the review of the recent developments in

the field.

2. Discussion of the different applications that could benefit

from the translucency perception research and overview of

the importance of the topic in and across different disci-

plines.

3. Outline of the major knowledge gaps and research chal-

lenges in order to facilitate future work.

The manuscript is organized as follows. We briefly summa-

rize the motivation for translucency perception research in the next

section. In four subsequent sections we review the state-of-the-

art and demonstrate the findings on the example of real and syn-

thetic stimuli. Firstly, we provide a historical discourse on how the

knowledge status has developed over time. Secondly, we overview

the role of transparency in translucency perception. Thirdly, we

discuss which factors impact perceived translucency. Fourthly, the

potential cues for translucency perception are analyzed. After-

wards, we discuss the current challenges in the translucency per-

ception research and outline the most important questions remain-

ing open which is followed by a concluding section.

Background and Motivation

Translucency plays a significant role in a multitude of fields

and applications. Thus, it is a research interest in different disci-

plines. In this section, we first overview the applications and the

interdisciplinarity of the problem. Afterwards, we discuss the gap

between the optical and the perceptual properties of a material -

motivating the research from the human vision point of view.
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Applications

In order to highlight the importance of understanding under-

lying visual mechanisms of translucency perception, below we will

summarize the major applications where the translucency percep-

tion research can make impact.

A broad range of customer products look translucent, either

customers expecting a translucent look from the products, or the

degree of translucency itself can be an indicator of product’s qual-

ity. This raises the need for studying translucency in the respective

industries. For example, the foods, such as beer, meat and dairy

products, are translucent. Therefore, translucent appearance plays

an important role in the food industry, not only impacting cus-

tomer satisfaction (Hutchings, 1977, 2011), but also contributing

to the safety assurance (Chousalkar et al., 2010; Ray & Roberts,

2013). Decorative paint manufacturing is another example, as

the hiding power of the colorants impacts the appearance and the

overall quality of the paints (Krewinghaus, 1969; Midtfjord et al.,

2018; Zhao & Berns, 2009).

Translucency has an implication for aesthetic purposes as

well. Generation, reproduction and perception of translucent ap-

pearance has long been a topic of interest in visual arts and cul-
tural heritage. Translucent building materials play an important

role in the modern day architecture and are used to generate var-

ious visual effects of the exterior as well as interior design (Mur-

ray, 2013; Kaltenbach, 2012). The translucent look of a marble

makes it an appealing material actively used both in architecture

and sculptures (Barry, 2011), while translucency of glass is widely

taken advantage of in the glass art (Kaltenbach, 2012). A spe-

cial case is painting where the tradition of photorealistic depic-

tion of the scenes exists from the medieval times and even though

the scenes do not conform to the laws of physics, the artists still

have been capable of generating vividly impressive and realistic

depictions of the environment (Cavanagh, 2005), seemingly fol-

lowing the rule-of-thumb, heuristic ”recipes” (Di Cicco, Wiersma,

et al., 2020a). Recently, several studies have addressed percep-

tion of painterly materials (Zuijlen et al., 2020) with an emphasis

on translucency in the marine art (Wijntjes et al., 2020) and still
life paintings (Di Cicco, Wiersma, et al., 2020a; Di Cicco, Wijnt-

jes, & Pont, 2020). Translucency is an important attribute for per-

ception of visual realism and aesthetics of the artworks, especially

those, depicting sea scenes, fruits and human skin. Understanding

how painters generate the vivid sensation of translucency without

conforming to the laws of physics can reveal interesting percep-

tual mechanisms of the HVS. This demonstrates that in addition to

the physically-based simulations of the visual stimuli in computer

graphics, translucency perception research can also greatly benefit

from studying artworks, and vice-versa.

Translucent appearance is also actively studied in the aes-
thetic medicine and cosmetology. The interdisciplinary works

in material science and dentistry emphasise the importance of

proper translucent look of the dental implants and restorative ma-

terials (Liu et al., 2010; Wilson & Kent, 1971; Seghi et al., 1989;

Lopes Filho et al., 2012; Anfe et al., 2008). On the other hand,

face powders and moisturizers are used to enhance an appealing

translucent look of the human skin (Giancola & Schlossman, 2015;

Emmert, 1996), which can be studied by simulation of cosmetics

and human skin rendering (Li et al., 2018) in computer graphics.

While computer graphics is often used as a tool for study-

ing translucency perception (e.g. (Xiao et al., 2014; Urban et

al., 2019)), perceiving translucency and accurate reproduction of

translucent appearance is itself an important topic for the com-

puter graphics community, especially when photorealism is at

stake (Frisvad et al., 2020). One of the most significant, yet chal-

lenging, topics is accurate rendering of the human skin, which

not only plays an essential role in the movies, video games

and other segments of the entertainment industry, but also ex-

tends to the fields of computer vision (face detection and edge

detection (Gkioulekas et al., 2015)), medicine and cosmetol-

ogy (Igarashi et al., 2005; Li et al., 2018). While a considerable

progress has been made in this direction, skin rendering, which

inherently implies the accurate reproduction of translucent appear-

ance, is a topic of active ongoing research (d’Eon & Irving, 2011)

and remains especially challenging due to the multilayer nature of

a human skin (Frisvad et al., 2020; Nunes et al., 2019).

One of the most novel fields which can benefit from translu-

cency perception research is 3D printing. 3D printing technolo-

gies have reached a level of development where translucency has

become an important visual attribute, increasingly attracting an at-

tention in the 3D printing community. The recent advances in

multimaterial 3D printing enable generation and reproduction of

material translucence by mixing transparent and colored opaque

printing materials, which expands the appearance gamut of the 3D

printing hardware (Brunton et al., 2018). However, object shape

and scale dramatically impact perceived translucency, e.g. smaller



Journal of Vision (20??) ?, 1–? Gigilashvili, Thomas, Hardeberg, & Pedersen 4

objects transmit more light than the larger objects made of the

identical material. In order to obtain a desired translucent look,

mixing ratios of the printing materials should be adapted to these

extrinsic factors, which itself needs a deeper understanding of the

translucency perception process (Urban et al., 2019). A seminal

contribution to this direction has been made by Urban et al. (2019)

who proposed a hardware- and software-independent perceptual

translucency metric for the 3D printing applications.

These fields might have established their own standards for

measuring particular optical properties of the light permeable ma-

terials, such as scattering and extinction coefficients. However, the

research on translucency perception is needed to understand how

those objective measures can be used to predict what the customers

will see. Moreover, the measurements are usually done for a small

number of predefined shapes, conditions and geometries, which

might not correspond to the real-life encounters and might gener-

alize poorly. Therefore, it is important to know in what way cus-

tomers’ perception gets affected by the extrinsic factors, such as

the shape of the object, illumination direction or motion. Under-

standing translucency perception and its contributing factors will

make replication and matching of the total appearance easier. This

will facilitate many appearance-related tasks, such as archiving and

conservation in cultural heritage, as well as the development of the

perception-aware rendering techniques in computer graphics.

Physics and Perception - the Gap

The primary reason why instrumental measurement of the

perceptual translucency remains beyond reach is the fact that the

definition of the perceptual attributes is vague (see sub-section In-

consistent definition and conceptual ambiguity) and their physical

correlates are not identified. Even though the techniques of ma-

terial property acquisition have advanced and the photorealism of

the computer-generated imagery is impressive, the link between

the measured physical properties of the materials and their visual

appearance is far from being fully understood. Photosensitive mea-

surement instruments might not be able to capture the appearance

perceived by the HVS and cannot provide a quantitative correlate

of visual sensation (SABIC Innovative colorXpress, n.d.). In other

words, even if we achieve an accurate measurement, modelling and

simulation of the optical properties of a given material, we might

be able to create a ”digital twin” of a real-world object, but we still

will not be able to accurately predict how this material, either the

real or the virtual, will look to the HVS - limiting our capability

to generate desired visual effects from scratch and to replicate the

appearance across different objects, scenes and conditions. This

largely motivates the attempts of soft metrology and the rigorous

research on visual appearance in different disciplines.

The knowledge gap is especially apparent when it comes to

finding the correlation between the physical properties of subsur-

face light transport and the perception of material translucence.

While there is a long tradition of research on colors - providing

a reasonably deep understanding of color vision and color appear-

ance, the perception of translucency has rarely been explored up

until recently.

Indeed, translucency as an optical property of a material can

be measured instrumentally (Pointer, 2003). The physical accu-

racy of rendering in computer graphics is constrained by the ac-

curacy of the input physical material properties, dubbed as ”the

input problem” by Rushmeier (1995, 2008). This makes accurate

measurement of the optical properties especially important. The

most comprehensive and up-to-date survey regarding the acquisi-

tion of the optical properties of translucent materials has been done

by Frisvad et al. (2020).

However, no technique has been proposed to date for an

instrumental measurement of perceptual translucency. In other

words, we have not been able ”to obtain numbers that are rep-

resentative of the way objects and materials look” (Hunter &

Harold, 1987). Multiple application-specific instruments measure

transmission-related visual attributes (BYK Gardner GmbH., n.d.),

playing an important role in a broad range of industries, from so-

lar cell manufacturing (Preston et al., 2013) to petroleum and ed-

ible product quality assurance (Lovibond Tintometer, n.d.). The

two most common attributes studied in relation to translucency are

clarity - ”defined in terms of the ability to perceive the fine detail

of images through the material”, and haze - ”defined as a prop-

erty of the material whereby objects viewed through it appear to

be reduced in contrast” (Pointer, 2003). Haze is usually asso-

ciated with a wide angle scattering (when the angle between the

incident illumination and the transmitted light is more than 2.5 de-

grees, according to the ASTM D 1003 - Standard Test Method for

Haze and Luminous Transmittance of Transparent Plastics (2003))

of light that causes blur and loss of contrast of the see-through im-

age, while the clarity usually results from a narrow angle (less than

2.5 degrees) scattering. Analysis of the measurement procedures is
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beyond the scope of this paper, but it is important to highlight that

no clear link between translucency as an appearance attribute, on

the one hand, and clarity and haze, on the other hand, has been es-

tablished. Pointer (2003) argues that ”the concept of translucency

can perhaps be regarded as a descriptor of the combined effects

defined above as clarity and haze. This implies that it is a more

general term and, perhaps, should be limited to use as a subjec-

tive term, keeping clarity and haze as descriptors of objective, or

measurable, correlates.” In the subsequent sections, we will an-

alyze what we know and do not know about perceiving material

translucence.

Historical discourse

Translucent appearance has long been encapsulated in a more

general problem of visual appearance of objects and materials.

The early theories of the visual appearance proposed that the HVS

might invert optical processes in the scene to deduce the physical

material properties and thus, the appearance (Pizlo, 2001; D’Zmura

& Iverson, 1993; Poggio & Koch, 1985). Although this hypothesis

is nowadays largely disputed (Fleming & Bülthoff, 2005; Chad-

wick et al., 2019), it remains debatable to what extent and com-

plexity can we talk about ”inverting” and estimating physical prop-

erties in the scene (Anderson, 2011). The later works proposed

that the HVS might be using the heuristic low-level image cues

and statistics (Fleming & Bülthoff, 2005; Motoyoshi et al., 2007;

Motoyoshi, 2010; Chadwick & Kentridge, 2015) for assessing ma-

terial properties, including translucency. According to the recent

proposal by Fleming (2014), the HVS might be learning a gen-

erative model which predicts the variation of appearance across

different natural illumination conditions. The recent developments

in the material appearance research include unsupervised machine

learning techniques to first predict human perception and then get

deeper insight into it (Assen et al., 2020; Storrs & Fleming, 2020;

Fleming & Storrs, 2019; Prokott & Fleming, 2019).

The fact that subsurface light transport plays an important

role in visual appearance has been obvious from the very first at-

tempts to measure appearance (Hunter & Harold, 1987). It has

been important to understand how the light diminishes when pass-

ing through the thin layers of materials that either absorb or scatter

light, for instance, when several layers of paint or coatings are ap-

plied on a given surface and how this affects the final color. Mul-

tiple models have been proposed in the first half of the twentieth

century (using a term turbid materials). The Kubelka-Munk (KM)

theory was one of the most widespread as well as simplest among

those (Kubelka, 1931, 1948; Vargas & Niklasson, 1997). Kubelka-

Munk coefficients K and S of a given paint film describe the por-

tion of the light that gets absorbed and scattered, respectively, per

unit thickness travelled through the paint material (Krewinghaus,

1969). Although it remains used for color matching calculations

in the industries handling multilayered thin translucent materials,

such as ink and dyed paper manufacturing (Yang & Kruse, 2004),

its limitations are noteworthy - the model considers just two fluxes

of light travelling upwards and downwards, and assumes that the

light is not scattered laterally (Hašan et al., 2010) (although there

have been attempts to extend it to the lateral light transport (Donner

& Jensen, 2005)). Therefore, these kind of simplified models are

not applicable to objects with complex geometry and subsurface

light transport. Moreover, they might characterize material proper-

ties, but they are not suitable for characterization and prediction of

translucency appearance.

Early attempts of studying visual perception of subsurface

light transport were limited to perception of transparency - which,

in some sense, was used as an umbrella term to describe light-

transmissive materials. Proposed models consider a target trans-

parent material as a thin filter which modulates the color of the

background pattern seen through it and which can be described

with a simple algebraic relationship (Metelli, 1970, 1974, 1985;

Beck & Ivry, 1988; Gerbino et al., 1990; Gerbino, 1994). How-

ever, these models did not account for subsurface scattering. For

details on perception, depiction and generation of transparency

refer to the reviews in (Sayim & Cavanagh, 2011; Singh & An-

derson, 2002a; Fleming & Bülthoff, 2005); regarding the percep-

tion of thick, complex-shaped transparent objects see the work by

Fleming et al. (2011). Although relatively well-understood, trans-

parency still remains a topic of active research (see (Faul & Ekroll,

2012; Falkenberg & Faul, 2019)). Object and background sepa-

ration in transparent materials pose an important challenge in the

ever emerging field of computer vision (Anderson, 2011).

While these works explain the perceptual mechanisms of see-

through materials, the background is not always visible through the

objects and the cues the HVS relies on for transparency perception

are simply absent. This is especially true for the materials with

high subsurface scattering, when none of the background can be

detected through the object and the luminance gradient on its body
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is the only indicator that the light penetrates inside the volume.

Many materials we interact with on a daily basis, such as wax,

marble, textile, meat, cream or milk, are not see-through and can-

not be approximated with the perceptual models of transparency.

Therefore, the cues used by the HVS for perceiving translucency

of the highly scattering media might be fundamentally different

from those of transparency. This gave birth to the translucency

perception research as a separate topic from transparency percep-

tion. The advances in the translucency perception research can be

attributed to the rapid advance in computer graphics (Fleming &

Bülthoff, 2005; Anderson, 2011). The difficulty to vary subsur-

face scattering properties systematically impeded generation of the

proper visual stimulus datasets for conducting psychophysical ex-

periments or analyzing image statistics. The progress in modelling

subsurface scattering (such as Jensen et al. (2001)) made genera-

tion of translucent visual stimuli cheap, fast and fully controllable.

Koenderink & Doorn (2001) described in 2001 that the shad-

ing patterns differ dramatically between opaque and translucent

media and that the ”shape from shading” paradigm, which assumes

Lambertian opaque surfaces, is not applicable to translucent ob-

jects. They raised an interesting question on how the HVS calcu-

lates the shape of the translucent objects and discussed an example

of atmospheric objects, such as clouds, where shape judgement is

entirely speculative. They used diluted and undiluted milk images

to demonstrate how the radiance distribution over the material body

depends on the mean free path of the photon (which is calculated

as 1
α+σ , where α and σ are absorption and scattering coefficients,

respectively). They also pointed out that the appearance of translu-

cent objects varies with the point of observation as the number of

photons emerging from an object body differs among different spa-

cial positions. They also drew a parallel with the painters who

are able to render a realistic appearance of translucent objects and

argued that humans understand translucency in a qualitative way

rather than by the means of calculating underlying physics.

This idea was later augmented by Fleming & Bülthoff (2005)

in their seminal work, which paved the way for the last two

decades’ translucency perception research. They argued that in-

stead of inverting optics, the HVS relies on the low-level image

cues for calculating translucency. They examined and described

different factors, such as object scale, color saturation, presence of

specular reflections, potentially affecting perceived translucency.

They identified that some regions, such as edges, contain richer

information regarding material translucence. They demonstrated

that translucency depends on the illumination geometry and back-

lit objects look more translucent. Finally, they analyzed how the

candidate image statistics, such as the moments of luminance his-

togram and intensities of the shadowed regions co-vary with the

illumination geometry.

The intensities of the shadowed regions seem to be one of

the most significant visual characteristics differentiating translu-

cent and opaque materials. Motoyoshi (2010) proposed that the

HVS might be calculating luminace statistics of the non-specular

regions of the image to understand translucency. The author ex-

perimentally demonstrated that blurring and decreasing the con-

trast in the non-specular regions of the opaque material generates

a translucent look.

Later works attempted to identify the impact of the various in-

trinsic and extrinsic factors on perceived translucency, such as the

role of a scattering phase function (Gkioulekas et al., 2013; Xiao

et al., 2014) and illumination direction (Xiao et al., 2014). Further

works identified the spatial regions which are the most informative

for understanding translucency (Nagai et al., 2013; Gkioulekas et

al., 2015). Similarly to Fleming & Bülthoff (2005), Gkioulekas et

al. (2015) also observed that edges contain a vital portion of the

information about the subsurface light transport and discussed a

potential use of the edge profiles as a physical correlate of translu-

cency. Marlow et al. (2017) found that the lack of co-variance be-

tween the shape and shading information correlates well with the

perceptual translucency. They demonstrated that illusory translu-

cency can be evoked on optically opaque objects when the diffuse

light field generates the shading which is not covariant with the

surface geometry. The study has an interesting implication that

translucency perception might be adjoined with the shape percep-

tion. The recent study by Chadwick et al. (2019) demonstrated that

translucency perception is anatomically independent from color

and texture perception.

The rapid development in the 3D printing technologies, which

permit accurate generation of the physical objects with complex

subsurface light transport properties (Brunton et al., 2018, 2020),

on the one hand yielded an opportunity to use the physical ob-

jects instead of the computer-generated imagery in psychophysical

experiments (Vu et al., 2016), and, on the other hand, increased

an industrial demand on the translucency perception research (Ur-

ban et al., 2019; Gigilashvili, Urban, et al., 2019). Urban et al.
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(2019) have recently proposed a perceptually uniform measure Al-

pha for 3D-printing applications, which can also account for an

object scale. Gigilashvili, Thomas, et al. (2018, 2021) argued that

when observing displayed images observers cannot enjoy the fully

realistic experience they have on a daily basis when interacting

with translucent materials. The authors believe that although hav-

ing full control of the scene and the optical parameters, these kind

of experiments might not reveal all behavioral patterns and thus,

the visual mechanisms for translucency assessment. They used

handcrafted physical objects (Thomas et al., 2018) for translucency

assessment tasks and analyzed the behavioral patterns qualitatively.

They observed that the dynamic cues, such as moving objects in

relation with a textured background and head movements, as well

as comparison of the given object’s appearance between back-lit

and front-lit illumination conditions, are used frequently by hu-

man observers while judging translucency. They also found that

in addition to the appearance of a given object, the extrinsic cues

elsewhere in the scene, such as caustics projected by an object

onto a different surface, might also facilitate judgement of translu-

cency (Gigilashvili, Dubouchet, et al., 2020). The advantages and

disadvantages of using physical and digital stimuli are discussed

later in the manuscript.

Translucency of see-through media

Transparency, translucency and opacity relate to the same

phenomenon - the subsurface scattering of light (or the lack of

thereof). The internal scattering gradually makes a perfectly trans-

parent medium more translucent and eventually opaque (Gerardin

et al., 2019; Gigilashvili, Thomas, et al., 2020). The boundary

among them is fuzzy, implying that transparency and translucency

are not mutually exclusive. Some degree of transparency and some

degree of translucency can co-exist in the same stimulus. As noted

above, translucent materials scatter light, while perfectly transpar-

ent ones do not (Gerbino et al., 1990). However, in some cases

the light gets partly scattered and partly transmitted directly. If the

amount of scattering is sufficiently low (as in the top row of Figure

8) or the object is sufficiently thin (as in the bottom row of Fig-

ure 10), the background is visible through a translucent object. In

this case, the existing transparency models might, to some extent,

contribute to the explanation of perceived translucency.

Internal scattering affects the clarity of the background im-

age. Blur of the see-through image produces a translucent look

(refer to Figure 1 and also Figure 19 (c) in (Singh & Anderson,

2002b)). It has been demonstrated that a change in the internal

scattering produces a larger apparent translucency difference when

the background is visible and blurred, than it does for highly scat-

tering materials (Gigilashvili, Urban, et al., 2021). Singh & An-

derson (2002a) extended transparency research to thin see-through

filters that scatter light. Scattering blurs the image and usually de-

creases the contrast. In most cases the two parameters co-vary. The

authors demonstrated that the blur alone decreases perceived trans-

mittance when the Michelson contrast is fixed (Michelson contrast

is defined as (Imax-Imin)/(Imax+Imin), where Imax and Imin are maxi-

mum and minimum luminances, respectively (Legge et al., 1990)).

Although they also found that the apparent contrast is smaller due

to blur even if the Michelson contrast is kept constant, the decrease

in perceived transmittance cannot be fully attributed to that. They

propose that both blur and contrast of the transmitted image are the

cues that increase the perception of opacity and decrease perceived

translucency. A similar observation was made by Gigilashvili, Ped-

ersen, & Hardeberg (2018) who studied blur from the image qual-

ity point of view and found that blurring removes the transmission

cues and impairs translucency perception.

Visibility of the background through a medium is indicative

of the subsurface light transport and can inform the HVS about

translucency (e.g. see Figures 5, 8 and 10.). Seeing through a

medium has been broadly studied in the context of transparency.

The visual stimulus reaching a human retina through a transmis-

sive material is a mixture of the contributions by the background

and the transparent overlay. The HVS perceives the background

as a single surface, even though the colors of the background in a

plain view and those seen through a transparent medium might dif-

fer considerably. We somehow understand and estimate the prop-

erties of a transparent medium superimposed on a background. In

order to infer transparency and distinguish transparent substances

from opaque ones, the HVS relies on the regularities that exist be-

tween the colors of the background in a plain view and those seen

through a transparent medium. Transparency is perceived when the

lightness and chromatic compatibility exists between the overlay

and the background. Modelling transparency perception has devel-

oped in two primary directions. Some works model transparency

in a form of an additive color mixture (Metelli, 1970; Singh & An-

derson, 2002b). Example of the additive model is the episcotister

model by Metelli (1970, 1974, 1985). The idea of the episcotister
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Figure 1: (a) A vivid impression of transparency and translucency has been produced by simple image manipulations. The contrast was reduced by
decreasing lightness of the white patches of the checkerboard that yields an impression of an absorbing transparent filter with no reflection. Application
of the Gaussian blur generated translucent look for all levels of contrast. Top row - no blur; Middle row - σ=12; Bottom row - σ=20. (b) In the left two
columns, the contrast is decreased by decreasing the lightness of the white patches and increasing the lightness of the black patches, as if the filter had
direct reflection. A convincing translucent appearance is generated, even when no blur is applied (top row). Translucency is stronger and more convincing
with reflectance (additive) component than it was for the absorption-only scenario (in the top row, compare the rightmost image in (a), and the second
one from the left in (b)). The two rightmost columns demonstrate the chromatic case, where the hue shift also produces a hazy look and contributes to
translucency appearance.

is the following: a disc with a sector cut out is rotating with high

speed and is seen as a transparent overlay over an opaque back-

ground. The colors of the disc and the background simply add

algebraically, and the proportions depend on the angle of the cut-

out sector. While colors are mixed over time in Metelli’s model,

additions can happen spatially as well – for instance, an opaque

mesh with small holes looks partly transmissive as a whole (Singh,

2020). The same principle has been later extended to the chro-

matic cases as well (D’Zmura et al., 1997; Hagedorn & D’Zmura,

2000). D’Zmura et al. (1997) studied the relation between col-

ors at the background-overlay junctions and found that a shift in

colors and change of the contrast are responsible for transparency

perception. For instance, if the colors either converge to towards a

point or are translated in the color space, they induce the percept

of transparency, while rotations and shear do not lead to the same

effect. Additive models approximate well the phenomena such as

fog (Hagedorn & D’Zmura, 2000) or the media shown in the top

row of Figure 8.

However, many transparent materials we encounter on a daily

basis, such as glass, plastic or beverages, involve more complex

optical phenomena. The transparency of the media similar to those

shown in the bottom row of Figure 8 can be described with the

filter models, which involve a subtractive color mixing. The filter

models have been proposed both for the achromatic (Beck et al.,

1984) as well as chromatic stimuli (Khang & Zaidi, 2002; Faul &

Ekroll, 2002, 2011). This approach models the transparent over-

lay as an optical filter, which absorbs part of the light propagating

through it, but also reflects some of the incident illumination at the

vacuum-filter interface as per Fresnel equations. The color seen

through the filter is a combination of the transmitted and reflected

components.

There are two primary reasons why considering transparency

perception models are also important for translucency:

First of all, it has been demonstrated that if particular reg-
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ularities between background and transparent overlay colors are

absent (D’Zmura et al., 1997; Faul & Ekroll, 2002), the filter is

perceived opaque. Therefore, we believe that those kind of com-

patibility between the filter and background colors is also signif-

icant for translucency perception (it is worth noting that similar

kind of chromatic compatibility is needed for gloss perception as

well (Nishida et al., 2008)). The future work should reveal to what

extent is the perception of translucency dependent on these reg-

ularities and whether translucency can be perceived in the cases

when the filter and background colors are incompatible for induc-

ing transparency perception (e.g. assuming fluorescence).

Secondly, a vivid perception of translucency can be evoked by

transparent filters even in the absence of blur (i.e. if the contours in

the background image remain undistorted). This means that when

the background is visible, translucency can be observed even with-

out any internal scattering. This can be ascribed to the decreased

contrast and the color shift in the see-through image (Figure 1).

If the transparent filter absorbs (subtractive color mixing) or re-

flects light (additive component), the contrast in the see-through

image is reduced. Human observers are usually able to identify

the additive component as a mirror reflection of the environment.

Hence, the reflections from the surface usually evoke perception of

gloss (as in the bottom row of Figure 8). However, Faul & Ekroll

(2011) have demonstrated that specular reflections under uniform

diffuse illumination evoke perception of translucency instead of

gloss, proposedly because surface scattering is mistaken for vol-

ume scattering (see Figure 1 (b)). They also extended their prior

work on filter models (Faul & Ekroll, 2002) and proposed an al-

ternative parametrization of filter’s physical properties – thickness,

absorption and refractive index. They propose hue (H), saturation

(S), transmittance (V) and clarity (C), to quantify the perceptual

dimensions of transparency. The dimensions are related to the

physical parameters; for instance, transmittance decreases expo-

nentially with the filter thickness, and clarity is related to the index

of refraction. Although the model does not account for subsur-

face scattering, V and C yield a broad range of appearances across

the transparency-opacity continuum. The index of refraction de-

termines the amount of the direct reflection from the surface. If

it is equal to the refractive index of the immersing medium, no

light is reflected at the interface, yielding the maximum clarity.

However, a high reflection from the surface yields hazy translucent

appearance (see Figure 1). A more perceptually uniform version of

this space has been recently proposed by Faul (2017). The author

made another interesting observation: the filter reflections and the

resulting lack of clarity induce the perception of transparency and

translucency when the luminance contrast in the background is

large. However, the effect becomes weaker on low contrast back-

grounds. For instance, if a homogeneous background was used

instead of a checkerboard, the filters shown in Figure 1 would have

appeared uniform opaque patches. Faul (2017) proposes motion as

one of the factors for disambiguating this kind of stimuli. This and

other factors contributing to apparent translucency or facilitating

perception of translucency is discussed in the next section.

Factors impacting translucency

Translucency as a visual attribute is impacted by different in-

trinsic and extrinsic factors. Below we will overview the knowl-

edge status on them.

Intrinsic parameters

Absorption and scattering coefficients

Wavelength-dependent absorption and scattering coefficients

are fundamental parameters that describe the radiative transfer

through a medium. Scattering (σs) and absorption (σa) coefficients

signify the scattering and absorption events per unit distance trav-

eled by a photon, respectively. The sum of the absorption and

scattering coefficients is called extinction or attenuation coefficient

(σt). The extinction coefficient σt is given as a sum of the scattering

and absorption coefficients (σs+σa, respectively). σt for perfectly

transparent material is equal to zero. High σa means that less pho-

tons escape the material and the object gets a darker shade; per

contra, high σs is responsible for blurry and shiny appearance. It is

worth mentioning that in addition to volume scattering (scattering

inside the medium), a scattering event can also take place at the

surface (will be discussed in the following sections). Xiao et al.

(2014) demonstrated that the increase in the optical density of the

materials affects translucent material matching in a monotonous

and linear way under all illumination geometries. The effect of dif-

ferent absorption and scattering coefficients is shown in Figure 2.

Cunningham et al. (2007) studied aesthetic correlates of phys-

ical attributes and found that absorption and scattering are embed-

ded onto a 1-dimensional manifold where they are significantly
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Figure 2: Objects in the same column are made of the identical material. However, due to smaller scale and presence of thin parts, the Bunny has more
cues evoking perception of translucency. Objects in the first column have high scattering and low absorption. In the second column - lower scattering
and higher absorption. In the third column - same scattering as in the second column - but higher absorption. How can we compare their perceptual
translucency? Which of these six objects or materials are the most and the least translucent? [Reproduced from (Gigilashvili, Thomas, et al., 2020)]

Figure 3: We rendered the box with skimmed milk optical properties as measured by Jensen et al. (2001) and implemented in Mitsuba (Jakob, 2010) in a
Cornell Box (Niedenthal, 2002) (a broader variety of measured scattering properties can be found in the work by Narasimhan et al. (2006)). The optical
density was varied with a scale parameter (shown below the image). It is apparent that the penetration depth decreases monotonically with the optical
density. Therefore, only the edges are bright in the optically thick materials and the contrast with the rest of the object is large. On the other hand, photons
spread easily through optically thin materials yielding relatively homogeneous luminance distribution.
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correlated with the semantic labels of ”brightness” and ”black-

ness”. Koenderink & Doorn (2001) illustrated that materials with

high mean free path look relatively uniformly shaded as the pho-

tons propagate through the material easily. On the other hand, if

the mean free path is short, the penetration depth is shorter (Mo-

toyoshi, 2010) and the radiant energy is visible near the edges on

the side of the incident beam, while the rest remains relatively dark.

This is illustrated in Figure 3. How intensity varies as a function of

the distance from the surface, is illustrated in Figure 4.

Chadwick et al. (2018) demonstrate that although imperfectly,

human observers are still able to unmix absorption and scattering

in milky tea images. They tried to identify potential image cues

used by observers and found that mean saturation explains well the

variation in observer responses on the milkiness estimation task

(which is accounted for scattering). On the other hand, value (V of

the HSV) and the spatial saturation gradient were needed to explain

the tea strength (absorption) responses. Interestingly, the cross-

individual variation was large - different observers seemingly rely

on different perceptual functions, or simply interpret the concepts

differently. Urban et al. (2019) proposed a perceptually uniform

translucency metric, which encapsulates the observation that the

HVS is more sensitive to absorption-scattering differences in opti-

cally thin materials than in optically thick ones. The same was ob-

served by Gigilashvili, Urban, et al. (2019, 2021). They found that

if a material is nearly transparent, even a slight change in absorp-

tion and scattering coefficients is easily detected by humans, while

larger steps are needed to notice the difference in more opaque ma-

terials.

Vu et al. (2016) observed that for textureless, flat thin 3D-

printed shapes transmittance is more perceptually important than

lateral light transport. They quantified the ratio of transparent and

scattering white material in the mixture on a 255-level gamma

scale, where low gamma corresponds to a higher portion of the

scattering colorant and found that within the range 0-180, i.e.

more than 70% of the physical parameter-space, transmittance was

negligibly small (and perceptually opaque), while in the remain-

ing range human observers were sensitive to colorant ratios, as

the transmittance and the perceptual correlate were well explained

with the Stevens’ power law (Stevens, 1960).

Despite those attempts, the question on how exactly absorp-

tion and scattering coefficients contribute to perceptual correlate of

translucency remains largely unresolved. One of the problems is

that the perceptual dimensions of translucency are not known and

the relation with transparency and opacity remains fuzzy. One of

the recent attempts to structure translucency in a physical parame-

ter space was made by Gerardin et al. (2019). They proposed a 3-

dimensional translucency classification space for computer graph-

ics - a cube where dimensions correspond to absorption, scattering

and surface roughness. They claim that by increasing scattering, a

transparent material gradually becomes translucent and then even-

tually opaque. However, by increasing absorption, a transparent

material gradually becomes opaque, but never translucent.

Finally, the amount of the radiant energy that emerges from

an object can be result of not only subsurface scattering (or surface

reflection), but also emission as well (Tominaga et al., 2017). To

the best of our knowledge, no study has investigated translucency

perception on fluorescent materials. How well the HVS can sepa-

rate the light emerging from a material into transmitted and emitted

components, or whether we can tell the difference between translu-

cent and fluorescent stimuli should be answered in the future.

Scattering Phase Function

Although the likelihood and the number of scattering events

are essential, the direction a scattered photon is redirected to can

also be important. If multiple scattering is assumed (Jensen et al.,

2001), where diffuse approximation can be applicable, the impact

might not be that strong. However, it can have a striking impact on

the thin parts of the object, where only few scattering events take

place (although in some cases, a phase function can impact thick

parts too, refer to Figure 5).

Gkioulekas et al. (2013) have conducted a comprehensive

study on the role of a phase function in translucent appearance.

They argue that a similar translucent appearance can be yielded

with the contrasting phase functions and conclude that a percep-

tual translucency space is composed of a lower number of di-

mensions than the physical parameter space. They generated a

broad range of phase functions by linearly combining multiple

Henyey-Greenstein and von Mises-Fisher lobes. Afterwards they

conducted psychophysical experiments and came up with a 2-

dimensional perceptual space of phase functions, where each di-

mension modulates diffusion - i.e. milky appearance and sharpness

- i.e. glassy appearance, respectively. The contribution is signifi-

cant for material design and has expanded the gamut of possible

translucency, as many of the appearances would not have been re-
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Figure 4: Image intensity as a function of the distance from the incidence surface. The cross-section where the intensities are measured is marked
with a red strip in the top right corner. Optically thicker materials are shown in red (darker the shade, denser the material). The intensities are high at
the boundary and they increase in the near vicinity, reaching local maxima - as proposed by Gkioulekas et al. (2015) (to be discussed later), then they
monotonously decrease as the depth increases. Optically thin materials are shown in blue (lighter shade corresponds to thinner material), as they behave
differently. They do not have a high intensity near the edge and the decrease slope is smaller. This supports the proposal by Koenderink & Doorn (2001).

Figure 5: The images vary in the phase function, while all other intrinsic properties are kept constant. Single lobe Henyey & Greenstein (1941) phase
function is used with a varying value of g. The parameter g, is usually defined in the range of [-1 1], where negative values imply backwards scattering
(back to the direction the light is incident from), positive values mean scattering forward, while 0 corresponds to the isotropic scattering. In the columns
left to right g is equal to -0.9, -0.5, 0 (isotropic), 0.5 and 0.9, respectively. The top row is rendered in the front-lit illumination geometry, while the bottom
row is back-lit. Because of the low optical density of the material, the direct transmission is high in the back-lit condition and the impact of the scattering
directionality is negligible. The opposite is true for the front-lit condition. In case of back-scattering, more photons are redirected towards the camera,
while the forward-scattering phase function redirects photons away from the camera. The appearance varies strikingly and ranges from almost Lambertian
diffusive (due to high backwards scatter near the surface) to blurrier translucent looking (g=-0.5 and isotropic) and to darker, opaque-looking one. Please
note that in case of forward scattering, thicker parts of the Bunny look more opaque, while thinner parts look translucent, as the forward scattering phase
function facilitates transmission from the background towards the camera.

producible with a single lobe phase function. However, the ro-

bustness of the space is partially compromised in back-lit illumi-

nation geometry. Xiao et al. (2014) have extended the work and

found that although the illumination direction usually affects the

perceived magnitude of translucency, this impact is not significant

for some phase functions. They found that phase function’s loca-

tion in the perceptual space (which was proposed by Gkioulekas et

al. (2013)) defines whether an illumination direction impacts per-
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Figure 6: The intensity difference between the two extremes of the forward and backward scattering lobes in front-lit (left) and back-lit (right) illumination
conditions. In the the front-lit condition, the difference is striking, while it is less apparent for the back-lit illumination condition. This can be accounted to
the fact that due to low optical density of the material, direct transmission is high when illuminated from back and the scattered light accounts for a smaller
portion of the resulting appearance.

ceived translucency. The similar correlation has been found be-

tween a phase function and translucency constancy (Xiao et al.,

2014). The general trend is that the impact of lighting direction-

ality is stronger for phase functions producing sharp glassy results

than for more diffusing ones, which is intuitive - nearly isotropic

phase functions which scatter light in all directions will be less af-

fected than the ones that redirect photos strictly towards particular

directions. Although Xiao et al. (2014) argue that the role of the

phase function is also dependant on the object shape, the exact co-

variance between the shape and the impact of the phase function

needs to be addressed in more detail.

Figure 5 illustrates a simple case of how the phase function

alone can impact appearance, while all other parameters remain

fixed. The images are rendered with a single lobe Henyey & Green-

stein (1941) phase function, which takes a parameter g to define the

directionality of the scattering. In the front-lit illumination geom-

etry (top row), backward scattering resulted in brighter and more

diffuse look, as the photons were scattered back towards the cam-

era. On the contrary, forward scattering redirects photons away

from the camera, resulting in dark opaque-looking appearance (al-

though, note that thin parts look see-through, as the background re-

flections are forward-scattered towards the camera). On the other

hand, the impact is negligible for the back-lit illumination condi-

tion (bottom row), because strong directional backlight results in

high direct transmission and the magnitude of scattering change

has weak impact on the resulting appearance. Figure 6 illustrates

that the difference between the two extreme cases of the phase

functions is striking for front-lit conditions (left image), while re-

mains subtle for back-lit conditions (right image).

Index of refraction

The index of refraction is one of the most understudied intrin-

sic material properties in the context of translucency perception. At

the boundary of the media, the difference between their refractive

indices defines the angle the light ray is refracted with. Therefore,

the refractive index has a strong impact on the background distor-

tion in see-through images (proposedly also contributing to shape

perception (Schlüter & Faul, 2019)). Fleming et al. (2011) have

shown that humans are surprisingly good at estimating refractive

indices of transparent materials - proposedly relying on a back-

ground distortion cue (although subject to biases due to object’s

thickness and distance to the background). Afterwards, Schlüter

& Faul (2014) argued that instead of estimating an abstract refrac-

tive index, the HVS rather performs image-based matching where

the both background distortion and the specular reflections are con-

tributing. Regardless these attempts, the role of the refractive index

in the appearance of non-see-through materials remains understud-

ied. Additionally, difference in the refractive indices of the two

bounding media modulates the magnitude of the Fresnel reflec-

tion and transmission, more refractive objects usually appearing

glossier (Fleming et al., 2011; Schlüter & Faul, 2019) (also impact-

ing caustics (Lynch et al., 2001; Kán & Kaufmann, 2012)). This is

illustrated in Figure 7. While the subsurface scattering properties

of a material remain constant, a high refractive index can render

a mirror-like look and decrease perceived translucency (which is

rooted in the decreased Fresnel transmission). If the difference



Journal of Vision (20??) ?, 1–? Gigilashvili, Thomas, Hardeberg, & Pedersen 14

Figure 7: The only optical property that varies among the four images in the index of refraction (1.10, 1.33 (water), 1.50 (glass) and 2.41 (diamond), from
left to right, respectively). A low refractive index ends in the lower Fresnel reflection and higher portion of the light penetrating the subsurface. Therefore,
scattering in the subsurface is more apparent and the leftmost image looks more translucent. On the other hand, a high refractive index leads to higher
reflection ratio and lower transmission, which yields glossy specular appearance rather than translucent one (refer to the rightmost image).

Figure 8: Glossiness is not essential for sensation of translucency. In the top row, the difference between the ambient vacuum and the object refractive in-
dices is negligible, which results nearly no refraction and thus, no specular reflections. Despite the absence of the glossiness cues, the object still appears
translucent, but the material looks more like a smoke or a sponge. In the bottom row, specular reflections are added, while the scattering properties inside
the participating medium is identical to those of the top row. Material looks more glassy and more realistic, as the bottom row objects are more likely to be
encountered in the real life than their top row counterparts. However, we cannot comment whether glossiness actually increases perceived magnitude of
translucence.

Figure 9: The transmission image in the left photograph is upside-down which indicates that it is the result of the refraction through a convex lens. If we
simply rotate the sphere upside-down, then the transmission image will look more like an opaque mirror-reflection. This was first demonstrated by Kim &
Marlow (2016).
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between the refractive indices of the bounding media is negligi-

ble, hardly any specular reflections are generated and a smokey-

looking participating medium appears (see the top row in Figure 8

and compare with the bottom row in the same figure).

Observers’ knowledge of the geometrical optics and the re-

fraction phenomenon can facilitate distinction between the trans-

parent media and mirror-like reflectors. While the convex lens

refracts the light and transmission image is superimposed on the

object upside-down, the convex mirror reflects the environment up-

right. Kim & Marlow (2016) have observed that rotating an image

of a transparent sphere upside down creates an illusion of reflec-

tion, instead of transmission. This effect is illustrated in Figure 9.

The refractive index also determines the internal reflections

(when the light is reflected backwards when it is trying to leave the

translucent material), which impacts the amount of radiant energy

emerging from the material - thus, also translucency cues. The

extreme case is the total internal reflection – when the light travel-

ing from a medium with a higher refractive index is fully reflected

backwards – thus, no refraction happens and no light emerges from

that medium to the medium with lower refractive index. The to-

tal internal reflection takes place when the angle of incidence is

larger than the critical angle. Therefore, it is more likely to happen

on complex surface geometries, rather than smoother ones. This

could be one of the reasons for the appearance difference between

the smooth and the complex Lucy shapes in Figure 13.

Marlow & Anderson (2021) have shown that if the illumi-

nation and observation angles nearly match, refraction can affect

translucency, as the portion of the light exiting the material is re-

flected internally and is redirected towards the convex and away

from the concave regions. The effect is relatively weaker when the

difference between the indices of refraction of the bounding media

is low and non-existent when the difference between the observa-

tion and illumination angles is large.

Finally, polarization of the incident light can also play a

role in the Fresnel reflection and transmission. Gkioulekas et al.

(2015) have used cross polarization photography to remove un-

desired specular reflections. They argue that specular reflections

affect the location of the maxima and compromise the robustness

of their radiance edge profiles for translucency prediction (to be

discussed later). However, it might not be important for rough sur-

faces. Polarization is a broadly unexplored extrinsic property that

deserves attention in translucency perception research.

Extrinsic factors

Object scale and structural thickness

If the object is enlarged, the distance a photon needs to travel

increases. This means that for a given extinction coefficient, the

number of absorption and scattering events goes up and less pho-

tons escape the material unscattered. The opposite is true, if the

object is smaller. Therefore, object scale has an impact on the

translucent appearance (Fleming & Bülthoff, 2005). This has se-

rious consequences for 3D printing. Urban et al. (2019) have pro-

posed Alpha - a psychophysics-based perceptually uniform translu-

cency metric. However, the authors highlight that the metric should

be scaled with the object size and provide a proper implementation

of this. How object scale impacts appearance for a fixed optical

material properties is illustrated in Figure 10 (also compare Bunny

with a sphere in Figure 2). Photons need to travel a shorter distance

at the edges - making them bright and thus, a characteristic cue

for distinguishing translucent and opaque materials (Fleming &

Bülthoff, 2005; Gkioulekas et al., 2015). Gkioulekas et al. (2015)

have observed that the radiance profile at the edges are surprisingly

robust and invariant towards illumination changes, making them a

reliable ”signature” for a material translucence.

Depending on the structural thickness, translucency appear-

ance of a given object made of a homogeneous material can vary

considerably. Refer to the Figure 11. While the torso of the bust

usually looks darker and less see-through, the thin parts of the dress

transmit more light in all illumination conditions and look espe-

cially shiny when back-lit. The same is true for the ears of the

Bunny (Figure 5). It has been shown that presence of the thin parts

can facilitate detection of translucency differences (Gigilashvili,

Urban, et al., 2019, 2021), proposedly attributed to the fact that the

HVS is more sensitive towards the changes in optically thin materi-

als (Urban et al., 2019). This is further substantiated by Sawayama

et al. (2019) who propose that a rugged surface of the object facili-

tates discrimination of translucency. Both findings indicate that the

parts where a photon needs to travel the shortest distance contain

the most information about material translucence. Also, materials

with a heterogeneous structural thickness might overall look more

translucent and less opaque when they have thin parts. This is true

both for solid objects (Gigilashvili, Thomas, et al., 2018, 2021), as

well as liquids (see the role of wavetips in sea paintings (Wijntjes

et al., 2020)).
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Figure 10: The illustration of how the object scale impacts perceived translucency of an object. While all six figures differ in scale, they have an identical
shape and are made of an identical material. The smaller scale of an object means that a photon needs to travel a shorter distance to go through the
material, i.e. for given scattering and absorption coefficients, the likelihood of scattering and absorption events decreases. This makes larger objects
look more opaque and smaller ones look more light-transmissive. The numbers correspond to the scale relative to the top-left object. The background
texture can also facilitate understanding the scale differences. We also illustrate that when the object scale varies, perceived translucency is also strongly
impacted by the resolution of the image. If we put these six figures in a single scene, side-by-side (e.g. if we put the 0.05 version next to the original one
in the 1.00 scene), smaller ones might look opaque, as the luminance variation will not be detected due to the contrast sensitivity limitations.

Surface roughness and geometry

Micro- and macro-scale surface geometry, although both scat-

ter light, have qualitatively different effects on appearance. The

microfacet-level surface roughness impacts refraction (Xiao et al.,

2014), blurs the background image and evokes the perception

of translucency even for the materials with zero subsurface ab-

sorption and scattering (Gigilashvili, Dubouchet, et al., 2020). It

has been observed to be positively and monotonously correlated

with translucency, when the transparency is seen as the other ex-

treme (Gigilashvili, Dubouchet, et al., 2020). In the translucency

classification system for computer graphics, proposed by Gerardin

et al. (2019), surface roughness is one of the fundamental dimen-

sions in the 3-dimensional parameter space. The authors argue that

an increase in surface roughness makes transparent object translu-

cent, but never opaque, because regardless the roughness of the

surface, some photons still manage to go through (if the material

has large mean free path). This phenomenon is shown in Figure 12.

According to the literature, translucency can impact perceived
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Figure 11: The three frames are taken from a video. Refer to Supplementary Material 1 for the video. The object is identical, however, the illumination
geometry varies from back-lit (left) to side-lit (middle) and front-lit (right). The video provides a vivid illustration of how the perceived translucency changes
with the change of the illumination directions. Moreover, it demonstrates that motion facilitates perceiving material translucence. Finally, the object shape
enables us to observe how the presence of the thin parts provides additional cues about the light transmission properties of a material.

Figure 12: In addition to the subsurface scattering, surface scattering also blurs the background and generates translucent appearance. Sharpness of
the specular highlights provide a strong cue for estimating surface scattering (Pellacini et al., 2000; Thomas et al., 2017). However, when the surface
scattering is high, estimating subsurface scattering properties becomes increasingly difficult (e.g. see the right image: can we tell whether a subsurface is
composed of a transparent or scattering material?). The root mean square (RMS) slope of microfacets equals to 0, 0.05, 0.10, 0.15 and 0.25, from left to
right, respectively.

Figure 13: All three objects are made of the identical material. The Lucy (left) has the sharpest edges, while the sharpness and the surface curvature
decreases gradually for low resolution Lucy (middle) and a cylinder (right). However, it is difficult to speculate which one yields the most vivid perception
of translucency.
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macro-scale surface geometry of the object - translucent objects

appearing less sharp (Chowdhury et al., 2017). Interestingly, Xiao

et al. (2020) have found the correlation the other way round too -

experimenting with different levels of surface relief and claiming

that presence of sharp edges make materials appear less translu-

cent. They partially attribute this to the local contrast generated

by the shadows due to high surface reliefs. However, the surface

relief on a relatively flat surface is a tiny subset of the potential

surface geometries which yield sharp edges. For instance, refer to

Figure 13. The Lucy (on the left) has the sharpest edges and the

most fine details; the low resolution Lucy (Gigilashvili, Shi, et al.,

2021) (a smoother version of Lucy with a smaller number of ver-

tices) has fewer and less sharp edges; while the cylinder is the least

sharp among the three. All three objects are made of an identi-

cal material. If the proposal by Xiao et al. (2020) generalizes well

to all geometries, then the ranking from the most translucent to the

least translucent should be the following: a cylinder, low resolution

Lucy, high resolution Lucy. It is difficult to claim the latter defini-

tively. On the other hand, we can even speculate that the thin edges

of Lucy make it appear more translucent (see the section above),

its complex surface geometry causes more blur, while other shapes

are structurally thicker, flatter, more specular and less blurry. In

an earlier work, Xiao et al. (2014) also argue that complex shapes

(e.g. presence of thin and thick parts) generate a greater range of

translucency cues and lead to the faster failure of the translucency

constancy.

Finally, a complex surface geometry might generate more

specular highlights, caustics and interreflections - making more

difficult to see-through and yielding illusion of subsurface scatter-

ing (Gkioulekas et al., 2015). Think of a transparent glass vase that

is shiny, due to its complex shape, and looks as if it scattered light

under the surface (see more on this in (Todd & Norman, 2019)).

This phenomenon is illustrated in Figure 14. The sphere and the

Lucy are made of an identical material. However, the low curva-

ture and the simple shape of the sphere permits seeing-through it (it

looks transparent), while the light scatters on the surface of Lucy

and hence, it looks more translucent and less see-through.

Illumination direction

Illumination direction has one of the most striking effects on

the magnitude of perceived translucency. If you have ever taken

your food and looked through it towards the sunlight, you should

have noticed that it starts glaring (see Figure 15). This effect can be

taken advantage of in art and architecture. Also refer to Figure 11

which illustrates the frames from the video (refer to Supplemen-
tary Material 1 for the video). Even though the material is iden-

tical, the difference in perceived translucency is apparent among

the three conditions (compare left, middle and right images in Fig-

ure 11). Koenderink & Doorn (2001) have argued that translu-

cency is viewpoint-dependent and ”transillumination” of the light

through the material is a strong cue for translucency. Most of the

materials look more translucent when the light source and the ob-

server are located in different hemispheres - i.e. when a sample is

back-lit from the observer’s viewpoint. This effect was first illus-

trated by Fleming and Bülthoff and has been further substantiated

experimentally by Xiao et al. (2014), who observed that most mate-

rials look more translucent when back-lit and material matching is

easier in back-lit conditions than in the front-lit one. Interestingly,

Fleming & Bülthoff (2005) report that the information is not diag-

nostic enough for material discrimination when they are front-lit.

This observation is however challenged by Xiao et al. (2014), who

argue that this can be attributed to using a simplistic torus shape

by the authors, while in Xiao et al. (2014) experiments with the

complex shape of the Stanford Lucy enabled discriminating mate-

rials even in the front-lit conditions. Gigilashvili, Thomas, et al.

(2018, 2021) have observed that humans prefer a back-lit condi-

tion for assessing material translucence. They argue that the mag-

nitude of the differences between translucent and opaque materials

is larger in back-lit condition - making it a desired geometry for

comparing objects. Per contra, in the study of the dental porce-

lain translucencies (Liu et al., 2010), authors argue that sensitivity

towards translucency differences does not differ significantly be-

tween front-lit and back-lit illumination conditions. However, the

noticeability thresholds are lower for back-lit conditions (with p-

value ≈ 0.06) It has been also observed that textiles that normally

look opaque might look translucent when back-lit (Gigilashvili,

Mirjalili, & Hardeberg, 2019) - having implications for clothing

and curtain manufacturing. Gkioulekas et al. (2013) noted that the

illumination direction has the strongest effect on the appearance

space where they embed different phase functions. As noted above

(Figure 5), the parameter of the Henyey-Greenstein phase func-

tion has the weaker effect under the back-lit illumination condition

(compare the top and bottom rows). On the other hand, Marlow

& Anderson (2021) observed that the intensities produced by sub-
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Figure 14: The sphere and the Lucy are made of the identical material. However, while the simple surface geometry and the low local curvature enable
observing transmittance image through a sphere, the complex surface geometry and the high local curvature of the Lucy result in more specular reflec-
tions, interreflections and caustics. Eventually, although the extinction coefficient of Lucy is 0, its surface geometry makes it impossible to separate surface
scattering from subsurface scattering highlights, evoking feel of translucency rather than transparency. This is especially apparent in tonemapped low
dynamic range images, such as those.

Figure 15: Most fruits look translucent when seen in back-lit illumination geometry. Bright edges and the luminance gradient indicate that the flesh is
translucent, while the seeds look solid opaque black.

surface scattering remain relatively stable when the observer and

the light source remain in the same hemisphere and the illumina-

tion angle changes from orthogonal to low grazing angles.

Illumination structure

The impact of illumination structure on the perception of

translucency is not well explored. Although Xiao et al. (2014) ar-

gue that it is important to study translucency in the natural com-

plex illumination and not under simplistic point light sources, as

in (Fleming & Bülthoff, 2005; Motoyoshi, 2010; Nagai et al.,

2013). Intuitively, a collimated beam should penetrate deeper than

the diffuse ambient light inside the material and thus, is expected

to generate higher magnitude of translucency. This was illustrated

by Gigilashvili, Mirjalili, & Hardeberg (2019). They observed that

textile samples were considered opaque under diffuse illumination,

while some of them were re-classified as translucent when a high-

luminance directional lamp was introduced in the scene. Presence

of the shadows, which are thought to be one of the most impor-

tant cues for assessing translucency (discussed later), also depend

on the illumination structure. For instance, in case of a directional

light, the only way shadowed and concave regions can get light is

via subsurface scattering, while in case of diffuse and more natural

illumination, shadowed regions can receive light also from the am-

bience, which can impact how translucency or opacity of the ma-

terial is interpreted (Fleming & Bülthoff, 2005; Xiao et al., 2014;

Nagai et al., 2013) (also see white diffuse front-lit and translucent
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Figure 16: The way the illumination geometry modulates object appearance differs strikingly between translucent, black somewhat specular opaque and
white Lambertian objects.

front-lit in Figure 16). Motoyoshi (2010) argues that sometimes

it can be difficult to understand whether the blurry appearance is

a result of subsurface scattering or diffuse illumination. Marlow

et al. (2017) argue that for distinguishing translucency and opac-

ity the HVS uses the covariance between surface and shading. If

the surface and shading do not co-vary and the regions which were

expected to be shadowed look lighter, a sensation of translucency

is generated. They illustrated that if embedded in a proper light

field which generates or eliminates this covariance, it is possible to

render an illusory translucency on optically opaque media and the

other way round. However, it is important to explore how often this

can be encountered in the natural conditions. Fleming et al. (2003)

observed that matching accuracy of the surface reflectance prop-

erties decreases under non-realistic illumination, and the random

patterns of illumination might not generate glossy appearance at

all. Similar phenomena could potentially be true for translucency.

However, gloss has been shown to be less dependent on illumina-

tion than observed by Fleming et al. (2003), when complex shapes

are used and the Fresnel effects are accounted for (Faul, 2019).

Caustics

While all previous research (e.g. (Fleming & Bülthoff, 2005;

Motoyoshi, 2010; Marlow et al., 2017)) attempted to identify

translucency cues on the object body proper, Gigilashvili, Thomas,

et al. (2018, 2021) noticed that for assessing translucency, human

observers put an importance on the cues elsewhere in the scene -

primarily, the caustic patterns that are cast by an object onto an-

other surface. The shadows cast by translucent and opaque ob-

jects differ (compare the top and the bottom rows in Figure 17).

In some particular scenarios, caustics might be the only indicator

of translucency, while from the object body alone, it might be im-

possible to infer that (compare the middle object in the bottom row

between the left and right images of the Figure 17). Gigilashvili,

Dubouchet, et al. (2020) have shown experimentally that placing

an object on a black surface and eliminating the caustic pattern cast

onto that decreases perceived magnitude of translucency. Whether

this is solely attributed to the absence of caustics, or the impact

of the ambient surface on the overall luminance of the object also

contributes to that effect should be the topic of the future research.
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Figure 17: While the object body might look fully opaque (e.g. middle object in the bottom row), the external caustics provide rich information about the
subsurface light transport properties of a material. The figure is reproduced from Gigilashvili, Mirjalili, & Hardeberg (2019). The animated version can be
seen in Supplementary Material 2.

High-level cognitive understanding

It has been shown that appearance perception is not a one-way

pipeline but rather a loop where the low-level vision is not simply

an input for mid- and high-level vision, but also gets impacted by

them (Anderson, 2011; Bartleson, 1960). Chadwick et al. (2018,

2019) made two interesting observations: although translucency

perception is anatomically independent from color perception, ob-

servers with normal vision are still better at judging translucency

in color images than in their grayscale counterparts - which could

potentially be attributed to the easier identification of the famil-

iar materials; secondly, people estimate absorption and scattering

properties better in the stimuli existing in reality than in synthetic,

virtual materials - proposedly attributed to a better training and ex-

perience with interacting with the real materials. Prior experience

might be a considerable factor when assessing translucency. For

instance, Liu et al. (2010) studied translucency perception of den-

tal porcelains and found that the experts with ”more than 10 years

of shade-matching experience” discriminate levels of translucency

better than novice students. On the other hand, Motoyoshi (2010)

reported that there has been no difference between the observers

who had seen and who had not seen the experimental stimuli be-

fore the experiment. Nagai et al. (2013) observed cross-individual

differences in translucency cues. The authors used psychophysical

reverse-correlation methods and found that different people looked

at different regions of the objects to assess translucency, however,

the exact reason remains unknown. The vast majority of the ob-

servers looked at the face of the Stanford Buddha shape used in the

experiment, even though it might not have been the most informa-

tive region in terms of image statistics. According to the authors,

this could be attributed to the fact that the human face catches at-

tention easily (Hershler & Hochstein, 2005).

The high-level cognitive information seemingly plays a role

in the perception of painterly translucency. It has been shown that

depiction and perception of translucency is related with the per-

ceived realism and ”convincingness” of the artworks (Di Cicco,

Wiersma, et al., 2020b; Wijntjes et al., 2020). Wijntjes et al. (2020)

hypothesize that high-level cognitive factors might be contribut-

ing to perception of translucency in the sea paintings, such as a

priori expectation that the water in the Caribbean scenes should

be more transparent and translucent, than in the depictions of the

non-tropical regions. Gigilashvili, Thomas, et al. (2018, 2021) no-

ticed that observers try to identify materials when assessing their

translucency and glossiness. Convincingness of translucency is

enhanced with glossiness, proposedly due to the memory of fa-

miliar objects (Fleming & Bülthoff, 2005). Material perception

has been shown to be a multimodal process relying on multisen-
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sory information (Spence, 2020). If material identification con-

tributes to translucency perception, this opens up a new question,

whether the senses other than vision play a role in the perception

of translucency, either directly or indirectly. Marlow et al. (2017)

have demonstrated that translucency perception to some extent im-

plies understanding and estimating surface geometry. Addition-

ally, when observing an object with varying thickness, we are able

to perceive the object as made of a single, homogeneous material

and not a composite of different materials, even though the lumi-

nance statistics and other translucency cues might differ consid-

erably among these regions. All these observations indicate that

translucency might not be dependent solely on the low-level vi-

sion cues but high level cognitive factors might be contributing to

that as well. The fact that people, for instance, understand and use

caustics (Figure 17) for inferring translucency, already involves a

high level cognition of the scene. How much perceived magnitude

of translucency is impacted by the high-level vision should be an-

swered by future research.

Motion and scene dynamics

A fundamental problem in translucency perception is separat-

ing reflected and transmitted energy in the proximal stimulus on

the retina. In this process, the HVS can obviously benefit from

understanding the distal stimulus - the scene and the ambience.

Motion has been demonstrated to be important for gloss percep-

tion and gloss constancy (Doerschner et al., 2011; Wendt et al.,

2010; Hartung & Kersten, 2002), especially for separating specu-

lar highlights and surface texture. Additionally, motion can help

understanding the object shape and geometry. On the other hand,

the energy emerging from an object after subsurface scattering de-

pends on the spatial location - making translucency viewpoint-

dependent, as noted by Koenderink & Doorn (2001). Therefore,

observing a translucent object from different viewing geometries

should intuitively provide additional information about the bidi-

rectional surface scattering reflectance distribution function (BSS-

RDF). Van Assen et al. (2018) have demonstrated that motion is

important for perceiving viscosity and elasticity of translucent liq-

uids and spreadable materials. Fleming (2014) hypothesizes that

the HVS learns and predicts how appearance of a given material

varies across different conditions, inherently implying motion in

the learning process. Gigilashvili, Thomas, et al. (2018, 2021) an-

alyzed human behavior when they were asked to assess translu-

cency. They observed that humans frequently use motion-related

cues - they move the fingers behind the object, move the object over

a textured surface, move it relative to the light source and compare

the object’s appearance between front-lit and back-lit conditions -

in short, it is natural for humans to change the background, ob-

serve how much it has impacted the appearance of an object and

infer light transmission properties from it. This is qualitatively re-

lated to the phenomenon of change blindness in image quality -

the change being more apparent when the subsequent frames are

toggled back and forth, rather than being observed on independent

occasions (Le Moan & Pedersen, 2017). Fleming (2014) hypothe-

sizes that the brain might be building a statistical generative model

of appearance that first learns and then predicts how appearance of

a given material varies across different natural illumination condi-

tions. If this hypothesis is true, interaction and dynamics would

be an inherent part of the learning process from the infancy age.

However, we do not know what part of it is learned and what is

inherited.

The impact of motion is demonstrated in the video available

in Supplementary Material 1. The video shows that motion rel-

ative to the illumination has a considerable impact on the lumi-

nance distribution on the object body and makes perception of

translucency more convincing. Xiao et al. (2014) argue that motion

might enhance material and translucency constancy. Intriguingly,

although translucency constancy fails due to the illumination direc-

tion change, the continuous motion in the video (Supplementary
Material 1) enables material constancy - we understand that it is

the same material and its appearance changes due to the illumina-

tion, not due to the change in the optical properties of the material.

To the best of our knowledge, Tamura et al. (2018) have been

the only ones to empirically study the role of scene dynamics on

transmission perception. They found that the relative motion of

the image superimposed on the object is significantly important

for distinguishing reflective opaque mirrors from translucent glass

materials. This once again highlights that still images might not be

able to reveal the full range of the cues used by the HVS.

The role of other appearance attributes

Color

When talking about color, it is crucial not to mix up the chro-

matic and achromatic components. Lightness or brightness are di-
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rectly correlated with the absorption and scattering, which make

materials look darker or brighter, respectively (Cunningham et al.,

2007; Koenderink & Doorn, 2001; Urban et al., 2019; Chadwick et

al., 2018) (see Figure 2). As many translucent materials we interact

with on a daily basis, such as milk, cream, cheese, and snow, have

a whitish bright diffuse-looking appearance, Gigilashvili, Thomas,

et al. (2021) have observed that many observers associate lightness

with milkiness and translucency. However, lightness information

is certainly subject to spatial and geometric constraints (Marlow

et al., 2017). For instance, brighter edges (Fleming & Bülthoff,

2005; Gkioulekas et al., 2015; Di Cicco, Wiersma, et al., 2020b;

Wijntjes et al., 2020) and shadowed areas (Motoyoshi, 2010; Flem-

ing & Bülthoff, 2005; Marlow et al., 2017) are direct indicators

of translucency. For completeness’ sake, we should mention that

Sawayama et al. (2019) found that a mean color difference be-

tween the images is, indeed, not informative enough to discrimi-

nate translucency.

On the other hand, little is known how chromaticity con-

tributes to translucency. Chadwick et al. (2019) have worked with

an observer who has a color-deficiency of a cortical origin. They

demonstrated that color and translucency processing happens in the

different parts of the brain and thus, are anatomically independent.

However, they also observed (Chadwick et al., 2018, 2019) that the

color normal observers perform better on color images rather than

on grayscale ones - potentially explained by higher-level cognitive

processing related to the material identification and realism. Di Ci-

cco, Wijntjes, & Pont (2020) have recently shown that perceived

translucency of painted citrus fruits is significantly correlated with

their color saturation. Fleming & Bülthoff (2005) have illustrated

that saturation might enhance the effect of translucency. Namely,

if the saturation and lightness intensity are correlated positively,

translucency looks like a warm glow, while it looks icy translucent

in case of the negative correlation. This phenomenon is illustrated

in Figure 18. Moreover, perception of wetness, which is optically

related to translucency, has been also shown to be related with sat-

uration (Sawayama et al., 2017). However, it is noteworthy that

saturation alone cannot evoke perception of translucency. Besides,

absorption and scattering coefficients of the most natural materi-

als are wavelength-dependent, a phenomenon used extensively in

3D printing (Brunton et al., 2018, 2020) and art (Thomas et al.,

2018; Gigilashvili, Thomas, et al., 2021). Therefore, the amount

of the light emerging after the subsurface light transport will be

dependent on the spectral power distribution of the illuminant. For

instance, if the material which fully absorbs red wavelengths is illu-

minated with a red light, it might look opaque, not translucent. Al-

though the effect might be negligible and rare under natural illumi-

nation, potential aesthetic effects generated with spectral translu-

cence deserve future search and exploration.

Gloss

It has been shown that translucency impacts apparent

gloss (Gigilashvili, Thomas, et al., 2019; Gigilashvili, Shi, et al.,

2021). However, the correlation the other way round is not clear

and straightforward. Moreover, Schmid et al. (2020) argue that the

neural aspects of gloss perception should be addressed in the con-

text of material identification, highlighting resemblance of the vi-

sual features between material recognition and glossiness percep-

tion. Schlüter & Faul (2019) argue that specular reflections have

an important implication for perception of transparency. There are

several indications in the literature that glossiness might be increas-

ing perceived magnitude of translucency. This phenomenon has

been observed by Motoyoshi (2010) (although no effect was ob-

served by Nagai et al. (2013)). Furthermore, Yu et al. (2019) have

proposed a highlight-generation method for rendering translucent

appearance. While the primary intention was to enhance the per-

ception of the fine details, interestingly, the perceived magnitude

of translucency was also enhanced. Translucency and glossiness

have been observed to be positively correlated in paintings (Di Ci-

cco, Wiersma, et al., 2020b; Wijntjes et al., 2020; Di Cicco, Wi-

jntjes, & Pont, 2020). Fleming & Bülthoff (2005) have observed

that glossiness enhances the realism of translucent appearance, po-

tentially attributing to the fact that many translucent materials are

also glossy (e.g glass, marble, liquids), and we ”expect” translu-

cent objects to be glossy. However, translucency and gloss can-

not alone explain each other, as many glossy materials, such as

metals, are not translucent (Fleming et al., 2013; Tanaka & Hori-

uchi, 2015) and many translucent materials, such as smoke, cotton

and textiles, are not glossy (Koenderink & Doorn, 2001). For in-

stance, in Figure 8 the top row of the objects, which lack specular

reflections to due a negligible change in the refractive index look

smokey, or spongy, but still vividly translucent. The bottom row

possesses the identical subsurface scattering properties, but adds

specular reflections due to a large change in refractive index. We

can argue that the bottom row looks more realistic and more likely
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Figure 18: The mean saturation is equal in both images. However, the figure in the left image has a negative correlation between saturation and value
(of HSV), while the right one has a positive correlation. This, as observed by Fleming & Bülthoff (2005), makes their translucence glow icier and warmer,
respectively.

to be encountered in real life, but any estimation of the perceived

magnitude of translucency, unless the difference between the re-

fractive indices is large (see Figure 7), would be purely speculative.

In some cases, the correlation between gloss and translucency can

be straightforwardly negative, as the surface roughness, which de-

creases the magnitude of glossiness (Pellacini et al., 2000; Thomas

et al., 2017) itself evokes the perception of translucency (refer to

Figure 12). Moreover, the increase in the refractive index gen-

erates a stronger Fresnel reflection, i.e. stronger glossiness and

less transmittance (Koenderink & Doorn, 2001), as illustrated in

Figure 7. Finally, glossiness and specular highlights can facili-

tate understanding the shape (Todd & Norman, 2003; Norman et

al., 2004; Fleming et al., 2004; Fleming & Bülthoff, 2005; Xiao

et al., 2014; Marlow & Anderson, 2021). As the shape compre-

hension is proposedly related to translucency perception (Marlow

et al., 2017; Marlow & Anderson, 2021), gloss can play a supple-

mentary role in this manner too. Marlow & Anderson (2021) have

recently identified co-variance between the intensity gradient pro-

duced by the sub-surface scattering and the shape of the specular

reflections, both helping the recovery of the 3D shape and mate-

rial properties. Moreover, they have experimentally shown that a

light permeable surface covered with convex and concave regions

is perceived more translucent when physically accurate specular

reflections are superimposed. However, the effect is weakened or

lost if the reflections are rotated and thus, incongruent with the

subsurface scattering gradient.

Cues for translucency perception

Above-discussed intrinsic and extrinsic factors are impacting

the proximal stimulus in a way that the HVS can deduce subsur-

face scattering and light transmission in the images. Whereas the

scene dynamics and the temporal aspects enhance translucency de-

tection, it is possible to perceive translucency from still images,

which makes the researchers conclude that there should be some

diagnostic features and statistics in the 2D images, which sepa-

rate translucent media from the opaque ones. For example, it has

been proposed that the skewness of the luminance histogram might

be correlated with perceived gloss (Motoyoshi et al., 2007) (but

see (Anderson & Kim, 2009; Kim et al., 2011)). There have been

attempts to identify similar measures diagnostic for translucency

and to propose at least partial models of translucency perception.

Singh & Anderson (2002a) argued that in see-through scattering

media, both apparent contrast and apparent blur of the background

contribute to the perception of translucency. However, the cues

on the objects which did not permit seeing a background through

them, remained largely unexplored. Although no full model of

translucency perception exists, and none is close being as complete

as the Metelli-type models of transparency, several interesting ob-

servations have been made in the past 15 years which reveals some

interesting characteristics of the translucency perception mecha-

nisms. We overview these partial models and also provide some

illustrations based on the bust renderings from the Plastique Art-

work Collection (Thomas et al., 2018), which is rendered in the

Mitsuba-embedded natural illumination (Jakob, 2010). Using this

shape for the demonstrations has two practical implications: firstly,
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it has a varying degree of structural thickness, sharp edges and fine

details - providing a broad range of translucency cues; secondly,

a behavioral study has been conducted on the physical replica of

this shape (Gigilashvili, Thomas, et al., 2018, 2021), which per-

mits comparison of the real and synthetic stimuli in the future.

We believe that this shape could become a standard for translu-

cency perception research in parallel with Stanford Lucy (Stan-

ford University Computer Graphics Laboratory, 1994). In the

demonstrations below, we will mostly rely on a comparative anal-

ysis of six intensity images of the Plastique bust shape: a highly

translucent material (referred to as ”translucent”), highly absorb-

ing somewhat specular black opaque material (”black opaque”)

and a Lambertian-looking white diffuse opaque material (”white

diffuse”) in back-lit and front-lit illumination conditions. These

images are shown in Figure 16.

Fleming and Bülthoff

Fleming & Bülthoff (2005) were the first ones who tried

to model the perception on the non-see-through scattering me-

dia. They have noticed that the intensity gradients differ between

opaque and translucent objects, where the largest difference is no-

ticeable near the edges. Bright and blurry edges are usually char-

acteristic to translucent objects. Simplistic image manipulations

by adding those features to a Lambertian surface using a high-pass

filter enabled the authors to generate some degree of translucency,

although not very realistic looking (see Figure 14 in (Fleming &

Bülthoff, 2005)).

They also observed that the contrast between the specular and

non-specular regions is smaller for translucent objects and on the

example of a simple torus image, they demonstrated that the his-

togram of an opaque object is more skewed (for example, compare

the first two columns in Figure 27). They observed that pixelwise-

correlation between translucent and opaque images is far from lin-

ear and it alone cannot be a predictor for translucency. We have

plotted how the intensity values change for each pixel of an identi-

cal material across two different conditions (see Figure 19) and be-

tween different materials under the same illumination (Figure 20).

Similarly to Fleming and Bülthoff, we also observe that the corre-

lation is not random, but highly non-linear (see Figures 19 and 20).

For instance, when the illumination direction changes, the slope

is steeper for a translucent object, while an opaque object inten-

sities remain less impacted. The effect illumination geometry has

on a pixel’s intensity of a given material strongly depends on the

spatial location of this pixel. We also noticed that in a back-lit

illumination condition, the correlation between translucent object

intensities and the opaque ones is mostly random, because of the

high magnitude transmission component. On the other hand, in the

front-lit condition, the non-specular spatial locations of a translu-

cent material are lighter than their black opaque material counter-

parts, but darker than white diffuse ones (cf. captions of Figures 19

and 20).

Nevertheless, Fleming & Bülthoff (2005) were able to en-

hance translucency by applying a carefully selected ”N-shaped”

filter and to enhance opacity by applying a sigmoid filter to the

intensity values. However, they note that this approach can only

work when lighting is fixed and spatial correspondence between

the pixels is unchanged. The authors illustrated isophotes - the con-

tours of equal lightness and concluded that neither luminance dis-

tribution histogram, nor the spatial isophotes, can predict translu-

cency alone, but it is rather more likely that the HVS relies on a

combination of the luminance and spatial information. We came

up with the qualitatively similar non-linear filters (shown in Fig-

ure 21) and tried to use them for making opaque objects translu-

cent and translucent objects opaque (refer to Figures 22 and 23).

We noticed that while the approach might work to some extent

(especially, in the front-lit condition), it fails in the thin parts, es-

pecially in the back-lit condition. As Fleming and Bülthoff used a

simple torus shape in their study, we tried the approach on a simple

shape as well, such as a parallelepiped cube, which also produced

considerable artifacts near the edges (refer to Figure 23). In the

back-lit condition, the thin parts are bright, which is even further

enhanced with a sigmoid filter. However, interestingly, unlike the

front-lit condition, we do not see highlights in the thin areas as

specular reflections. We somehow understand that they are a re-

sult of the subsurface light transport, which makes us believe that

in addition to the low-level image cues, the higher order cogni-

tive processes of the scene and geometry understanding also play

a role in the translucency perception pipeline (refer to the captions

of Figures 22 and 23).

Fleming and Bülthoff also demonstrated experimentally that

back-lit objects look more translucent than the front-lit ones and

tried to identify which image cues explain this psychophysical vari-

ation best. They found that neither pointwise-correlation, nor the

first four moments of a luminace histogram (mean, variance, skew-
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Figure 19: The correlation of the intensities between the identical pixels of the same object under two different lighting conditions. The plots show that
although far from being linear, the dependence is not random. Most pixels of the black opaque object are simply darkened as they fall in the shadow when
the light is moved on the back side. Some intensities, mostly on the edges, go up, because the backlight is not incident fully perpendicularly, and some
of the light comes from the side angles as well. For the diffuse white object, the relationship is usually negative, except for some pixels on the edge, that
brighten under back-light and are thus, positively correlated. For the translucent object, the slope is steep and the values simply go up when the object
is placed under the back-light. We identified that the behavior of the pixel intensity is strongly dependant on its spatial location. However, the overall
trend differs between the three objects and the change of pixel-wise intensities between the illumination geometries might to some extent indicate to the
subsurface light transport.

ness and kurtosis) are predictors of translucency. In order to test

this observation, we have rotated a bust figure with 180 degrees

from back- to front-lit condition and visualized the summary statis-

tics of a luminance histogram as a function of the rotation angle

(refer to Figure 24). Similarly to Fleming and Bülthoff, we also

noticed that they are non-monotonous, and while some trends can

be identified, they are prone to bias due to the object shape and the

distal stimuli in the scene composition, which makes them unlikely

and unrobust cues for translucency perception (refer to the caption

of Figure 24).

As neither histogram nor spatial information alone are enough

for predicting translucency, we tried whether simple histogram

matching between front-lit and back-lit conditions of the same

translucent material could affect their appearance. Histogram

matching affects the magnitude of intensities, but is also to some

extent ”spatially aware”. The resulting images are shown in Fig-

ure 25. Although some artifacts were produced (e.g. near the

edges), matching the front-lit object with its back-lit counterpart

enhanced its opacity, as the high transmission pixels in a back-

lit object, can be interpreted as specular reflections in the front-lit

scenario. When the back-lit image was matched with the front-

lit histogram, it started looking less transmissive, but still highly

translucent.

Furthermore, Fleming & Bülthoff (2005) argue that the shad-

owed areas manifest the largest difference between the front-lit

and back-lit scenarios and if subsurface scattering is the only way

a photon could get to a bright region in the image (otherwise, it

would have been in a shadow), that can be used as a cue to translu-

cency. While this might be commonplace for directional lighting

conditions, which renders sharp shadows on opaque objects, Xiao

et al. (2014) argue that in diffuse and more natural light fields, the

shadowed areas and surface concavities also receive light from the

ways other than subsurface scattering. For instance, refer to Fig-

ure 26, which highlights the regions where a translucent object has

a higher intensity than its opaque counterparts under the same illu-

mination. A front-lit translucent object has larger intensities than

its black opaque counterpart in nearly all regions apart from the

specular reflections. However, under the same condition, that is

not true for a white Lambertian-looking opaque object, which owes

its larger intensities in shadowed areas to its highly scattering sur-

face, direct front-side illumination and interreflections. Therefore,

the lightness of the shadowed areas alone can not be an indica-

tor of translucency either. On the other hand, it is worth noting

that the intensity difference between back-lit and front-lit versions
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Figure 20: The figure illustrates pixel-wise correlation of the intensities under a given illumination geometry between a translucent object and other two
non-transmissive materials. While the correlation looks mostly random under back-lit, it becomes more visible when objects are front-lit. The pixels
become dimmer on the black opaque object, because its non-specular areas simply absorb light, while non-specular areas of a translucent object ei-
ther back-scatter some of it, or transmit from a background towards the camera. The opposite is true for the white diffuse material, because more light
gets scattered towards the camera by a white opaque object and no energy is lost due to the subsurface scattering away from the camera (the similar
phenomenon was observed by Nagai et al. (2013).)
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Figure 21: The sigmoid function (left) stretches low and high intensity values towards the extremes, which increases the overall luminance contrast.
The ”N-shaped” curve (right) scales up lower intensities, while keeps the highlights intact - decreasing the contrast between specular and shadowed
areas. Fleming & Bülthoff (2005) observed that under fixed illumination conditions, similar functions can be used to enhance opacity and translucency,
respectively.
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Figure 22: The non-linear functions (shown in Figure 21) applied to the intensities. We tried to make opaque objects more translucent with an ”N-shaped”
function, and a translucent object more opaque, with a sigmoid function. The top row illustrates the original image intensities and the bottom row shows
the results after application of the non-linearity. The front-lit black opaque object has become slightly more translucent-looking as the contrast between
the specular and non-specular regions has decreased. However, it can also be interpreted as an opaque object of a simply lighter shade. The back-lit
black object does not look transmissive, but rather white diffuse material (compare with White - Back in the top row), because scaling up darker shades
makes it more reflective but is unable to generate the transmission gradient similar to that of a translucent object (compare with rightmost images in both
rows). The translucent look of a front lit white diffuse material has been considerably enhanced, because making shadowed areas lighter creates the feel
that ”photons could not get there without subsurface scattering”. Interestingly, under backlight, although looks less opaque, it does not process gradient
characteristic for transmission or subsurface scattering either, making it look somewhat unrealistic. On the other hand, as the immediate background of the
object is a wall, not the light source proper, its dim color can also be interpreted as a thin transparent filter. Finally, the front-lit translucent object became
more opaque by eliminating the lighter shades in the non-specular areas and no cue has been left that could hint the HVS to the subsurface light transport.
However, the approach failed in back-lit illumination geometry. Although the increased contrast between lights and darks make it look more solid, the
highlights that are usually thought to be specular reflections, are transmission components in this case and scaling them up strengthens the perception of
transmission. This was observed by Motoyoshi (2010), who noticed that in transparent materials and thin parts, the contrast is reversed or random. This
illustrates that simple context-blind non-linear scaling does not control translucency-opacity appearance. In the rightmost image in the bottom row, we do
not perceive highlights as specular reflections. We somehow understand that this is the result of light transmission. Therefore, the higher-level cognitive
mechanisms of the scene and shape understanding seem to be involved in the translucency perception process.

of the same translucent material (also shown in Figure 26) could

be one of the reasons why back-lit objects look more translucent

than their front-lit versions. The authors conclude that the HVS

relies on these kind of image cues rather than inverse optics. In-

deed, ”there is simply not enough information available to invert

the actual physics of image formation”, as well-noted by Anderson

(2011), but whether the HVS is completely unaware of the laws of

physics, remains yet to be explored.

Motoyoshi

Motoyoshi (2010) has observed that specular regions re-

main relatively intact by the subsurface scattering and what varies

across different levels of translucency is the appearance of the

non-specular regions. Similarly to the earlier work (Fleming &

Bülthoff, 2005), Motoyoshi noted that the non-specular regions

usually get blurrier and lighter when subsurface scatter increases.

Let’s refer to Figure 27, which illustrates the absolute difference

between translucent and opaque objects with different levels of

specularity. This demonstration supports Motoyoshi’s observation

that the difference between highly translucent and highly opaque

objects is minimal in the areas of specular reflections, which makes

us conclude that the spatial regions diagnostic for translucency can

be dependent on the surface roughness and the extent of specular

coverage.

Furthermore, Motoyoshi also noted similarly to Fleming &

Bülthoff (2005) that the pixel intensity correlation between translu-

cent and opaque materials is far from linearity, but still not ran-

dom. They separated the image into different spatial-frequency
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Figure 23: The nonlinearities identical to that in Figure 22 applied to simpler shaped objects. The top row illustrates the original intensities, while the bottom
row is the non-linear filtered result. The contrast enhancement darkened the shades in the bottom of the box, where light penetration is little. However,
it made the near-edge areas brighter, which in the first four columns, still produces somewhat unrealistic feel of translucency. The translucent look feels
more and more unrealistic with the increase in the optical density (e.g. compare the first and the fourth images in the bottom row). On the other hand, an
interesting result was produced by scaling up the lower intensities in nearly opaque objects (two columns on the right). As the side of the box that faces
away from the illumination looks lighter, it overall evokes a feel of highly scattering bright material. This effect is stronger in column 5. Interestingly, keeping
the original highlights on the side which directly faces the incident illumination made them look more like specular reflections.
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Figure 24: The back-lit bust figure is rotated with 180-degrees all the way to the front-lit condition. The plots show how the first four moments of the
intensity histogram change as a function of the angle of rotation. In the original frame, the wall is the immediate background of the object. Once it is ”flies”
over the window, its mean intensity and standard deviation go up. They generally go down with the angle of rotation, but one local maxima is noticeable
around 120 degrees, because there is another window in the scene, which once again ”lights up” the object. The skewness and kurtosis have an apparent
peak around 135 degrees. This is the result of a highlight produced by internal caustics. When the object is lit from the left, most of its body looks
relatively darker, but a bright strip of the caustic pattern is created on its right side, as a result of photon accumulation. This is visible in the middle frame of
Figure 11. This highlight generates the unexpected skew in the histogram. For the front-lit condition, the skewness and kurtosis drop dramatically, as the
overall object looks blurry and more homogeneous. It is worth noting that these statistics are non-monotonous, and too dependent on the object shape
and scene composition that makes their robustness as translucency cues questionable.
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Front-lit matched with a back-lit histogram Back-lit matched with a Front-lit histogram

Figure 25: If we match the histogram of a front-lit translucent object with its back-lit counterpart, it starts looking opaque. This can be accounted to the
highlights that were the result of trasnmission under the backlight but look more like specular reflections under the front-side illumination. However, some
artifacts are still visible near the edges, which look unnaturally specular. On the other hand, due to the strong transmission gradient, we have not been
able to produce an opaque look with a back-lit object, but blur in the highlight areas produces less transmissive but highly scattering look.

Figure 26: The intensity difference highlights the spatial regions where more energy emerges from a translucent object than from its opaque counterparts
(note that this is not an absolute difference between the two images). The first image additionally shows the difference between back-lit and front-lit
conditions. Under back-lit condition the intensity is higher in virtually every region when compared with a black opaque object, in thin and geometrically
flatter areas when compared with diffuse white and itself under front-light. The front lit translucent object has higher intensity in non-specular regions only
when compared with a black absorbing material, while none of its regions have higher intensity than a white front-lit Lambertian object.

sub-bands using a Gaussian band-pass filter. Afterwards, they ma-

nipulated and measured root mean square (RMS) contrast in each

of the frequency domains. The relationship between the contrast

in the non-specular regions and translucency is non-monotonous.

At first, the RMS contrast decreases as we move from opacity to-

wards translucency. However, for transparent and highly transmis-

sive media, the contrast is either reversed or totally random. This

can be attributed to the fact that the contribution of the background

increases. This phenomenon can be observed in the thin parts of

the dress shown in Figure 11. This is what histogram alone can-

not capture without being aware of the spatial information. They

have further shown that although the contrast in both low spatial

and high spatial domains contribute to translucent appearance, the

latter is more important and is able to yield translucent appearance
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Figure 27: The absolute difference between the two images shows that the translucent and opaque objects have identical intensities in the specular
regions. Besides, the contrast between the specular and non-specular regions as well as the spatial coverage of the regions where a translucent object
and opaque object differ in intensities is modulated by surface roughness and thus, glossiness of the object.

even if the contrast in the low spatial frequency is held constant

(refer to Figures 5-6 in (Motoyoshi, 2010)). This observation has

implications in the image-based material editing and it has been

demonstrated to be important for the image-based translucency

transfer (Todo et al., 2019). The observation that blurring non-

specular regions is associated with translucency, while specular

highlights remain intact, also explains why N-shaped non-linearity,

which generates larger changes for lower intensity inputs, has been

able to enhance the perceived degree of translucency.

Xiao et al.

Xiao et al. (2020) have shown that a sharp surface relief en-

hances perceived opacity and argue that this can be attributed to

sharper and darker shadows generated by these areas, which on the

one hand agrees with the previous findings (Fleming & Bülthoff,

2005; Motoyoshi, 2010) that blurriness and brightness (mean lu-

minance) of the shadowed regions can play a role in translucency

perception, but on the other hand, should be taken with care, as

the sharp and fine details of the surface can also lead to interreflec-

tions and bright appearance, as this is the case for the Lucy in Fig-

ure 14. In another work (Xiao et al., 2014), they observed that the

thin parts and fine details of the Lucy contribute most to translu-

cent material discrimination, supporting similar observations by

other researchers (Fleming & Bülthoff, 2005; Nagai et al., 2013;

Gkioulekas et al., 2015). One objective measure for these kind of

sharp details could be surface curvature, which to some extent cap-

tures both sharp-fine details and outer edges of the object (refer

to Figure 28). However, such metric does not capture flat thin ar-

eas (see the blue region in the bottom right corner of the figure),

which although have low curvature, still appear different, which

makes them a diagnostic cue for distinguishing between opaque

and transmissive materials.
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Figure 28: The left figure illustrates the surface curvature of the object (red areas - high curvature; blue areas - low curvature). The curvature can be
interesting in two ways: it highlights sharp details and surface concavities which are expected to be in a shadow in case of opaque objects; on the other
hand, the sharp edges near the thin areas, which transmit light easily, are also characterized with high curvature. However, note that non-edge parts of
the flat thin regions have low curvature, but still transmit large amount of light (see the bottom right corner of the figure - the edge is red, but most of its
thin dress part is in blue). The right image is a pseudocolor map of the surface normals - the points where the normals are facing the same direction are
colored with similar colors. On opaque surfaces, the normals and thus, the shape can be estimated from the shading information.

Gkioulekas et al.

One particular instance of thin regions, the edges, gener-

ally have been observed to be informative about material translu-

cence (Fleming & Bülthoff, 2005; Xiao et al., 2014). Therefore,

Gkioulekas et al. (2015) tried to take advantage of this and utilized

the radiance information near the edges to deduce the subsurface

scattering properties of a material. They limited the study to the

edges which are the result of surface discontinuity - such as those

at the boundary of the two facets of a cube. They split the edges

into four qualitative regions on the two facets and simulated a broad

range of materials to observe how the radiance information in those

regions varies. They found that each material has its surprising

”signature” radiance profile at the edges (e.g. refer to Figure 29).

Each radiance profile encapsulates information about reflection,

refraction and scattering properties of a material. They analyzed

from an optical point of view, how single scattering (single bounce

of a photon), mid-order scattering and high-order scattering con-

tribute to the energy incident on the camera sensor. A typical radi-

ance profile is illustrated in Figure 3 of (Gkioulekas et al., 2015).

For instance, a relatively high extinction coefficient puts intensity

maxima closer to the boundary on the side facing away from the il-

lumination direction, because the penetration depth decreases (this

phenomenon is illustrated in Figure 29 and can be also observed in

Figure 3). It is although noteworthy that the high extinction coeffi-

cient eliminates the maxima completely due to opacity (Figure 29).

High albedo, i.e. a higher portion of scattering and a lower portion

of absorption in a given extinction coefficient, impacts intensity of

these extrema, not their locations. When the albedo is high, high

order scattering contributes more than single scattering and the in-

tensity decreases. The angular variance of the phase function also

impacts the location of the local maxima. These local maxima can

be noticed as small peaks in Figure 4. Afterwards they demon-

strated that different scattering effects can generate matching radi-

ant profiles - i.e. edge profile ”metamers”. On the other hand, when

scattering properties are fixed, the profile is unique to a given re-

fraction and illumination direction. We can, indeed, match refrac-

tion and illumination effects on the one facet - e.g. if the refrac-

tion index changes, we can change the illumination angle accord-

ingly to get the ”original” reflectance angle; however, this change

will impact the other facet, generating a different radiance profile.

The idea of using radiance profiles for translucency discrimination

was novel. The authors demonstrated that their findings general-

ize well across many illumination geometries and broad range of

translucent materials that makes this work one of the most signifi-
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Figure 29: The objects are rendered with a skimmed milk material (Jensen et al., 2001) and an extinction coefficient is scaled to different levels. The
intensity distribution at the edges varies considerably between different optical densities. As noted by Gkioulekas et al. (2015) the local maxima are moved
closer to the edge, when optical density increases (observe darker strips across the edges in the left two images). However, when optical density is too
high (the rightmost image), the material becomes opaque and the facet which is not directly illuminated looks dark and homogeneous. The blue frame
highlights the areas where the edges are most informative.

cant contributions to the topic. On the other hand, it is also worth

noting that the study was limited to the convex edges and might not

generalize to concavities with strong interreflections (such as Lucy

in Figure 14).

The authors argued that the edge radiance profiles are robust

to the real world artifacts and can be reliable indicators for edge

detection and material identification algorithms in computer vision

systems. While they seem a robust indicator for machines, it re-

mains unknown whether the HVS relies on similar edge profiles

for translucency perception. Psychophysical experiments need to

be conducted in the future to explore this question. It is interesting

to observe whether image manipulations and mapping textures of

different radiance profiles near the edges of different surfaces af-

fect observers’ estimations of the subsurface scattering properties.

Additionally, proper eye-tracking measurements could also reveal

the saliency of the edge profile components when subjects are per-

forming translucency-related visual tasks.

Marlow et al.

Marlow et al. (2017) have shown that the co-variance between

surface orientation and shading is related to opacity, while the lack

of it produces translucent appearance. They mapped an identical

texture of the luminance gradient onto the surfaces with different

apparent 3D shapes. They observed that the interpretation of the

material properties from a given luminance gradient is impacted

by the perceived 3D shape. Particularly, if the image intensities

co-vary with the perceived surface orientation, the material appears

opaque; otherwise, it appears translucent (refer to the Movies S1

and S2 in (Marlow et al., 2017)). Additionally, they illustrated

that when the light field the material is embedded in ”acciden-

tally” eliminates this co-variance between surface and shading of

an opaque object, a vivid and convincing illusion of translucency

is observed. The fact that perceived 3D shape impacts the apparent

translucency implies that the luminance contrast, mean luminance

or similar statistics per se are not enough to explain the percep-

tion of translucency, and the HVS is likely to be exploiting surface

geometry and 3D shape information as well. However, it is not

clear how the HVS calculates the geometry from the retinal im-

ages. In our opinion, one way the HVS might be quantifying this

is the relation between the surface curvature and the surface nor-

mals (Figure 28), on the one hand, and the magnitude and direction

of the shading gradient, on the other hand (Figure 30). While the

gradient orientation largely depends on the surface 3D geometry

in the diffuse opaque objects, it is more random in objects with a

high degree of subsurface light transport. Moreover, the gradient

magnitude is largest in highly curved areas in the opaque object,

while that is not necessarily true for the translucent ones (see the

caption in Figure 30 and compare with Figure 28).

Marlow and Anderson

Marlow & Anderson (2021) have recently shown that translu-

cent materials are also subject to photogeometric constraints. The

authors argue that there is a co-variance among the luminance gra-

dient produced by the sub-surface scattering of light, the shape of
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the specular reflections and the shape of the self-occluding con-

tours, and this co-variance provides information about material

properties and the 3D shape of the object. The co-variance can be

rooted in the fact that all three components – sub-surface scatter-

ing, specular reflections and self-occluding contours are affected

by the same objective geometric priori – the 3D surface curva-

ture. For instance, both the luminance gradient produced by the

sub-surface scattering and the shape of the specular reflections are

usually aligned with the direction of the lowest surface curvature –

making them aligned with one another as well.

First of all, the authors demonstrate that the intensity gradient

produced by the sub-surface scattering is affected by the 3D shape.

In opaque materials the location of the luminance extrema depends

on the surface orientation in space, as the luminance extrema are

located on the sides of the convex and concave regions – whichever

side faces the illumination is brightest and whichever faces away

from it is in the shadow. Contrastingly, in translucent materials, the

intensity gradient is related with the local surface curvature; the de-

crease in the extinction coefficient usually smoothens the gradient,

decreases the luminance contrast (which is consistent with other

works (Motoyoshi, 2010)) and moves locally brightest and darkest

intensities closer to the peaks of the convexities and concavities,

respectively. The authors also provide an optical explanation for

this: the light attempting to exit the material is redirected towards

convexities and away from concavities due to the internal reflec-

tions. These observations on translucent materials generalize well

to a broad range of frontal and side illumination angles.

Information about 3D shape can facilitate the estimation of

the material properties and vice versa. However, in real-life sce-

nario, neither is hardly ever known to the observer. The HVS some-

how manages to recover both 3D shape and properties of a material

that according to Marlow & Anderson (2021) can be rooted in the

above-mentioned co-variation among subsurface scattering, specu-

lar reflections and self-occluding contours. The authors conducted

psychophysical experiments, which supported those hypotheses.

They observed that presence of self-occluding contours and specu-

lar reflections increased the vividness of the perceived 3D shape of

a bumpy translucent surface. On the other hand, the magnitude of

perceived translucency was significantly increased by the specular

reflections but was barely affected by self-occluding contours.

This work opens a new avenue for translucency perception re-

search. Although previous work concluded that information on 3D

shape is important for translucency (Marlow et al., 2017), this work

is the first one to propose that the HVS might be recovering shape

and material properties simultaneously, from the same photogeo-

metric constraints. The major limitation of the work is that it does

not cover back-lit objects. Identification of the similar photogeo-

metric constraints for back-lit objects is considered very difficult

or even impossible by the authors, leaving the question open.

Di Cicco et al.

Di Cicco, Wijntjes, & Pont (2020) have recently conducted a

study on citrus fruit images. They used multidimensional scaling

(MDS) and constructed a 2-dimensional perceptual space explain-

ing the qualities related to translucency. This is an elegant exam-

ple how translucency perception research can benefit from relying

on artworks. They observed that color saturation, intensity gradi-

ent and highlights were visible features for translucent materials,

while being also related to ”juiciness”. They argue that the inten-

sity magnitude and sharpness in their case supports earlier findings

that blur and contrast are important cues for translucency percep-

tion. The authors also identified translucency-related regions, sim-

ilarly to Nagai et al. (2013), which in their case is the ”peeled side”

of the fruit. This can be accounted to the fact that the pulp permits

light penetration and bleeding around the edges. Although over-

all trends and cues are consistent with the previous findings, the

peculiarity of the stimuli makes generalization to other translucent

materials and photorealistic stimuli debatable.

Summary

To summarize, a full perceptual model of translucency which

could simply take scene and material properties as an input and

provide an estimation of a perceptual correlate remains beyond

reach nowadays. The possibility of coming up with this kind of

model anytime soon ranges from unlikely to impossible. Never-

theless, some partial models have collected interesting observa-

tions about translucency perception cues. These works comple-

ment each other and can be summarized as follows:

1. It seems that neither luminance nor spatial information alone

is enough for estimating perceived translucency. The HVS

seemingly uses some sophisticated combination of the both.

2. The spatial regions where a photon can go through easily

look brighter and contain rich information about material
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translucence. Examples of this kind of regions are edges,

thin parts and sharp fine details of a surface geometry.

3. The regions which are usually shadowed in opaque objects

are also informative about translucency, as they look brighter

in translucent materials.

4. Points 2 and 3 can be generalized as follows: if in absence

of subsurface light transport considerably smaller amount of

light could have reached a particular region, this region can

be diagnostic for material translucence.

5. Understanding how much light could or could not have

reached a particular region inherently involves understand-

ing the surface geometry and global correlation among dif-

ferent spatial regions.

6. It is not known how the HVS segments an image, how it

identifies the informative regions and how it calculates the

surface geometry. These calculations are not unique and

vary across individuals. There can be multiple translucency

cues in a proximal stimulus and different people can rely on

different ones for yet unknown reasons.

We believe that in addition to standard psychophysics, where

experimenters attempt to find a correlation between the varying

physical parameters and the observer responses, it is also impor-

tant to study translucency perception process from a behavioral

perspective. The first step towards this has been done by Gigi-

lashvili, Thomas, et al. (2018, 2021). In the subsequent section,

we will analyze what visual mechanisms remain to be uncovered

and what factors complicate the translucency perception research.

Challenges and knowledge gaps

Inconsistent definition and conceptual ambi-
guity

The exact meaning of translucency is not universally accepted

and remains subjective (Pointer, 2003). This basic definition prob-

lem might make the scientific communication difficult and hin-

der the advance in the translucency perception research. We have

particularized these problems in the recent position paper (Gigi-

lashvili, Thomas, et al., 2020). Care is needed to avoid miscommu-

nication of the empirical results and to ensure the reproducibility of

the psychophysical experiments. Experimenters should make sure

that the instructions are correctly understood and interpreted by

their observers when the task concerns translucency perception -

especially, when the experiments are conducted in languages other

than English, as the translation of the term translucency might or

might not differ from that of transparency. For example, Mo-

toyoshi (2010) reports that there is no distinction between trans-

parent and translucent in the Japanese language, which might have

impacted his experimental results. However, he reports that ob-

servers assess translucent and transparent stimuli differently from

each other, seemingly understanding the semantic difference be-

tween the two visual phenomena. This makes the author propose

that the two concepts might be orthogonal. Scaling translucency

remains a challenging and confusing task. To the best of our

knowledge, Hutchings & Scott (1977) and Hutchings & Gordon

(1981) (cited in (Hutchings, 2011)) have been the first ones to ob-

serve the confusion among the experiment participants while scal-

ing translucency. The authors argue that ”care should be taken

when using the term Translucency for scaling. An increase in

translucency may mean an increase in transparency to some pan-

elists while meaning the opposite to others” (Hutchings, 2011).

We have also observed a similar kind of problem in our experi-

ments (Gigilashvili, Thomas, et al., 2018; Gigilashvili, Dubouchet,

et al., 2020; Gigilashvili, Thomas, et al., 2021). The lack of knowl-

edge on how to quantify translucency makes it challenging to mea-

sure it by magnitude estimation techniques (Torgerson, 1958) and

psychophysical scaling methods, such as the pair comparison and

rank order (Engeldrum, 2000). For example, it has been possi-

ble to quantify the magnitude of glossiness (Pellacini et al., 2000)

or to differentiate more glossy and less glossy stimuli (Thomas

et al., 2017; Gigilashvili, Thomas, et al., 2019). However, there

is no universal agreement what ”more translucent” means, nei-

ther can we tell ”how much” translucency is in a given stimulus.

When comparing multiple stimuli, which one is the most translu-

cent (e.g. in Figure 2) - the one closest to transparency, closest to

opacity or closest to a hypothetical peak between the two? Di Ci-

cco, Wiersma, et al. (2020b) have observed that translucency was

judged least consistently among all assessed parameters in the still

life paintings of grapes, which might be attributed to the varia-

tion in the conceptual understanding, rather than the anatomical

differences among observers. Nagai et al. (2013) defined more

translucent in their experiments as having stronger subsurface scat-

tering. Wijntjes et al. (2020) have defined translucency as ”the
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Figure 30: The top row illustrates the original images, the middle row shows the magnitude of the luminance gradient (the background is ignored), while
the shades in the bottom row correspond to the gradient orientation. The back-lit translucent object has a high magnitude gradient, while it looks relatively
homogeneous when front-lit. Under front light, a diffuse object produces more visible gradient (due to shading in the surface convexities) than a front-lit
translucent one. In the front-lit condition, the gradient orientation closely follows the surface 3D geometry. When the objects are back-lit, the gradient
orientation of an opaque object is strongly impacted by the partial side-illumination, while it looks more random for the back-lit translucent object, which
also makes it difficult to recover its shape.

opposite of opaqueness, but... not limiting to pure transparency.

For example, tea with milk is more translucent than a cup of white

paint”. Di Cicco, Wiersma, et al. (2020b) asked observers to quan-

tify the magnitude of translucency of the painted grapes and de-

fined the term in a similar manner: ”Translucency: how translu-

cent do the grapes appear to you? Low values indicate that no

light passes through the grapes and the appearance is opaque;

high values indicate that some light passes through the grapes.”

However, care should be taken in these cases as well, because we

do not know whether the relation between scattering and translu-

cency is monotonous. Materials with high and low scattering might

be considered opaque and transparent, respectively - both hav-

ing zero translucency. Many works avoid direct quantification of

translucency in the psychophysical experiments and encapsulate

it in the matching tasks asking observers to match the stimuli by

appearance (Xiao et al., 2014; Fleming & Bülthoff, 2005) and/or

by translucency (Gkioulekas et al., 2013; Xiao et al., 2020; Gig-

ilashvili, Urban, et al., 2019). This, at first glance, simplifies the
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task. However, there is little empirical evidence that the HVS can

fully isolate translucency from other attributes of total appearance.

If the definition of translucency is ambiguous to the observers, how

can they match materials by translucency and how can we guar-

antee that they are not making up their own rules for matching

the stimuli, e.g. by lightness, or any property other than translu-

cency? In order to identify what observers are basing their deci-

sions on, the experimenters can calculate particular image statis-

tics and check how well these statistics explain the variation in the

observer responses (as done by Chadwick et al. (2019)). However,

there is no guarantee that the actual statistics or cues used by ob-

servers will be correctly identified by the experimenters. Another

workaround found in the literature is using the terms more familiar

and less abstract than translucency. For instance, Chadwick et al.

(2019) asked observers to assess strength and milkiness of the tea

images. However, the association between the strength, milkiness

and translucency is not clear either. Hutchings (2011) proposes

using extent of visibility scale of Galvez & Resurreccion (1990)

instead of referring to ”more translucent” and ”less translucent”.

However, the scale is intended for assessing the appearance of the

mungbean noodles in a plastic cup and for quantifying the visibil-

ity of the objects behind the noodle strands - thus, it is not readily

applicable to the solid non-see-through materials. Furthermore, the

inconstancy of translucency across different shapes makes it chal-

lenging to clearly separate translucency as a property of a given

object and as a property of a material the object is made of. We ob-

served (Gigilashvili, Thomas, et al., 2018; Gigilashvili, Urban, et

al., 2019; Gigilashvili, Thomas, et al., 2021) that human observers

find it challenging to compare or match translucency across differ-

ent shapes, for two reasons: first of all, it is difficult to estimate op-

tical properties of a material and to decouple its visual appearance

from the shape-related effects (speaks of the limited ability to ”in-

vert optics” as it has been noted previously (Fleming & Bülthoff,

2005; Anderson, 2011; Chadwick et al., 2019)); secondly, the task

is inherently ambiguous - translucency cues vary not only between

the thick and thin objects, but also between the thick and thin re-

gions of a particular object - making observers uncertain which

region to assess and how to come up with a single translucency

measure. According to Hutchings (1994), a heterogeneous ma-

terial might have ”more than one colour, perhaps more than one

translucency, gloss, or surface irregularity” that no appearance

profile system can deal with. The observers in the experiments

by Nagai et al. (2013) pointed out that heterogeneous translucency

which resulted from a varying shape, complicated the task, but it

remained still viable according to the authors. This raises a ques-

tion: should translucency of a complex-shaped homogeneous ma-

terial be judged globally for a given object or material, or locally

for each specific region of an object?

Challenges in experimental methods

One of the pivotal limitations of the experimental methods

are the constraints related to the visual stimuli selection. Real ob-

jects, photographs or computer-generated imagery can be used to

study translucency perception psychophysically. All of these meth-

ods come with their advantages and drawbacks, which are summa-

rized in Appendix 1 of (Gigilashvili, Thomas, et al., 2021). We

advocate for using physical objects which make the experiments

closer to the real-life scenarios, permitting binocular vision, inter-

action, motion cues, higher dynamic range and multisensory infor-

mation (tactile, auditory, olfactory). We hypothesize that the be-

havioral patterns applied by observers on physical objects are close

to their natural way of making judgments. On the other hand, we

are aware of the trade-offs. Physical objects are difficult and ex-

pensive to model, measure and replicate. The experiments usually

take longer (Maloney & Knoblauch, 2020) and the risk of damag-

ing, the unpredictable effects of aging and the limited access across

the scientific community hinder the reproducibility of the experi-

ments. A descent alternative which permits interactivity, motion

and binocular cues can be the immersive reality technologies.

A further aspect which is problematic from the experimental

point of view is the lack of standardization. Normal conditions

for observing translucency and a standard observer are not defined.

For instance, the contrast sensitivity and the visual acuity might

have a significant impact on the experimental results. However,

the viewing conditions, such as the distance and the size of the

visual field varies across different experiments which complicates

the comparative analyses of their findings.

And last but not least, unlike color vision (Lafer-Sousa et

al., 2015; Emery & Webster, 2019), the knowledge about cross-

individual differences in translucency perception is virtually non-

existent, as pooled experimental results are usually reported. Chad-

wick et al. (2018, 2019) have observed that the models explaining

the variation in the psychophysical data differ among individuals.

Similar cross-individual differences were also observed by Nagai
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et al. (2013) and Gigilashvili, Thomas, et al. (2018). Whether this

could be attributed to the interpretation of the task, prior experi-

ence or anatomical differences, need to be answered in the future.

Should we expect the translucency counterpart of #TheDress any-

time soon which could expose these individual differences?

Visual mechanisms of translucency perception

The exact mechanisms of translucency perception remain

largely unidentified. After compilation of the state-of-the-art

works, we came up with the several important questions which we

believe should be addressed in future works. Namely:

• Which image cues and regions does the HVS rely on and

how does it identify, calculate and weight them?

• What is the role of shape and geometry perception and how

does the HVS calculate them?

• To what extent is perceived translucency impacted by other

appearance attributes, such as color, gloss, texture and fluo-

rescence?

• What role do the identification of the familiar materials and

other psychological priors play in translucency perception?

• How does the HVS use motion and scene dynamics to assess

translucency?

• What is the physiology of translucency perception from the

retinal to the cortical level and how much does it vary across

individuals?

We envision that the future work can develop in three di-

rections: the eye-tracking experiments can facilitate identification

of the respective cues and key image regions; behavioral analysis

(similar to (Gigilashvili, Thomas, et al., 2021)) might reveal how

the judgments on translucency are made and which factors guide

observers’ actions; while neuroscience can shed light to the physi-

ological and cognitive aspects in the perplexing process of translu-

cency perception.

Eye tracking can potentially reveal the most salient cues to

translucency and whether different observers rely on different cues,

as noted by Nagai et al. (2013). Eye tracking is a more straightfor-

ward way than reverse correlation techniques used by Nagai et al.

(2013) to learn where observers look in the process of translucency

assessment. Additionally, the saccade paths measured with the eye

tracking could reveal the sequence and the frequency of inspecting

particular local regions. This could potentially reveal how different

local regions relate to one another. On the other hand, we under-

stand that eye tracking comes with the considerable limitations:

the reason of the fixations might be unrelated to translucency –

some regions might be salient for other reasons, e.g. human face

can attract extra attention regardless the task; we will not capture

the influence of the parafoveal vision and the cues which are not

locally defined; the temporal resolution of the eye tracking equip-

ment might be lower than the speed of the visual processing; the

presence of eye tracking equipment might affect the naturalness of

the interaction.

Summary and Conclusions

We have discussed translucency as one of the pivotal appear-

ance attributes, which is increasingly important in a broad range

industries and disciplines, including 3D printing, cosmetics, food

industry and arts among many. Translucency results from the sub-

surface transport of light. While the techniques for measuring and

modeling the optical properties of a material are relatively well-

established, our understanding how they link to their perceptual

correlates remains limited. The advance in translucency percep-

tion research is attributed to the development of computer graphics

techniques which permit easier generation of the translucent vi-

sual stimuli. While the initial studies were limited to transparency

perception, transparency models could not explain the perception

of highly scattering media. The visual cues and perceptual mecha-

nisms seem to be fundamentally different between the transparency

and translucency of the see-through filters and translucency of

highly scattering, non-see-through media. This resulted in emer-

gence of a separate research topic - the perception of translucency

in highly scattering media. In the past 20 years, multiple factors

have been identified to be contributing to perceived translucency,

such as the illumination direction, structural thickness of the ob-

ject, as well as subsurface scattering properties. It is believed that

the luminance distribution around the edges and in the shadowed

regions, and its covariance with the surface geometry, might be

used by the human visual system to infer translucency in highly

scattering, non-transparent materials, while the HVS relies on ap-

parent contrast and blur when the background is visible. Neverthe-

less, overall translucency perception research is still in its infancy.
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We argue that the problems with the conceptual understanding and

comprehension of the term impede the advance of the research and

complicate the reproducibility of the tasks. We argue for the better

standardization in this domain. Finally, we believe that eye track-

ing experiments could reveal which image regions and cues are

significant, and advance in neuroscience could provide a deeper

insight in the corresponding anatomical mechanisms for translu-

cency perception.
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Fleming, R. W., Jäkel, F., & Maloney, L. T. (2011). Visual percep-

tion of thick transparent materials. Psychological science, 22(6),

812–820.

Fleming, R. W., & Storrs, K. R. (2019). Learning to see stuff.

Current Opinion in Behavioral Sciences, 30, 100–108.

Fleming, R. W., Torralba, A., & Adelson, E. H. (2004). Specu-

lar reflections and the perception of shape. Journal of Vision,

4(9:10), 798–820.

Fleming, R. W., Wiebel, C., & Gegenfurtner, K. (2013). Perceptual

qualities and material classes. Journal of Vision, 13(8:9), 1–20.



Journal of Vision (20??) ?, 1–? Gigilashvili, Thomas, Hardeberg, & Pedersen 41

Frisvad, J. R., Jensen, S. A., Madsen, J. S., Correia, A., Yang, L.,

Gregersen, S. K., et al. (2020). Survey of models for acquir-

ing the optical properties of translucent materials. STAR, 39(2),

729–755.

Galvez, F. C. F., & Resurreccion, A. V. (1990). Comparison of

three descriptive analysis scaling methods for the sensory eval-

uation of noodles 1. Journal of Sensory Studies, 5(4), 251–263.

Gerardin, M., Simonot, L., Farrugia, J.-P., Iehl, J.-C., Fournel, T.,
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Hašan, M., Fuchs, M., Matusik, W., Pfister, H., & Rusinkiewicz,

S. (2010). Physical reproduction of materials with specified

subsurface scattering. In Acm siggraph 2010 papers (pp. 1–10).

Henyey, L. G., & Greenstein, J. L. (1941). Diffuse radiation in the

galaxy. The Astrophysical Journal, 93, 70–83.

Hershler, O., & Hochstein, S. (2005). At first sight: A high-level

pop out effect for faces. Vision research, 45(13), 1707–1724.

Hunter, R. S., & Harold, R. W. (1987). The measurement of ap-

pearance. John Wiley & Sons.



Journal of Vision (20??) ?, 1–? Gigilashvili, Thomas, Hardeberg, & Pedersen 42

Hutchings, J. B. (1977). The importance of visual appearance of

foods to the food processor and the consumer 1. Journal of Food

Quality, 1(3), 267–278.

Hutchings, J. B. (1994). Appearance profile analysis and sensory

scales. In Food colour and appearance (pp. 142–198). Springer.

Hutchings, J. B. (2011). Food colour and appearance. Springer

Science & Business Media.

Hutchings, J. B., & Gordon, C. (1981). Translucency specification

and its application to a model food system. In Proceedings of

the fourth congress of the international colour association, west

berlin.

Hutchings, J. B., & Scott, J. (1977). Colour and translucency as

food attributes. In Color 77, proceedings of the 3rd congress of

the international colour association, troy, new york (pp. 10–15).

Igarashi, T., Nishino, K., & Nayar, S. K. (2005). The appearance

of human skin. Technical Report: CUCS-024-05. , 85 pages.

Jakob, W. (2010). Mitsuba renderer. (http://www.mitsuba-

renderer.org)

Jensen, H. W., Marschner, S. R., Levoy, M., & Hanrahan, P. (2001).

A practical model for subsurface light transport. In Proceedings

of the 28th annual conference on computer graphics and inter-

active techniques (pp. 511–518).

Kaltenbach, F. (2012). Translucent materials: glass, plastics, met-

als. Walter de Gruyter.

Kán, P., & Kaufmann, H. (2012). High-quality reflections, refrac-

tions, and caustics in augmented reality and their contribution

to visual coherence. In 2012 IEEE International Symposium on

Mixed and Augmented Reality (ISMAR) (pp. 99–108).

Khang, B.-G., & Zaidi, Q. (2002). Cues and strategies for color

constancy: Perceptual scission, image junctions and transforma-

tional color matching. Vision Research, 42(2), 211–226.

Kim, J., Marlow, P., & Anderson, B. L. (2011). The perception

of gloss depends on highlight congruence with surface shading.

Journal of Vision, 11(9)(4), 1–19.

Kim, J., & Marlow, P. J. (2016). Turning the world upside down

to understand perceived transparency. i-Perception, 7(5), 1–5.

Koenderink, J. J., & Doorn, A. J. van. (2001). Shading in the case

of translucent objects. In Human vision and electronic imaging

vi (Vol. 4299, pp. 312–320).

Krewinghaus, A. B. (1969). Infrared reflectance of paints. Applied

optics, 8(4), 807–812.

Kubelka, P. (1931). Ein beitrag zur optik der farbanstriche (con-

tribution to the optic of paint). Zeitschrift fur technische Physik,

12, 593–601.

Kubelka, P. (1948). New contributions to the optics of intensely

light-scattering materials. Part I. JOSA, 38(5), 448–457.

Lafer-Sousa, R., Hermann, K. L., & Conway, B. R. (2015). Strik-

ing individual differences in color perception uncovered by ‘the

dress’ photograph. Current Biology, 25(13), R545–R546.

Legge, G. E., Parish, D. H., Luebker, A., & Wurm, L. H. (1990).

Psychophysics of reading. xi. comparing color contrast and lu-

minance contrast. JOSA A, 7(10), 2002–2010.

Le Moan, S., & Pedersen, M. (2017). Evidence of change blind-

ness in subjective image fidelity assessment. In 2017 IEEE In-

ternational Conference on Image Processing (ICIP) (pp. 3155–

3159).

Li, C., Zhou, K., Wu, H.-T., & Lin, S. (2018). Physically-based

simulation of cosmetics via intrinsic image decomposition with

facial priors. IEEE transactions on pattern analysis and machine

intelligence, 41(6), 1455–1469.

Liu, M.-C., Aquilino, S. A., Lund, P. S., Vargas, M. A., Diaz-

Arnold, A. M., Gratton, D. G., et al. (2010). Human perception

of dental porcelain translucency correlated to spectrophotomet-

ric measurements. Journal of Prosthodontics: Implant, Esthetic

and Reconstructive Dentistry, 19(3), 187–193.

Lopes Filho, H., Maia, L. E., Araújo, M. V. A., & Ruellas,
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