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Abstract

Reflectance Imaging Spectroscopy, often referred to as hyperspectral imaging, is
an imaging technique that enables the simultaneous capture of spatial and spectral
information from a scene without physical contact and in a non-invasive manner.
These desirable features make it especially well-suited for applications in Cultural
Heritage analysis, where the investigation of historical artifacts should avoid caus-
ing irreversible damage.

This thesis is about the revisiting of the imaging pipeline from data acquisition to
the processing steps that fuse two independent hyperspectral images captured in
separate spectral ranges. The need to address this topic comes from the fact that
Visible Near-Infrared (VNIR) and Short-Wave Infrared (SWIR) imaging spectro-
scopy are being consistently deployed in the field of Cultural Heritage to conduct
a series of research tasks including but not limited to analyzing the basic compon-
ents of historical artifacts (pigments, dyes, binding media, mordants, fiber, etc.),
long-term artifact monitoring, assessment during conservation treatments, com-
ponent mapping, and revealing of hidden patterns not discernible to the human
eye. However, VNIR and SWIR hyperspectral images of the same scene are often
analyzed independently because of the intrinsic differences present at the image
sensor level, which makes data fusion a challenging problem.

The first goal of this thesis is to develop an appropriate imaging setup for the
simultaneous acquisition of VNIR-SWIR hyperspectral data with the twofold aim
of obtaining high-quality data while preserving the integrity of the studied arti-
fact. Secondly, the spatio-spectral alignment of the two hyperspectral images is
addressed. Since the problem of spatial image registration has been extensively
studied in the literature, we focus on the factors that may influence its performance
in this context. For the spectral alignment, we propose a novel splicing correction
that smoothly connects hyperspectral images with adjacent or overlapping spectral
ranges. We then explore the application of image sharpening (e.g. pansharpening)
techniques originally developed for remote sensing on proximally-sensed histor-
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iV Abstract

ical artifacts, proposing a discussion focused on the negative impact that some
algorithms have on subsequent analysis processes such as the classification of
spectral signals. Finally, from the hypothesis of having to capture complex ar-
tifacts such as glossy paintings, we address the integration of polarimetric imaging
in the fusion pipeline, developing an acquisition paradigm for the acquisition of
VNIR-SWIR spectral Stokes images that allows the study of spectro-polarimetric
quantities such as the correlation between the reflectance and the linear degree of
polarization.

In the initial hypothesis, the joint analysis of VNIR and SWIR Reflectance Imaging
Spectroscopy data can be thought of as more powerful than the individual analyses
conducted separately. However, this hypothesis could not be fully verified within
this thesis, and some open questions are left for future explorations regarding its
validity.



Sammendrag

Bildespektroskopi av spektral refleksjon, ofte kalt hyperspektral fotografering, er
en fototeknikk som gjgr det mulig a fange opp romlig (-spatial-) og spektral in-
formasjon fra en scene uten fysiske inngrep pa objektet. Denne egenskapen gjgr
teknikken spesielt godt egnet til bruk innen kulturarvanalyse, der det er viktig &
unnga at historiske gjenstander blir pafgrt irreversible skader.

Denne doktorgradsavhandlingen handler om en gjennomgang av arbeidsflyten til
fototeknikken fra datainnsamling til prosesseringstrinnene som smelter sammen
to uavhengige hyperspektrale bilder tatt i separate spektralomrader. Behovet for
a ta opp dette temaet kommer av det faktum at ‘Visible Near-Infrared’ (VNIR)
og ‘Short-Wave Infrared” (SWIR) bildespektroskopi stadig brukes innen kultur-
minnefeltet for a utfere en rekke forskningsoppgaver, inkludert, men ikke be-
grenset til, analyse av de grunnleggende komponentene i historiske gjenstander
(pigmenter, fargestoffer, bindemidler, beisemidler, fiber osv.), langsiktig overvak-
ing av gjenstander, vurdering under konserveringsbehandlinger, komponentkart-
legging og avslgring av skjulte mgnstre som ikke er synlige for det menneskelige
gyet. VNIR- og SWIR-hyperspektrale bilder av samme scene analyseres imidler-
tid ofte uavhengig av hverandre pa grunn av de iboende forskjellene pa sensorniva
i kameraene, noe som gjgr datafusjonen mellom de to bildene til en utfordring.

Det fgrste malet med denne avhandlingen er & utvikle et egnet bildebehandling-
soppsett for parallell innsamling av VNIR-SWIR hyperspektrale data med tilleggs-
mal om & oppna data av hgy kvalitet mens man samtidig bevarer integriteten gjen-
standen man studerer. Med det andre maélet tar vi for oss den romlig-spektrale
justeringen av de to hyperspektrale bildene. Siden problemet med romlig bildere-
gistrering har blitt grundig studert i litteraturen, fokuserer vi pa de faktorene som
kan pavirke ytelsen til registreringen i denne sammenhengen. For spektraljus-
tering foreslar vi en ny -splicing- korreksjon som forbinder hyperspektrale bilder
med grensende eller overlappende spektralomrader pa en jevn mate. Deretter ut-
forsker vi anvendelsen av bildeskarphetsteknikker (f.eks. ‘pansharpening’) som
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opprinnelig ble utviklet for fjernmaling pa historiske gjenstander som er tatt pa
nert hold, og presenterer en diskusjon med fokus pa den negative innvirkningen
noen algoritmer har pa pafglgende analyseprosesser, for eksempel klassifisering
av spektralsignaler. Til slutt, med utgangspunkt i hypotesen om & matte fange opp
komplekse gjenstander som f.eks. blanke malerier, tar vi for oss integreringen av
polarimetrisk bildebehandling i fusjonsprosessen, og utvikler et datainnsamling-
sparadigme for innsamling av VNIR-SWIR spektrale Stokes-bilder som gjgr det
mulig a studere spektro-polarimetriske verdier som korrelasjonen mellom refleks-
jonen og den lineare polarisasjonsgraden.

Den opprinnelige hypotesen er at en felles analyse av VNIR og SWIR spektroskop-
idata kan antas a vaere mer effektiv enn de individuelle analysene som utfgres hver
for seg. Denne hypotesen kunne imidlertid ikke verifiseres fullt ut i denne avhand-
lingen, og det gjenstar noen apne spgrsmal for fremtidige undersgkelser for & bes-
vare den.
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Chapter 1

Introduction

1.1 Motivation and broader context

This dissertation is the product of three years of work in a highly multi-disciplinary
environment encompassing the fields of heritage science, optics, computer science,
and signal processing, in no particular order. Broadly speaking, the work is inten-
ded to bring improvements to the development of a specific imaging technique -
Reflectance Imaging Spectroscopy (RIS) (also known as Hyperspectral Imaging,
HSI) - for its applications in the field of heritage science. With this premise, we
can say that the work is done at the service of Cultural Heritage (CH).

The formal definitions of CH are provided by large organizations that regulate
preservation practices around the world such as UNESCO and ICOMOS. Although
they slightly differ, the two definitions seem to speak to us, people of the present,
as a reminder that CH is not about us, but about future generations to come, and
our task is to be its stewards.

the legacy of physical artifacts and in- | an expression of ways of living, de-
tangible attributes of a group or soci- | veloped by a community and passed
ety that are inherited from past gener- | on from generation to generation, in-
ations, maintained in the present, and | cluding customs, practices, places,
bestowed for the benefit of future gen- | objects, artistic expressions, and val-
erations ues.

- UNESCO [1] - ICOMOS [2]

Table 1.1: Definitions of Cultural Heritage provided by UNESCO and ICOMOS.

Cultural Heritage is categorized in its definition into intangible and tangible. The
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4 Introduction

former includes all forms of oral traditions and legacies that cannot be physically
accessed, such as music, languages, poems, and culinary recipes [3]. The latter
is the CH in the form that we are more accustomed to admiring in museums and
exhibitions and can be split into movable (paintings, manuscripts, textiles, statues,
etc.) and immovable (archaeological excavation sites, buildings, etc.) CH. Given
the quality requirements related to the acquisition of images and the limitations of
the technology at hand, this dissertation focuses on the application of RIS on small
movable artifacts such as paintings and textiles.

The disciplines of heritage science and conservation science analyze CH artifacts
with the goal of obtaining a full artifact characterization in the least possible in-
vasive way. Characterizing an artifact can be understood as a way to explain why
things appear as such as a result of production processes, but at the same time,
reveal information that is not immediately visible to the human eye. Currently, the
analytical techniques that are deployed to extract information from the artifacts
are also those that bring the largest amounts of irreversible alterations. Finding an
analytical technique that achieves the same levels of accuracy, while at the same
time protecting the artworks, is then a paramount goal of heritage science. This
is where this thesis tries to enter the conversation, by studying how to efficiently
implement the fusion of RIS techniques to collect and analyze data of historical ar-
tifacts, developing every step with a goal in mind: whatever is implemented must
be compliant with heritage safety.

Reflectance Imaging Spectroscopy is indisputably a marvel of innovation. Sim-
ultaneously with the development of early imaging technologies, scientists and
researchers poured effort into improving their capabilities thanks to the knowledge
gained in spectral optics. Nowadays, a variety of optical designs can be deployed
to obtain hyperspectral images in which a single pixel or a group of neighboring
pixels, if carefully calibrated, can carry information regarding the optical, physical,
and chemical properties of materials.

Considering a purely technical viewpoint, the fusion of RIS techniques is some-
thing that recently saw a surge in interest in the field of remote sensing, with many
research efforts that have been poured into developing dedicated algorithms. At the
proximal sensing level, another wording of considering acquisitions carried out in
a laboratory or controlled environment, two techniques: RIS in the Visible Near-
Infrared (VNIR) and in the Short-Wave Infrared (SWIR) are typically analyzed
independently. This dissertation tackles the problem of fusing RIS data coming
from two different sources, but related to the same scene, in all its aspects, from
how to collect the data more efficiently, to the processing steps involved, and to
the final visualization. Figure 1.1 illustrates a very high-level ideal workflow that
this thesis aims to accomplish.
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Figure 1.1: High-level workflow of VNIR-SWIR RIS for historical artifacts. The design
of the imaging setup is performed aiming to obtain high-quality data while preserving the
integrity of the artifacts. In the pre-processing, data fusion is accomplished by spatio-
spectrally aligning the two individual hyperspectral images and accounting for any addi-
tional modality (in this thesis, polarimetric imaging). The data is then analyzed jointly to
produce results that can be visualized in a research or museum context, depending on the
necessities.

The need to fuse VNIR and SWIR information in the context of Heritage Science
stems from the fact that typical historical artifacts such as paintings and textiles
showcase a quite marked differentiation of the information in the two spectral
ranges. As we will see later, the paint layer of a painting responds differently
throughout the spectrum, being typically reflective in the visible range, and thus
allowing us the perceive colors, while letting infrared radiation through. An in-
frared sensor would therefore be able to unveil structures underneath the paint
layer such as underdrawings, pentimenti, or typical characteristics of deeper paint-
ing layers. For what concerns textiles, an infrared sensor could help us spot more
easily different types of fibers that would look highly similar to the unaided eye.
Nonetheless, not all elements that can be found in a textile show a segmentation of
information, as in the case of typical materials used in conservation interventions
such as fillings and markers.

Fusing datasets has the first goal of smoothly bringing different spectral responses
to the same place and allowing an easier exploration. Although the fusion of data-
sets representative of different characteristics can sound redundant, as the interac-
tions that are generated do not necessarily help in improving tasks strictly related
to those characteristics, such interactions can generate new features (interpretable
with the aid of machine learning) that can open up new paths to characterize his-
torical artifacts.
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1.2 Research aims and questions

The ultimate goal of this thesis is to allow conservation science practitioners to
deploy VNIR-SWIR RIS in the most advantageous way. The definition of this
goal, in relation to the state-of-the-art knowledge at our disposition, leads us to
further define five sub-goals related to different aspects:

1. Data acquisition: Designing an imaging setup that allows the simultan-
eous acquisition of VNIR-SWIR data of high quality while respecting the
guidelines of conservation and preservation of artworks.

2. Fusion: Devising a pipeline that provides VNIR-SWIR RIS data fusion at
the pixel level.

3. Analysis: Application of algorithms for the spectral analysis of artworks in
the extended VINIR-SWIR spectral range, taking advantage of data cross-
talk.

4. Visualization: Development of visualizations otherwise inaccessible if VNIR
and SWIR data are considered separately. Given the scope of this thesis, this
topic is not treated as in-depth as the others.

5. Multimodality: Addition of modalities on the same imaging setup such
as polarization imaging for artifacts with challenging appearance due to a
complex surface topography.

To achieve the mentioned goals, we define two main research questions:

* RQ1: How to efficiently build a fused hyperspectral image starting from
two hyperspectral images in the VNIR and SWIR?

When two images are acquired with different detectors working in the VNIR
and SWIR ranges, both systems capture the scene radiance, but the way the
information is presented cannot be readily fused. With this question, we
want to investigate the best procedures that can be adopted to harmonize
the data. It is important to point out that in this case, the word -efficiently-
is used broadly as it encompasses concepts of efficiency related to the safe
imaging of artifacts, while at the same time obtaining high-quality data with
which a high-quality analysis is enabled.

* RQ2: Can the performances of the typical tasks conducted in RIS ana-
lysis for CH be improved by considering the full extension of the spec-
tral data in the VNIR-SWIR ranges?
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Pigment/dye mapping and unmixing are typical tasks performed to analyze
artifacts using RIS. They are often conducted considering independent sets
of spectral data, thus it is important to explore if processing them jointly can
be advantageous.

Given the amount of contributions related to RQ1, it is perhaps beneficial to split it
into three sub-questions that treat different topics, but work synergically to achieve
the same result.

¢ RQla: What are the factors and decisions that influence the perform-
ance of spatio-spectrally aligning two hyperspectral images coming from
two different sources and electromagnetic ranges?

The spatial alignment of hyperspectral images is a process that can be best
summarized by a decision tree, with each path along the branches that leads
to different performance results. Moreover, spectral alignment is a necessary
step since, as it will be explained later in detail (Section 2.6.2), two different
sensors capturing the same information, e.g. spectral radiance, will rarely
have a matching output. This is translated into spectral anomalies that make
the spectra look like they present unnatural discontinuities.

¢ RQ1b: What are the implications of sharpening techniques developed
in remote sensing when translated to proximal sensing applications?

The field of RIS for CH significantly draws innovative analytical techniques
from the field of remote sensing, which is a huge engine in research for
RIS. With this question, we want to explore if the techniques developed for
sharpening an image (e.g. increase its resolution) are suitable for a com-
pletely different imaging domain, and thus assess if a dedicated approach is
needed.

* RQlc: Is it possible to develop a paradigm for the joint analysis of
VNIR-SWIR RIS and polarimetric imaging?

Many artworks such as paintings with complex surface textures can be chal-
lenging to image due to the high amount of generated specular reflections.
Polarization imaging in combination with RIS can offer a gateway to invest-
igating the material properties in those corrupted areas, but it has never been
implemented in the full VNIR-SWIR spectral range.

Taken more broadly, this question wants to evaluate the possibilities of in-
cluding a layer of multimodality to the various spectral acquisitions that can
be performed.
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1.3 Dissertation structure

This thesis is organized with a two-part design in which the second part collects
the published results of the work conducted during the last three years. The list of
contributing articles is found at the end of this section. Out of the five contributing
articles, three have been submitted to peer-reviewed journals and two have been
presented and published in the proceedings of peer-reviewed conferences. An ad-
ditional supporting conference article is listed as well. This will not be included
in the final collection of articles although it represented a meaningful step towards
the designing of one of the contributing articles.

The first part of this thesis wants to shift the attention to all the aspects that are
involved when RIS is deployed in the study of artworks in a heritage science con-
text. Chapter 1, which is almost over, was a broad introduction to the context in
which this work is placed, highlighting the current needs of heritage science to
find a sustainable imaging technique and the need for unifying spectral datasets
that are often treated independently. Here, we defined the main goals and research
questions tackled in this dissertation. Chapter 2 addresses the fundamental back-
ground knowledge that is needed to fully understand how RIS works and is thus an
information-dense chapter that a knowledgeable reader can browse more quickly.
In Chapter 3 we reflect upon the research question with a different angle provided
by an increased knowledge gained in the previous chapter. Here, we shall address
what are the specific limits and needs of the state of the art, and thus the rationale
for which the contributing articles were written. Chapter 4 proposes the common
imaging setup deployed in all contributing articles and then gathers the summar-
ies of the articles and their links. The discussion brought in Chapter 5 focuses on
the analysis of the contributions of this thesis in relation to the proposed research
questions of Chapter 1, while Chapter 6 provides a closing overview and future
perspectives in the field of RIS for the analysis of artworks.

1.4 List of contributing articles

The following articles constitute the core contributions of this thesis. The sub-
script -j- indicates an article published in a journal, whereas -c- refers to confer-
ence publications. The research works of Articles A3; and AS; were conducted in
multidisciplinary teams with specialized researchers in the field of Cultural Herit-
age and polarimetric imaging, respectively, whereas the research works of Articles
Al A2, and AS; were conducted with the academic advisors.

Al Grillini, F., Thomas, J-B., George, S. (2022). Hyperspectral VNIR-SWIR im-
age registration: Do not throw away those overlapping low SNR bands. 12th
Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote
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Sensing (IEEE WHISPERS). DOI: https://doi.org/10.1109/WHISPERS56178.
2022.9955080.
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within this thesis.
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work conducted in this thesis (applications of RIS for CH), it was decided to not
include these publications in the list of core articles. The reason for this is to avoid
ambiguity with the main topic of this thesis, which focuses on the fusion of two
techniques of RIS, while my Master’s thesis focused on the role of imaging models
in the unmixing process for pigment mapping in the VNIR range.
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Chapter 2

Background

2.1 Introduction to the chapter

The title of this dissertation is quite a mouthful, and if I think about it, up to a few
years ago I did not know what half of the words included meant. For this reason,
I decided that the chapter that introduces the fundamental background should also
tell a story of how I got to know all the different things that are hiding behind this
title.

It might sound like a long shot, but I felt that I owed this to my path of studies,
which is coming to an end with this dissertation -yes, we never stop learning-. |
also soon realized that a book would be more appropriate, but maybe that would
be for another time. In this chapter, I will try to go through all the concepts that
I have had to stumble upon at least once and try to explain them in a way that I
find suitable for a student who starts reading about this broad topic -that student is
ideally me a few years ago-.

Taking a closer look at the title, I decided that a good way of starting the chapter
would be by splitting it into five (plus one) parts, as I display in Figure 2.1 with
different colors.

The first part is represented by the words Cultural Heritage. This dissertation,
being at the service of Cultural Heritage, could have not started differently. In
this part, I will address the needs of Conservation Science in terms of analysis and
digitization of artifacts, focusing on two macro-groups of artwork that are recurrent
in the dissertation and in the connected research articles: paintings and textiles.

Reflectance Imaging Spectroscopy is a term that indicates a specific imaging tech-
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Figure 2.1: Title breakdown according to the subdivision proposed to introduce the fun-
damental theoretical background.

nique. However, I found it easier to separate the Reflectance part to introduce the
reader to the realm of light-matter interaction. In this physics-dense part, I will
try to build on subsequent bricks in order to arrive at a destination point in which
it is possible to understand the phenomena that take place when light (including
infrared radiation) interacts with paintings and textiles. In writing this part, the
bibliography support, whenever something sounds like it should need a literature
reference, came from the following sources: Principles of Optics: Electromag-
netic Theory of Propagation, Interference and Diffraction of Light by Max Born
and Emil Wolf [4], Building electro-optical systems: making it all work by Phil
Hobbs [5], Detection of optical and infrared radiation by Robert Kingston [6],
Introduction to Radiometry and Photometry by William Ross McCluney [7].

A portion of the electromagnetic spectrum can be termed VNIR-SWIR, but let us
not get ahead of ourselves, this will be better introduced in the Reflectance part.
Here, I will take the opportunity to take a closer look at the conversion of visible
and infrared radiation into digital numbers stored in a file, which is a marvel of
engineering and applications of the laws of physics, chemistry, and electronics.
Images and signals are processed by computers as a series of zeros and ones, but
before obtaining these long binary strings, several steps in the analog world had
to take place. I will try to describe those steps starting from the main component
of the process, the photodetector. The main sources in writing this part were Wide
bandgap semiconductors by Kiyoshi Takahashi, Akihiko Yoshikawa, and Adarsh
Sandhu [8] and Introduction to infrared and electro-optical systems by Ronald
Driggers, Melving Friedman, and Jonatan Nichols [9].

The part related to Imaging Spectroscopy will describe concepts related to both
imaging and spectroscopy, starting from the fundamentals of how to separately
acquire images and spectra, and then fusing the two.

The fifth part, from the word fusion, concerns the coming together of two tech-
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niques of imaging spectroscopy in different spectral ranges and their data, which
potentially can generate a new dataset that is more informative than the sum of
its parts. Thus, concepts of image fusion, image registration, and sharpening are
discussed.

One last part will then discuss the implementation of Spectral Polarization Imaging
as an additional modality that can be used to explore more challenging artifacts.

2.2 Analysis of Cultural Heritage Artefacts

2.2.1 Conservation Science

As we walk through the corridors, spacious halls, and modernly designed rooms of
an exhibition, it can become so easy for us, contemporary individuals, to connect
with Cultures and people who once inhabited remote lands and times. The exhib-
ited artifacts, together with the information retrieved by archaeologists, humanists,
and historians, carry a special power that can instantly transport us back in time
and to the other side of the world. What is sometimes even more powerful, is the
thought that what we are able to appreciate in an exhibition is only a tiny part of
the evidence of the passage of entire Cultures on our planet, with the vast majority
of objects and traditions that ended up being destroyed or lost. On the other hand,
the artifacts that eventually reach the frames of the exhibition, make it because of
the often understated efforts of conservators and preservation scientists.

Conservation Science and Heritage Science [10] are fields of research dating back
to the 1800s that aim to study historical artifacts with scientific equipment, in
order to formulate hypotheses regarding their origins, manufacturing, and physical
and/or chemical composition. The main goal of conservation scientists is to fully
characterize historical objects so as to propose the best practices to preserve the
artifacts in the best possible conditions or to carry out targeted treatments following
the principles of minimal intervention and invasivity [11]. The word invasivity,
which will appear several times during this dissertation, is in this instance to be
intended with the twofold meaning of extension, i.e. the proposed treatments are
applied only on the areas that strictly require it, and alteration, i.e. the proposed
methods should only alter specific properties of the treated areas.

A full artifact characterization is certainly useful to produce an individual narrative
that can help us to place small objects in broader historical contexts, but the other
way around is also true. Indeed, gaining all these insights about a specific object
can also assist us in indirectly inferring assumptions about how the disappeared
societies would live and the knowledge they owned. Take for example the case
of an excavation site in northern Italy where archaeologists discovered an ancient
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forge. By studying the remnants of slags it is possible to trace back what temperat-
ures were reached to fuse the metals, which is a crucial piece of information when
describing the advancement of forging technologies in the Early Middle Ages [12].

As the number of characterized artifacts increases, so does our knowledge regard-
ing which materials and technologies were owned by each Culture. It becomes
thus easier to assign the correct labels to newly discovered artifacts, although the
risk of committing errors is always present, especially in the case of art forgeries.
Forgers have been profiting from the sale of realistic fakes that went undetected
because of their absolute resemblance with the style of Old Masters. The detection
of fakes is a task that can become easier as the checklist of items to be controlled
is extended. Of course, the dilemma is clear, should the checklist be public for
everyone (including the art forgers) to see?

Conservation Science, a discipline that originated from visual observations and an-
notations, has swiftly shifted toward a data-based approach in which the nature of
the collected data is not unique. If the technological advances achieved in physics
and chemistry were pushing the research forward in earlier times, now an addi-
tional player, represented by computer science and artificial intelligence is heavily
contributing [13]. This makes Conservation Science an inherently multidisciplin-
ary field of research that can be explored from multiple directions [14].

The collection of data from historical artifacts is a topic regulated by international
codes of ethics [15] that differentiate for the type of material that is examined
(paper, wood, stone, etc.), the goal of the object acquisition (scientific research, di-
gitization, etc.), and the type of collection (invasivity, destructivity, contact, point
measurement, scanning). However, given the shape and extension variety of ar-
tifacts, the documentation cannot presently cover all the variants in which the
acquisition techniques can be adopted. According to the guidelines for the ac-
quisition of Cultural Heritage artifacts, the ideal technique should be completely
non-invasive. Invasivity can be defined as the amount of alteration that is provoked
by the application of an acquisition technique, and can therefore be ideally quan-
tified by measuring specific properties before and after the acquisition campaign.
However, the provoked alteration can be of different natures and caused by a series
of sources. Some analytical techniques can only be deployed in specific condi-
tions, and therefore require the physical extraction of samples from the artifacts.
In this case, the technique is defined as destructive, as it causes an irreversible
mechanical change. Other mechanical variations on the surface of artifacts can be
caused by techniques that require to be in contact with the material. On the other
hand, there exist techniques that irreversibly alter the chemical properties of the
materials because of the radiation that they deploy. As we will see in the following
sections, light itself is radiation, and its deployment in an acquisition campaign
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can sometimes lead to an alteration of physical properties, hence regulations must
be enforced also in cases in which an apparently harmless setup composed of a
light source and a camera is adopted.

At the present time, sampling is still a necessary procedure when studying his-
torical artifacts, since it opens the possibility of deploying analytical techniques
such as High-Performance Liquid Chromatography and Surface-Enhanced Raman
Spectroscopy to accurately retrieve the relative presence of chemical elements
within a volume. The high degree of accuracy of such techniques makes them
indispensable in studies that involve the usage of complementary and less invasive
techniques, as they provide a true response that is often deployed as ground truth
in classification tasks. A plethora of studies are currently ongoing to reduce the
gap in the invasivity-accuracy trade-off by improving the analytical performances
of non-invasive techniques so that they could operate independently in the future.
Realistically, this scenario could be hard to achieve, but a desirable outcome would
foresee the usage of non-invasive analytical techniques to pinpoint relevant areas
for sampling, thus avoiding unnecessary extractions.

Another well-known trade-off is the one regarding the amount of spatial informa-
tion that can be collected at the expense of the physical quantity examined. Punc-
tual techniques, which operate integrating on a single spot (typically of a few mil-
limeters in diameter) offer results that are less affected by measurement fluctu-
ations, i.e. noise, when compared to their imaging counterparts. This happens,
as we will see in the following sections because when the number of deployed
sensors (pixels) is increased, more factors concur to the creation of noise, which is
statistically more present. Imaging techniques, which usually deploy scanning or
single-shots, offer however a certain user-friendliness in interpreting the data and
are significantly faster and easier to perform. Spatial information has additionally
the twofold goal of supporting individual punctual measurements and extracting
more information exploiting the generation of structural patterns typical of images.

Imaging is nowadays the cornerstone of digitization in museums and archives all
over the world. Since the first times in which analog cameras were available,
pictures have been taken to document the archeological sites and the contexts in
which artifacts were found. Then, more recently, and with the advent of digital
cameras, access to imaging technologies increased exponentially, facilitating the
usage of imaging for an array of documentation and monitoring tasks.

Today, the standards FADGI [16] in the United States and ISO internationally
[17, 18] regulate digitization in archival contexts, setting the benchmark for im-
age quality in official archives. Visualization is also a core value for museums,
both in the research and in dissemination to the public side. Photogrammetry is a
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well-diffused imaging technique that allows the virtual reconstruction of a phys-
ical artifact from the acquisition of hundreds of images (depending on the size of
the object) that compose a cloud [19]. With Gigapixel imaging [20] it is possible
to discover details that would remain hidden from the human eye during a regular
exhibition visit because of the limited allowed observation distance. Visualization
also includes rendering, and Reflectance Transformation Imaging is a technique
that allows the surface reconstruction of artifacts, thus enabling the consequent
relighting of an object with a given light source from a certain direction, so as to
conveniently explore textural features [21].

Over the years, imaging has also transitioned from a role purely centered around
visualization to a more prominent role in the landscape of analytical techniques.
What has allowed imaging to reach this hybrid status is the introduction of calibra-
tion procedures that allow to perform metrology, both from a standpoint of metric
measurements (distances, depths, etc.) and physical measurements (amount of re-
flected light, colorimetry). Different modalities of imaging are used in daily prac-
tices in Conservation Science, from the more common RGB and Ultraviolet (UV)
[22] to X-Ray Fluorescence (XRF) [23], Fourier-Transform Infrared spectroscopy
(FTIR) [24], and RIS [25, 26]. These techniques, sometimes used in combina-
tion, allow performing a variety of tasks, including but not limited to monitoring
of artifacts in environmental conditions [27], studying the effectiveness of treat-
ments during conservation interventions [28], monitoring of aging [29], detection
and mapping of components [30]. Although most of the imaging techniques listed
here are deemed as non-invasive, they still require to use of radiation (typically
in the form of light) that is substantially different than the one the artifacts are
normally exposed to, thus triggering physical-chemical reactions that could poten-
tially induce permanent changes [31].

The field of research of Conservation Science is at the service of the people to
reconstruct the past using the equipment of the present, but not looking into the
future could be the most dangerous practice. The imminent impact that climate
change will have on the lives of billions of people, with the due prioritization, will
also resonate with how their Heritage will be preserved. Research efforts will be
needed to study the relationship between deterioration and climate change, for both
movable and immovable, indoor and outdoor artifacts. Although this is not the
direct goal of this thesis, it is hoped that working within a framework that easily
combines information from different spectral ranges will increase the predictive
power of models that describe how heritage materials behave when exposed to
abnormal conditions, thus enabling preventive conservation actions to minimize
risk and damage.

Another important aspect that needs to be addressed is access to technology for
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everyone, by reducing costs, while at the same time making the technology more
accessible and sustainable [32], by investing in the development of portable instru-
mentation.

2.2.2 Paintings and Textiles

In the following paragraphs, we will take a closer look at the structures that form
two commonly found types of artifacts: oil paintings and textiles. Knowing more
in-depth about the physical characteristics of these objects will be helpful in tack-
ling the contents of the next sections and the research articles that follow.

In introducing the two types of artifacts, it is perhaps useful to place them in the
context of a practical example that will be a recurring theme in this dissertation
and that is appropriate given the topics that are introduced at a later stage.

Let us suppose that during the closing day of the museum, the technical imaging
department carries out photography activities on the largest painting and textile
piece of the collection. To do so, the ordinary illumination of the museum is
switched off, and specifically designed light sources are deployed. A camera is
placed on a tripod standing on the floor, the standard reference targets are placed
in the scene, and the imaging campaign can commence.

Typical structure of an oil painting

When we visit a painting exhibition, everything we can see of an exposed art-
work is the outer surface, the frame that contains it, and sometimes, a protective
glass. However, if we had to theoretically cut through the middle of the paint-
ing and extract a cross-section, we would observe a very well-defined stratigraphy
[33, 34]. More likely, if we had to extract cross-sections from different paint-
ings, we would never find a common agreement on the number of deployed layers,
as different painters from different eras received slightly distinct training and the
painting techniques changed over the years. However, some elements are crucial
to the very definition of an oil painting and will be found in all artworks [35].

The typical, and non-binding, layered structure of an oil painting is schematically
reported in Figure 2.2. The first layer that receives attention in the process of com-
posing a painting is the support. Typical supports for oil painting include canvas
(lined in different materials such as linen, wool, and silk), wood, paper, metal, and
glass [36]. A layer of glue can be applied to facilitate the adhesion of the next
layer, which can be sometimes an additional support layer (in the case of paintings
that have been consolidated in a conservation treatment [37]), or the ground. The
ground, or preparatory layer, is usually composed of gesso, a thick chalk-based
fluid that forms a protective barrier for the support, preventing the diffusion of
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Figure 2.2: Schematic representation of a typical cross-section of an oil painting. The
colors and proportions of the layer thicknesses are deliberately unrealistic for visualization
purposes.

oil [38]. Sketches and underdrawings [39], usually performed with carbon-based
traces, are drawn on the ground layer and covered by a priming glaze (imprimitura
[40]) which facilitates the adhesion of the paint. In the paint layer, the pigment [41]
particles float within the volume of the binding medium [42] (typically linseed oil)
and are responsible for the color appearance that is perceived by the human eye.
Finally, a transparent layer of resin-based varnish [43] can be applied with the
twofold goal of protecting the paint layer from environmental agents such as dust
and enhancing the colors, providing sometimes a glossy appearance. Varnishes
lose their transparency with time due to the exposure to light and Ultraviolet (UV)
radiation, and a yellowing phenomenon can be observed if the varnish layer is not
replaced.

As mentioned, the structure and the styles with which the different layers are ap-
plied in each and every case are affected by a great variance that represents the
development of artistic currents and individual creativity. Most of the variation,
which eventually affects the way a painting appears, is found in the manner the
paint layer is applied, i.e. the pictorial technique, and in the way pigments are
mixed. Different pictorial techniques work sometimes as distinct signatures of
artists [44]. Just think about the thick application of impasto by Vincent Van Gogh,
George Seurat’s pointilism, or Claude Monet’s Water Lilies painted en plein air.
The first deeper layers that compose the painting structure can be approximated to
2D surfaces, whereas the paint layer has often a strong 3D component that affects
the visual perception with glossy reflections [19] and shadow areas. When we
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consider pigment mixing, it can take place directly on the canvas or on the palette.
Particular visual effects of translucency can be created when artists apply different
paint layers on top of each other [45].

Typical structure of historical textiles

The first evidence of textile artifacts dates back around the year 8000 BC and is at-
tributed to early civilizations that inhabited the territories of what are known today
as the Peruvian Andes [46]. Fibers, the fundamental building blocks of textiles,
have been foraged since prehistoric times according to the local availability of flora
and fauna. Fibers are long, strong, flexible filaments typically made of cotton, silk,
wool, and flax [47, 48]. Their mechanical properties are ideal for the production of
yarns, which are the results of spinning and twisting fibers together. Evidence of
yarns dated prior to the 12" century shows that a single type of fiber was normally
used to produce the yarns, whereas the production of multifilament yarns, obtained
by blending different types of fibers, is attributed to populations of Punjab (India)
[49].

Yarns can be interlaced in the case of weaving or interlooped in the case of knitting
to produce fabrics, which are a specific type of textile recognizable for their planar
shape and flexibility. Modern non-woven fabrics can be obtained by industrial
processes that directly interlock the fibers together by exercising high mechanical,
thermal, or chemical forces. For this dissertation, the studied textiles are produced
by weaving. In weaving, two sets of yarns - the warp, in the lengthwise direction,
and the weft, in the crosswise direction - are interlaced at a 90° angle to produce
more or less detailed patterns. The final product of weaving can be a tapestry,
when intricate designs and pictorial representations are directly woven into the
fabric, usually by means of a loom. When a pattern is stitched on top of a pre-
existing fabric, usually with a needle, then the final textile is called an embroidery.
A schematic representation of a plain weave fabric with examples of tapestry and
embroidery is reported in Figure 2.3.

Natural fibers per se exhibit limited color variation, predominantly showcasing
shades of yellow, brown, and various achromatic tones of white. Since ancient
times, more vibrant colors have been obtained by natural dyeing processes. Plants
offer multiple sources of dyes from different parts such as roots, leaves, stems, and
flowers. Animal-based dyes were extracted from cochineal insects and sea snails,
whereas a series of minerals offered colorants in the form of iron oxides and salts
[50, 51]. However, not all fibers have a natural disposition to be colored, and re-
quire the action of a mordant, a substance that aids in the fixation of dye onto the
yarn [52]. This process can potentially modify the resulting color, thereby expand-
ing the gamut of achievable shades. A typical dyeing process entails boiling the
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Figure 2.3: Schematic representation of a plain weave fabric from a top view (left) and
side view (right). In the tapestry area, yarns of different colors are intrinsically woven in
the warp-weft pattern, whereas in the embroidery example, new yarns are sewn onto the
base layer of the fabric.

dyeing agent and the mordants, immersing or simmering the yarn in the solution,
and subsequently proceeding with rinsing and drying steps.

2.3 Light-Matter Interaction
2.3.1 Light description and the spectrum

Generations of scientists have been puzzled in the attempt to provide a definition
to the concept of light, and in present times it is common to alternate between
three fundamental descriptions, depending on the phenomena that we are trying
to explain. This light ambiguity, after centuries of speculation and research, boils
down to the description of light as a swarm of particles, as a wave, or as a ray.

The idea that light consists of microscopic corpuscles had been around for centur-
ies, but it was only in 1900 that the photons, the light quanti, were first theorized
by the German physicist Max Planck. A photon is a mass-less particle that moves
in vacuum at a speed ¢ ~ 3 -10% m-s~! while carrying energy stored as an electro-
magnetic field oscillating at a frequency v. The relation between the carried energy
E and the frequency is modeled according to Planck’s law defined in Equation 2.1,

E=hv 2.1)
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in which A is the Planck’s constant (= 6.26 -10* J.s). The quantum description
of light as a particle can explain a variety of excitation phenomena such as the
Compton scattering [53] effect and the Photo-electric effect [54], but it fails to ex-
plain a category of phenomena related to light propagation. Let us briefly describe
the Photo-electric effect, which takes place when a highly energetic photon col-
lides with a material such as a metal plate. In rest conditions, the electrons of the
metal atoms are bound to the material through a binding energy called the work
function ¢ of the metal. When the photon ¢ strikes, all of its energy E; = hy; is
absorbed by the material. If E; > ¢, then the electron is ejected from the mater-
ial, becoming a photo-electron. The excess energy not used to break the bond is
transferred to the photo-electron in the form of kinetic energy F, = E; — ¢ and
assumes a range of values typical of the metal. Albert Einstein was awarded the
Nobel Prize in Physics in 1905 for his formulation of the Photo-electric effect.

On the other hand, when light is described as a wave, it is characterized as the
periodic oscillation of an electromagnetic field that travels at a speed c along a
direction of propagation. An electromagnetic wave is the result of the coupling
of an electric field and a magnetic field perpendicular to each other and in turn
perpendicular to the direction of propagation. In the simplest case, the wave is
said to be monochromatic, which means that the electromagnetic field oscillates at
a single frequency v. The frequency is related to the wavelength ), i.e. the distance
between two consecutive peaks, as described in Equation 2.2.

A=— (2.2)
v

An effect that can be explained by considering the wave formulation of light is
the Doppler effect, which manifests itself in astronomy in the cases of red-shift
and blue-shift. The observation of moving galaxies and stars is affected by the
relative positions of the observer and the target object so that a red-shift (color
moving towards longer wavelengths, i.e. lower frequencies) is experienced when
the distance between the parts increases, while a blue-shift is observed when the
parts get closer to each other.

Wavelength and frequency are convenient parameters for characterizing light, or
more in general, radiation. In fact, we define light only that very small portion of
the radiation that the human visual system is able to detect. In this dissertation, we
characterize light by its wavelength using the nanometer as the preferred unit. The
selection of the unit is made for convenience and depends on having an intuitive
identification of the considered radiation. While the International System unit for
frequency is the Hertz (Hz), within the field of CH it is not uncommon to charac-
terize the radiation along the spectrum differently according to the deployed ana-



22 Background

v(Hz) 1021 10%° 107 1015 1013 101t 10° 107 10°
y - Rays X - Rays uv IR THz Micro-Waves Radio-Waves
A(m) 10712 10710 1078 10~° 107 1072 10° 102
uv IR
A(nm) 380 450 550 650 780

Figure 2.4: Visible radiation occupies a narrow interval in which a single harmonic (doub-
ling of frequency) in the frequency domain is included, whereas most of the other defined
types of radiation span several frequency magnitude orders.

lytical techniques and observed quantities. For instance, X-Ray Fluorescence de-
scribes re-emission peaks in terms of energy (electron-Volt eV), whereas Fourier-
Transform Infrared spectroscopy displays curves in wave numbers (cm™).

Different types of radiation can be defined following the spectrum (Figure 2.4):
Gamma-rays and X-rays are the most energetic known forms of radiation. The
Ultraviolet, divided into UV-A, UV-B, and UV-C, spans the portion of the elec-
tromagnetic spectrum from 100 nm to 380 nm. Visible light occupies a narrow
spectral window from 380 nm to 780 nm, and as we already briefly mentioned in
the example of red-shift/blue-shift, the progression from low to high wavelengths
follows the color of the primary rainbow as observed from bottom to top. Moving
to wavelengths in the order of micrometers, we progressively encounter the three
regions of the infrared domain IR-A IR-B, and IR-C, more known under their
secondary nomenclature as Near-Infrared (NIR, 780 nm - 1500 nm), Short-Wave
Infrared (SWIR, 1500 nm - 3000 nm), and Far Infrared (FIR, 3000 nm - 10000
nm) [7]. The latter infrared sector is usually selected to represent the domain of
thermal radiation. The longest observed wavelengths include Tera-Hertz radiation,
microwaves, and radiowaves, with the latter being used in long-distance commu-
nications. It is worth mentioning that the extreme theorized wavelengths have not
been observed, but are the size of the universe on one end, and the Planck length
on the other.

The third description of light as a ray traveling through space is the most intuitive
one, but its usage is circumscribed to the description of simpler phenomena related
to geometrical optics.

2.3.2 Maxwell Equations and refractive index

The Maxwell equations are a set of four fundamental equations that represent the
basics of electromagnetic theory. We have already defined light as an oscillating
electromagnetic field that travels at a speed ¢, but with this set of equations, it
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is possible to observe how the electric field E and the magnetic field H propag-
ate through time and space. Let us briefly introduce the four equations and their
physical implications in electromagnetism theory in the following.

The first of the Maxwell equations is also known as flux theorem or Gauss’ law.
In the differential form reported in Equation 2.3, the theorem states that the diver-
gence (V-, the measure of how much a vector field spreads out or diverges from a
given point, computed as the sum of the partial derivatives of the vector field with
respect to the spatial dimensions) of the electric field is proportional to the local
density of the electric charge p.

= P
. E = 2.
\Y% olr 2.3)

where Er, is the permettivity of the material, i.e. the tendency of the material’s pos-
itive and negative charges to separate when subjected to an electric field. The per-
mittivity expressed with the subscript ¢ represents the permittivity of free-space,
a perfectly ideal vacuum where there are no electric charges nor currents (& ~
8.854 - 10~ 12F . m_l). In other words, Gauss’ law describes the well-known
observation that electric charges of the same sign repel each other.

In the same way with which the first Maxwell equation concerns solely the elec-
tric field, the second equation (Equation 2.4) focuses on the magnetic field. Also
similarly, the second equation was formulated by Gauss as a consequence of the
first. In this case, the divergence of the magnetic field is zero.

V- -H=0 (2.4)

If the divergence of a field in a given point is 0, it means that the vectors neither
converge nor diverge, or if put in another way, the vector lines do not start or
end at any point in space. When we observe a magnetic field, we observe indeed
closed lines. The main implication of this law is that the existence of a magnetic
monopole (an individual magnetic charge) is forbidden, and it is only possible to
observe dipoles.

The third and fourth Maxwell laws concern the interactions of the concatenated
electric and magnetic fields. The equation known as Faraday’s law of induction
serves as the basis for the third equation in Maxwell’s set. The Faraday-Maxwell
equation in its differential form (Equation 2.5) states that the curl (V x, the meas-
ure of how much a vector field revolves around a given point in space, computed
as a linear combination of the partial derivatives with respect to the spatial dimen-
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sions) of the electric field is proportional to the partial derivative of the magnetic
field with respect to time.

E=—- —_— 2.5
V x HOHR 5, (2.5)

where p g is the permeability, i.e. the tendency of a material to be magnetized
by the application of a magnetic field, and pg is the permeability of free-space
(o ~ 1.257 - 107N - A=2). In practical terms, the application of a magnetic
field induces the charges of a dielectric material to separate. The charge separation
generates an electric field which in turn can generate a current.

The last Maxwell equation symmetrically concerns the curl of the magnetic field
expressed in terms of a temporal derivative of the electric field. This law, also
known as Ampere’s circuital law, can be formulated as illustrated in Equation 2.6.

- E -
VxH= 5053887 +J (2.6)

in which .J is the electric current. This law describes how the application of an
electric field and/or of a current can generate a magnetic field.

The concept of free-space, or vacuum, represents an unnatural condition on our
planet, but it has served as a precious mental gym for the formulation of laws that
govern the behavior of electromagnetic radiation in our daily lives. As already
mentioned, no electric charges nor currents are allowed to exist in vacuum. With
this simple but powerful statement, it is possible to simplify greatly Maxwell’s first
and fourth equations (Equation 2.3 and Equation 2.6), as the charge density p and
the current .J can be set to 0. In this configuration, it is possible to combine the
Maxwell equations to obtain a wave equation for the electric field as Equation 2.7
describes.

ooz O%E
ERILR oo

(2.7)

The Laplacian operator V2 represents the divergence of the divergence, so it de-
scribes the rate of change of a field vector at a given point in space.

The formulation for the magnetic field is similar, but in practice seldomly con-
sidered, as the strength of the magnetic field for optical radiation is a few orders of
magnitude weaker than the strength of the electric field.
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This brings us to the first characterization of the wave equation, as the direction in
which the electric field oscillates becomes of paramount importance. Indeed we
define polarization as the direction of the electric field. In the simplest case, the
electric field oscillates on a plane along the direction of propagation, and thus it is
said to have linear polarization. In some cases, the direction of the electric field
can rotate on a plane. If the magnitude is constant for every angle of rotation, the
polarization state is said to be circular, whereas if it shows perpendicular maxima
and minima points it is said to be elliptical. There exist other states of polarization,
but most of the light that enters our eyes is unpolarized, which is an unachievable
condition for a single wave, but not for the superimposition of many waves. Unpo-
larized light, in fact, is light that contains components with a random distribution
of polarization states.

The second observation that we can make about Equation 2.7 is that the speed of
propagation does not have a dependence on the considered frequency or wavelength
(or photon energy), but rather it will always be ¢ in vacuum. The Maxwell equa-
tions predict the speed of light in vacuum to be equivalent to a universal constant
described in Equation 2.8.

1
v Eoko

(2.8)

C =

In a medium, the material properties Eru g act as a speed scaling factor and give
rise to a fundamental quantity in optics, the refractive index n (Equation 2.9).

The refractive index describes the change in the speed of light within a mater-
ial, but another important consequence, as we will briefly see later, is that it also
quantifies the change in the direction of propagation of said radiation. Exploit-
ing the relationship between the refractive index and speed of a wave, Equation
2.10 incorporates the relationship between the refractive index, the frequency, and
the wavelength of a wave, thus displaying that the refractive index of a material
depends on the wavelength of the incoming radiation.

A= — (2.10)
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2.3.3 Interference and Diffraction

Continuing with the description of light as a wave, a time-varying electric field
propagating along the spatial direction x can be written as in Equation 2.11.

2
E(x,t) = Ey cos (27r1/t - Tﬂ-x + ¢0> (2.11)

in which E represents the amplitude of the wave, 27 nu is the angular frequency,
¢o is the phase angle, and the wave vector is encapsulated by the quantity 2{
The angular phase ¢( represents the starting point of the oscillation in the cosine
function, but more intuitively, the phase indicates the position of a point within the
wave period. The phase of radiation is a fundamental property that, if observed
carefully, enables the measurement of material properties and the description of
phenomena such as interference and diffraction.

Solar light and light emitted by commercially available illumination sources con-
tain waves oscillating at different frequencies (polychromatic) and displaced at
different phases. Such radiation is said to be incoherent. Coherent radiation, on
the other hand, contains monochromatic waves tuned at the same wavelength in
phase with respect to each other. The generation of coherent light (with lasers for
instance) marked an important breakthrough in the field of quantum physics and
communications.

When radiation propagates, we can define its wavefront as the locus of points that
share the same phase. From the shape of the wavefront is then possible to retrieve
the shape of the wave and possibly the type of source that emitted it. When two or
more waves meet, the resulting intensity depends on the way the two wavefronts
combine. Such interaction is called interference and can be of two extreme types
with a continuum of solutions in between. Constructive interference is observed
when interacting points belonging to two wavefronts share the same phase, and the
resulting intensity is typically larger than the sum of its components. Destructive
interference takes place when the points of the wavefront are out of phase, mean-
ing that the difference between their phases is 7. In this instance, the intensity
decreases to zero. The classical two-slits experiment first performed by Young is
schematically reported in Figure 2.5a.

Ideally, the fringe pattern observed in Young’s double slit experiment should dis-
play bright points of constant intensity. However, it is evident that after a few
orders the brightness of the maxima points quickly decreases. This is due to the
effect that a single slit has on the plane wavefront. According to the Hyugens-
Fresnel principle, each point of the wavefront is on its own a new source of spher-
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Figure 2.5: a) Two-slit experiment displaying the phenomenon of light interference. Im-
age source: University of Central Florida [55] b) A diffraction pattern can be obtained by
making a light wave interact with a slit with a width comparable to the wavelength of the
radiation. Image source: Concepts of Physics [56].

ical waves. When a plane wave encounters a slit with a width comparable to the
wavelength of the monochromatic radiation, each point of the slit acts as a second-
ary source of spherical waves. During diffraction, the newly generated spherical
waves interact creating the classical diffraction pattern constituted of constructive
and destructive interference (Figure 2.5b).

Diffraction represents an important limit in the world of optics and imaging sys-
tems. A diffraction-limited device such as a lens will produce an image free of all
distortions, except diffraction effects that cannot be canceled. In this ideal scen-
ario, two objects can be resolved by a lens with a strictly circular diameter D if the

viewing angle that separates them is higher than sin § = %.

2.3.4 Types of interaction

Through the definition of the Maxwell equations and the fundamental wave equa-
tion, we have formally defined the refractive index, a fundamental optical property
of materials. In the following paragraphs, we will then take a closer look at the
possible types of interaction between light and matter. In doing so, it is perhaps
convenient to recall the practical example introduced in Section 2.2.2, and focus
on the illumination source and the painting that has been selected to conduct an
image acquisition campaign.

Refraction

The light that travels from the illumination source is likely to contain many dif-
ferent wavelength components and appear white or yellowish, but for the sake of
simplicity, we will assume that it is monochromatic. The refractive index of air
is normally ng > 1 but just slightly and depends on a variety of factors such as
the air temperature and altitude (oxygen concentration). A commonly adopted
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assumption is to approximate ng to 1.

The last assumption follows Fermat’s principle of propagation and is at the basis
of the most simple description that envisions light as a ray. According to Fermat’s
principle, light travels from point A to point B following the fastest path, which
is a straight line if points A and B are found in the same medium without discon-
tinuities presented by other media. This last statement is quite powerful and it is
necessary to stop and delve into its meaning and implications. By discontinuity, or
interface it is intended the junction point between two media with different refract-
ive indexes. In the instance that we have depicted, an interface can be the passage
from air to the varnish layer or from the paint layer to the ground. Thus, in the
case in which points A and B are found at opposite sides of the interface, Fermat’s
principle tells us that light travels from A to B following the fastest path in terms
of time spent and not distance covered. The change in refractive index that takes
place at the interface then bends the ray of incoming light.

This phenomenon, called refraction is described by Snell-Descartes law (Equation
2.12). The configuration of Snell-Descartes law involves an interface between two
materials with different refractive indexes 1 and nq. The surface normal 77 is used
as a reference to describe the angle of incidence 6; and the outgoing angle 6;.

nq sinf; = ngy sin 6, (2.12)

In instances in which n2 > nl, the outgoing ray tightens the normal, while it opens
the angle otherwise. At normal incidence, i.e. when §; = 0, we have that 6; = 0.
The effects of Snell-Descartes law are observable every day when we look outside
of thick window glasses, through our spectacles, and even when we swim, but in
the context of imaging of a painting we find refractions when the camera objective
bends the light rays or when the light coming from the illumination source crosses
the various layers of an oil painting, as reported in Figure 2.6.

Reflection

For simplicity, let us assume that the varnish layer is flat, smooth, homogenous,
and isotropic (its refractive index does not depend on the observed direction).
While an incident ray crosses the interface, a part of it is reflected in a direction
that is specular to the incident angle according to Equation 2.13.

0, = —0, (2.13)

This is known as the reflection law and its demonstration finds a few explanations
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Figure 2.6: Simplified visualization of refraction phenomena taking place within the
volume of a painting. In this practical illustration, the layers are assumed to be transpar-
ent just to showcase the behavior of light rays when passing through media with different
refractive indexes.

related to the interaction of the light wavefront with the electrons of the surface, the
development of Maxwell equations, and more recently, the numerical computation
of Feynman’s integral path which shows how the symmetric direction is the more
likely among the infinite possible path directions. A particular case of reflection
is enabled when ny; > mo. By increasing the incidence angle 0; it is possible to
arithmetically find the critical angle 6. for which there is no refracted ray, but
only a reflected ray, since ny sinf, = 7/2. This phenomenon is also known as
total internal reflection and finds a typical application in the manufacturing of fiber
optics.

The division of an incoming ray of light into the paths of reflection and trans-
mission implies that the energy or power of the incoming ray, following the en-
ergy conservation principle, is split into two components. The Fresnel coefficients
(Equation 2.14 [4]) describe the transmission and reflection of an electromagnetic
wave incident on the interface between two media with different refractive indexes
n1 and no. For each component, the coefficients also describe the ratios of the
amplitude in two perpendicular polarization components. The s polarization is
normal to the plane of incidence, whereas the p polarization is in the plane of in-
cidence. The appropriate combination of s and p components can describe any
polarization state, for instance, unpolarized light has an equal amount of them.
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nq cos 0; — ng cos b, 2n1 cos b;
re = ts =
n1 cos ; + no cos 6, n1 cos 0; + no cos 6, (2.14)
nq cos 0 — ng cos 0; ; 2n1 cos 0; ’
- _

nycos@; + nocos; * ngcos; + nycosb,

When incident light does not contain a dominant polarization component and is
hence unpolarized, the effective reflectance coefficient can be computed as the av-
erage between r; and 7,. A particular phenomenon is observed for partially trans-
parent dielectric materials when 6, and 0; are found perpendicular to each other,
which in the plane of incidence is translated to 6,. + 6; = 7/2. In this instance, the
r, component of the reflectance goes to 0, thus ascribing all the polarization prop-
erties to the rs component. This is an important result, it tells us that unpolarized
light, if incident at a specific angle 6, can generate a reflection that is completely
polarized. The angle 6, is termed the Brewster angle and can be found for a pair
of interfacing media as described in Equation 2.15.

0, = tan—! (”2> (2.15)

ni

Figure 2.7 summarizes the reflectance configurations explained in the hypothetical
case of an interface between the paint layer and glue in the painting volume (again
assuming transparency). In detail, Figure 2.7a displays three instances in which
glue is the receiving medium (n; > mneo): a common reflectance at an angle 6;,
a reflection at the Brewster angle 6, and a total reflection at an incidence angle
6. Figure 2.7b reports the ratio between the Fresnel coefficients 7, and r, as
a function of the incident angle for a pair of materials with refractive index 1.1
and 2.1 respectively. The Brewster angles are identified at the intersection of the
functions with 0, while the critical angle can be identified in the case in which the
higher refractive index is established as n;.

The most evident products of the interaction of light with an interface at the Brew-
ster angle are specular highlights. Specular highlights represent important visual
cues in our everyday life, as we subconsciously use them to determine the direc-
tion of illumination and to trigger perceptual reactions such as color constancy.
In a painting, their presence is more or less welcomed, depending on the purpose
of the imaging campaign. An image of a painting that does not display specular
highlights and is thus completely diffused might look a bit unnatural and perhaps
is not the best for a rendered visualization in a computer graphics context. On
the other hand, specular highlights tend to be very bright and therefore can mask
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Figure 2.7: (a) Configurations of three characteristic reflections, from left to right: com-
mon reflection, interaction at Brewster angle, and total reflection. (b) Ratio 7, /Ts as a
function of the incidence angle. When n; > ng, it is possible to identify both the Brewster
and total reflection angles. Notice that only the real parts of the ratio are reported in this
plot.

part of the information carried by the analyzed surface, thus preventing material
characterization or an enhanced visualization.

Hardware solutions to limit the presence of specular highlights include the usage
of polarization filters in front of the camera objective. In photography, this is
sometimes referred to as cross-polarization, a practice that boils down to placing
a linear polarization filter rotated at an angle that is perpendicular to the direction
of polarization of the incoming light. This technique follows the same principles
of polarized sunglasses, designed with the first objective of reducing the amount
of specular reflection coming from the ocean surface and reaching the eye. Since
the polarization of light reflected off water tends to be horizontal, by including a
vertically polarized coating (hence the cross in the name) the specular highlights
do not make it past the spectacles.

Absorption, Transmission, and Fluorescence

To easily display the various instances encountered in the phenomenon of refrac-
tion we assumed that the layers of the painting were transparent, but as we easily
observe with our eyes, this is not true. Transparent objects like varnish let light
through them because of their regular molecular arrangements, whereas opaque
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objects possess random arrangements that do not let light pass. The fundamental
property that determines if light passes through a medium is absorption. When
light propagates within a medium, it transfers its energy to the atoms of the ma-
terial. Consequently, if light emerges from the medium, its power will be lower
than when it entered, following the exponential relationship provided by the Beer-
Lambert law (Equation 2.16).

¢ = ¢o exp(—ax) (2.16)

in which ¢ is the emerging energy flux, ¢ represents the incoming flux, x is
the traveled distance within the material or the material thickness, and « is the
absorption coefficient. Alternatively, absorption within a material can be described
by the absorption length L, (Equation 2.17), e.g. the value of x for which ¢
becomes 0.

Ly, = 2.17)

1
«o

In cases in which the thickness of the material is greater than L, there will not
be any emerging ray on the other side of the medium. The absorption coeffi-
cient strongly depends on the material properties and on the wavelength, with the
general rule that highly energetic radiation such as X-rays penetrate deeply into
materials, as displayed in Figure 2.8. However, when we consider the instance of
a paint layer and compare the impact of visible radiation and infrared radiation,
it is the latter that penetrates more, despite the fact of possessing lower energy.
This is due to the molecular arrangements of pigments that float in the binding
medium (typically oil) and the way they interact (or better, do not interact) with
the longer wavelengths of infrared radiation, letting it pass more easily. For this
reason, infrared radiation is often deployed to analyze paintings in the hope of dis-
covering hidden details such as underdrawing and pentimenti that go undetected
by the naked eye check.

Some particular materials showcase re-emission phenomena once photons are ab-
sorbed. This is due to the electronic structure of the atoms or molecules within the
material. When the absorbed energy excites electrons to higher energy levels, they
eventually return to their original rest state by emitting a photon with a lower en-
ergy than the initially absorbed photon. Fluorescence is thus observed for example
when presumed reflected radiation is measured in the visible range (typically in
the region of the blue) when UV light is irradiated on a material.
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Figure 2.8: Wavelength-dependence of a hypothetical transparent medium that lets
through high-energy radiation (the color of the radiation follows the visible light spec-
trum). The shape of the refracted and transmitted rays has a purely representative purpose
to convey the reduction in power of the propagating radiation.

Scattering

The last unrealistic assumption that needs to be removed concerns the topography
of the surfaces. So far, we have considered perfectly smooth interfaces, an ideal
situation that is found in the real world only in approximated conditions when
mirrors and carefully designed optical experimental setups are deployed. All the
surfaces that we regularly observe are characterized by various degrees of rough-
ness. To define a surface as smooth, the optical benchmarks state that the size of
the rough reliefs must be smaller or comparable to the wavelength of the interact-
ing radiation.

When light interacts with a rough surface, multiple micro-reflections take place
simultaneously, thus resulting in the production of infinite reflected rays that are
scattered in all directions in the hemisphere of the plane of incidence. Just under-
neath the surface, light experiences sub-scattering and absorption depending on the
material properties. It is this phenomenon that enables the perception of surface
colors.

Volume scattering occurs within the medium when light interacts with the particles
of the gas or impurities and gets scattered in ways that are quite challenging to pre-
dict since the interactions are highly direction-dependent. It is possible to observe
this phenomenon in conditions of fog or haze. A schematic representation that
highlights the difference between surface and volume scattering is reported in Fig-
ure 2.9. Depending on the size of the particles that interact with the radiation,
different types of scattering can be observed. When the particle size is comparable
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Figure 2.9: Schematization of surface sub-scattering (left) and volume scattering (right).

to the wavelength of the incident radiation, the Mie approximation is typically
deployed. Mie scattering does not significantly depend on the wavelength and oc-
curs in broad spectral ranges. In a homogenous medium in which the particles are
much smaller than the wavelength of the incident radiation, Rayleigh scattering is
observed. In unpolluted air found in the upper layers of the atmosphere, the sky
dome appears blue because Rayleigh scattering has a strong inverse dependence
on the wavelength (A\™%).

2.3.5 Radiometry

After a short trip into the theoretical aspects of radiation, we have described light
as a ray, or as either a swarm of photons or a simple monochromatic wave. In
practical instances, however, light is a much more complex entity, with infinite
wavefront shapes and combinations of concurring frequencies. Radiometry is the
branch of optics that defines the measurement of light-related quantities [7].

To define the fundamental quantities adopted in radiometry, let us set realistic
measures for the recurring example of this dissertation, the imaging campaign of
two large artifacts during the closing day of a museum. For this section, we can
focus on the tapestry. The large textile has a size of 2.25x4.50 m and its bottom
edge is hanging at a height of 0.90 m from the floor. A camera is placed on a tripod
standing on the floor at a height of 1.50 m and at a distance of 2.85 m from the
wall so that the whole fabric is captured in its field of view. This is illustrated in
Figure 2.10.

If we are to draw a sphere of radius r centered at the camera location, we will
observe that the painting covers a portion of this sphere. From the point of view of
the camera objective, the painting is said to subtend a solid angle §2 that is equal to
the ratio between its area and the observation distance. Since the viewing direction
is not parallel to the surface normal of the painting (as it can be observed in Figure
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a) Side View b) Top View c) Isometric Projection
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Figure 2.10: Depiction of the practical example in side view (a), top view (b), and iso-
metric projection (c).

2.10a), in the formulation of the solid angle we need to account for the discrepancy
angle 6 (Equation 2.18).

0= écosG (2.18)
r

Differently from an ordinary angle, which measures the distance on the unitary
circle, a solid angle measures the area covered on the unitary sphere. Similar to
the ordinary angle, a solid angle is dimensionless from a mathematical standpoint
but is traditionally quantified in steradians [sr]. A sphere will then subtend a solid
angle of 41 since its area is 4772 sr, while a hemisphere will logically subtend a
solid angle of 27 sr. In our example, the resulting solid angle is €2 = 1.26 sr.

The light that travels from the surface of the painting toward the camera in a given
instant has a spectral radiant energy Q.(\) which is the derivative of the total
radiant energy (). over the infinitesimal element of the spectrum dA. Since the
camera shutter remains open to collect photons for a finite integration time dt, we
can define the spectral radiant flux (which is the equivalent of power and can be
measured in watts [W]) as in Equation 2.19.

d?Q.(N)

D (N) = “tdn (2.19)
The camera shutter, however, can logically capture only those rays that pass through
its aperture, which has a finite dimension da so that at precisely the location of the
camera shutter we can define a new quantity called spectral irradiance E()\) (Equa-
tion 2.20). Spectral exitance can be described with the same formulation, with the
only difference being that it is defined from a surface element da located on the
surface from which the radiation emerges.
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d2D(\)

BN = o

(2.20)

Finally, we have to consider that the camera is observing the whole extent of the
painting, and therefore the quantity of spectral radiance L(\) (Equation 2.21) al-
lows us to measure the contribution of light over a defined solid angle.

dB3D(N)

L = — 2.21
() da d\ cos0dS) ( )

2 1

Spectral radiance is measured with units of W - m~2- nm~!- sr—!, and as we will
see in Section 2.5.13, is a fundamental quantity in the realm of imaging spectro-
scopy that is used as the arrival venue for the conversion from the digital numbers
captured by the cameras.

2.3.6 lllumination sources

Temperature is a quantity that is closely related to the agitation of the atoms that
constitute matter. As the temperature increases, the particles experience a further
acceleration surge, which in turn will produce radiation. Therefore, all bodies with
a temperature greater than 0 K (the absolute zero), are radiation emitters. It is not
evident for humans, but we can experience our own radiation emission if we hold
our hand at about 5 cm from our cheek and we compare the sensation with the
other cheek which does not have a held-up hand close by.

The Stefan-Boltzmann law (Equation 2.22) relates the emitted radiance (exitance)
My, of a body and its temperature 7" through the Stefan-Boltmzann constant o (=
5.67-1078 W.m 2.K™%).

My, = oT? (2.22)

However, the Stefan-Boltzmann law as reported here applies to a specific class
of bodies that emit the maximum possible amount of radiation allowed by their
temperature and are therefore fully emitters. In fact, the subscript j;, stands for
blackbody. A blackbody absorbs all incoming radiation, and its color would appear
black if exposed to the human eye, although real black bodies are quite a rarity
in nature, as only a few materials can approximate this status. A fundamental
assumption for a blackbody is that the radiation that it emits does not depend on the
angular direction and is therefore constant and homogeneous around a spherical
surface. This leads to relating the spectral exitance and the spectral radiance of a
blackbody as described in Equation 2.23.
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Figure 2.11: Typical spectral radiance curves of blackbodies with varying emitting tem-
perature. The black dashed line that connects the maxima of each curve is obtained by
applying Wien’s displacement law.

Myy(N) = mLp(N) (2.23)

The assumption that the radiant energy of blackbodies is quantized allowed the
derivation of Planck radiation law (Equation 2.24). in 1901.

2hc?
X Jexp(3g) — 1]

in which % is the Boltzmann’s constant (k ~ 1.38 - 10723 - K—!). The deriv-
ation of Planck’s law allows the visualization of the famous radiance spectra for
blackbodies at different temperatures (Figure 2.11). As it is possible to observe,
the peak of the spectral curves found at wavelength A, progressively shifts to-
wards longer wavelengths as the temperature decreases. The behavior of the peak
shift for blackbody emission is characterized by the displacement law formulated
by Wien, which is obtained by setting the derivative of the Planck law to zero
81\;)(\/\) = 0, and is also approximated by the following relationship reported in
Equation 2.25.

(2.24)

Lyy(N) =

_ 2897.8
T

A um - K- K1 (2.25)
According to the shapes of the curves displayed in Figure 2.11, it is possible to
compare an ideal blackbody spectrum to some available spectra that can be en-
countered when skimming through a catalog of illumination sources. Figure 2.12



38 Background

HPS INC CFL

9} 5} P 5} .

B B3 3

o o - <) -

[ o o

[ [} [}

2 2 2

5 5 8

(7} [} A [}

o e | o it o -t

400 600 800 400 600 800 400 600 800

A [nm] A [nm] A [nm]
HALO MH LED

— - S e S TS

[ [} [}

2 2 2

<} o [}

o o o

[ [ (9

= = > .

5 5 5|/

(9] Q o |,

4 e x| .- x|

400 600 800 400 600 800 400 600 800

A [nm] A [nm] A [nm]

Figure 2.12: Relative spectral power distribution of six commercially available illumina-
tion sources. HPS - High-Pressure Sodium (Philips Helios Streetlight). INC - Incandes-
cence (Rona A19 Domestic). CFL - Compact Fluorescence (Globe Twister Domestic).
HALO - Halogen (Standard PAR38 Accubeam Domestic). MH - Metal Halide (Philips
-Industrial). LED - Light Emitting Diode (Ledtech PAR20 Domestic). The dashed black
lines represent the blackbody curves corresponding to the CCT of the source. Data source:
Lamp Spectral Power Distribution Database [57].

reports the relative Spectral Power Distribution (SPD) of six commercially avail-
able illumination sources.

In a museum context, Light Emitting Diodes (LEDs) are predominantly deployed
as main illumination sources because of their high efficiency and low impact on the
artworks. On the other hand, their limited spectral range does not enable their use
in the context of the acquisition of Infrared information, which can be performed
by deploying halogen sources for example. A slow phasing out of halogen lights is
ongoing worldwide to contrast inefficient light sources. This has translated into a
research effort to develop more sustainable illumination solutions for the capturing
of infrared data.

2.3.7 Reflection Models

Computer vision is a branch of computer science that aims to enable computers
to interpret images and videos by approximating the capabilities of the human
visual system. The main tasks researched and carried out are detection, recogni-
tion, segmentation, and scene understanding. Until recently, scene understanding
was regarded to be an extremely challenging task, and therefore the ability of hu-
mans to resolve these types of problems was considered to be exceptional. Now,
with the aid of deep learning, tasks such as image-to-text are carried out with regu-
larity. In the following paragraphs, we will focus on the physical models that have
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been developed in an attempt to tackle the recognition and rendering of objects
in challenging scenarios. For the sake of keeping the introduction of concepts on
track, only relevant models for the appearance and rendering of historical artifacts
in the context of technical imaging are considered.

When we observe a scene, whether it is indoor or outdoor, the appearance of the
examined objects depends on the physical properties of the materials such as color,
translucency, and glossiness, on the topography and texture of the surfaces, on the
properties of the illumination (SPD, distance, direction), and on the location of the
observer [58, 59]. All these factors concur simultaneously to create an intricate
environment in which ambiguous situations are not that rare. The Bi-directional
Reflectance Distribution Function (BRDF, Equation 2.26) [60] describes the pro-
portion of intensities between the reflected radiation I, off a matte surface ob-
served from an angle w, compared to the incident radiation I; coming from an
angle w;.

| CdL(wn N 1 dI, (wr, A)
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The BRDF is notably a highly complex model, and cannot be accurately estimated
without extensive measurements and expensive setups [61]. However, assuming
that a surface is Lambertian can simplify the model by discarding the angular-
dependent terms. A Lambertian surface is defined as flat, matte, and diffusive.
These three attributes intrinsically contribute to making a Lambertian material iso-
tropic and free from fluorescence phenomena. When the angular terms are dis-
carded, the BRDF coincides with the reflectance (Equation 2.27) of the material
under examination.

Ref(\) = (2.27)

A classical problem in computer vision is the detection and correction of specular
highlights [62—64]. Specular highlights, as we have observed in Section 2.3.4, are
generated by the interaction of light with smooth and or glossy materials and usu-
ally carry a significant amount of polarized information. A material that presents
specular highlights, in the eyes of a machine, can be interpreted as two different
materials, given the significant difference in recorded signals. Humans, on the
other hand, are considered quite good solvers able to use specular reflections at
their advantage [65].

The dichromatic reflectance model (Equation 2.28) [66] tries to overcome the lim-
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itations imposed by the Lambertian assumption by characterizing the reflected
light as the result of the superimposition of a diffuse component from the body
of the material and a specular component caused by direct surface reflection. The
total intensity [, after a surface reflection can be modeled by the sum of two in-
tensity components [67]. Each component can also be split into a geometric term
m(w,) and a spectral term c(A).

I (wry A) = mp(wy)cp(N) + ms(wy)es(N) (2.28)

The dichromatic model has been initially used to detect specular highlights [66],
compute photometric-invariant features [68], and estimate the illuminant of a scene
[69] in an attempt of solving color constancy problems. However, the model is
based on strong assumptions and is affected by important limitations [70]. A
prior segmentation in macro areas of an image is usually needed, the observed
media must be opaque, non-homogenous (metals are therefore excluded), and
fluorescence-free. Moreover, only a single illumination source with a constant
SPD is allowed to exist in the scene. Such a model can be sufficient to characterize
flat materials with specular highlights, but it cannot accurately describe the radi-
ance coming from objects that present a complex topography that can lead to the
generation of shadows due to the complete or partial occlusion of the illumination
source. In such instances, shadowed areas generate ambiguous interpretations, as a
naturally dark object cannot be distinguished from a lighter one that receives fewer
photons.

The extension and strength of shadows in a scene depend on the relative position
between the object and the light source and the physical dimensions of the light
source [71]. However, as we will later see when we discuss the different tech-
niques for image acquisition, the distribution of shadows also depends on the way
the images are captured (snapshot or scanning). The first differentiation between
shadows can be performed between self and cast shadows. Self-shadowing takes
place on the surface of the objects that occlude the light source; we can typically
observe this on the side of a hill that is not facing the sun. Cast shadows, on the
other hand, are observed on objects that do not occlude the illumination. Typic-
ally, a shadow is formed by two parts, depending on the degree of occlusion of
the light source. When the light source is completely occluded by an obstacle, the
observed shadow is an umbra, whereas if the occlusion is partial, a penumbra is
observed. Only umbra can be observed in those instances in which the light source
is approximated to a point source, but most real applications deal with extended
light sources. The proportion of umbra and penumbra depends on the distance
of the shadow from the light source and the height of the relief causing the oc-
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Figure 2.13: Visualization of the shadow formation process and specular reflection in a
painting containing impasto and glossy areas. For the sake of representation, the extension
and distance of the light source are reported not to scale.

clusion, thus, a varying proportion can only be experienced in cases in which the
dimensions of the targets are comparable with said distance. In outdoor scenarios,
the light source is found at infinite, and the proportion of umbra and penumbra
remains constant regardless of the size of the obstacle.

The Bi-Illuminant Dichromatic Reflectance (BIDR) model (Equation 2.29) [72]
ascribes the responsibility of measured signals coming from shadowed areas to the
presence of a secondary ambient illumination. The rationale behind the presence
of a second illuminant resides in the fact that it is still possible to discern details
within the umbra area (provided that the system has a high enough dynamic range,
Section 2.5.1). Figure 2.13 schematizes the BIDR and displays the shadow form-
ation process.

While the dominant illuminant is considered to be directional, the ambient illu-
minant is diffuse and isotropic. The BIDR is based on an extended version of the
dichromatic model that includes a constant ambient term, taking inspiration from
an earlier shadow detection model [73]. However, in the presence of shadows of
varying intensities, this term cannot remain unchanged. The BIDR includes also
an occlusion factor H € [0, 1] for which a value of 0 represents umbra, a value
of 1 is considered to be occlusion-free, whereas anything in between is penum-
bra. Lastly, the two terms M, () and M,s(\) represent the body and specular
contributions due to the ambient illumination.
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Shadows and specular highlights are visual cues that need to be faithfully repro-
duced when rendering objects for visualization purposes such as rendering and
implementation into virtual/augmented reality environments [74]. On the other
hand, when the goal is to physically characterize materials, they can represent chal-
lenging obstacles to overcome. Research efforts are still needed to correct areas
affected by shadows and specularities towards physical characterization, as for the
moment, most of the advances are proposed by deep learning-based techniques,
but for visualization purposes [75].

2.4 Detection of Visible and Infrared Radiation
2.4.1 The Photodetector

The pipeline of detection of radiation can be summarized with three fundamental
blocks: reception of said radiation, conversion (transduction) of photon energy
into an electric current, and analog to digital conversion of the current. The first
block of reception, if taken individually, can be carried out by any material that
is able to absorb radiation at a given wavelength. However, most materials react
passively to the absorption of radiation, and the existence of additional steps in
a pipeline is precluded. Semiconductors are a special class of elements that are
able to change their conductivity when exposed to illumination. If we take a look
at the Periodic table, semiconductors are found spanning from Group III to VI
and include elements such as Silicon (Si), Gallium (Ga), Aluminum (Al), and
Germanium (Ge).

When observed in their pure state, for example in a lattice of pure Silicon, the
valence electrons are tightly bound to the atoms and thus are found in the valence
band. If excited, the electrons of the valence band can move to the conduction
band, where they are free to move and generate a current. However, the excitation
energy required to make this happen must be higher than the band-gap energy.
Random thermal excitations can make electrons jump to a higher energy level,
leaving a hole (a positive charge) behind. However, the subsequent recombination,
which generates energy in the form of heat or light, does not allow the sustained
flow of current [8]. What we have just described is an instrinsic semiconductor:
the conduction of current is very limited and the insulation properties are good but
not as thorough as those of pure insulators.

What makes semiconductors special is their affinity to the practice of doping. Dop-
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ing consists of the controlled introduction of elements with a different number of
electrons in the valence band to create a concentration of free charges in the lat-
tice. If we stick to the example of Si atoms, we can obtain n-doping when an
element such as Arsenic (Group V) brings an excess of negative charges (elec-
trons), whereas p-doping is obtained when an excess of positive charges (holes)
is introduced with elements such as Gallium (Group III). In an extrinsic semicon-
ductor, doping allows the movement of free charge carriers, which increases the
conductivity of the material. When a voltage is applied, a sustained current flow
can be observed.

A particular configuration that allows the flow of current in a unique direction can
be obtained with the P-N junction. In the P-N junction, two differently doped
semiconductors are brought together. During the recombination phase, the excess
electrons that are found on the n-side start flowing toward the p-side, but not all
electrons find a hole, or not all holes are filled by an electron. Eventually, the re-
maining free charges occupy the so-called depletion region, an intermediate zone
of the P-N junction. The width of the depletion region depends on the concen-
tration of free electrons and holes introduced upon doping, so it is a controllable
parameter. What is interesting is that such width can also be controlled at a later
stage by varying the voltage at the ends of the P-N junction. Forward bias makes
the region more narrow, allowing the current to flow across, while reverse bias
widens the region, preventing the flow of current.

When a photon is absorbed by the lattice of the P-N junction, an excited electron
moves from the valence to the conduction band and a pair formed by an electron
and a hole is created. Electron-hole pairs contribute to the production of a current
flow the closer they are found to the depletion region. A photodiode formed by a
P-N junction is usually operated in reverse bias (n-side connected to positive pole
and p-side connected to negative pole) so that the depletion region is wide and it
is statistically more likely that an electron-hole pair is formed near the depletion
region.

Main features of a photodetector

Since the main event that triggers the generation of a photocurrent is the absorption
of photons, the semiconductor chosen to build a sensor must collect photons effi-
ciently. However, as we have observed in Section 2.3.4, light can be also reflected
or transmitted through a material. The quantum efficiency 7 is probably the most
important feature of a detector as it statistically describes the percentage of incom-
ing photons that are effectively converted into free electrons contributing to the
photocurrent (constituted of photoelectrons of charge e ™). Since the quantum effi-
ciency is related to light-matter interactions, it is wavelength-dependent, and thus
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its examination can help in the evaluation of the suitability of a semiconductive
material in a given spectral range.

The generated photocurrent I, for an incoming photon flux ®, can be written as
reported in Equation 2.30.

I = @4 n(A) (2.30)

This law assumes that the response in current is linear with respect to the incom-
ing flux, which is true to some extent when we consider most sensors deployed
nowadays. Luckily for us, the human eye is a nonlinear sensor that has evolved
to protect the brain from the generation of currents that would be too strong to
sustain.

The photocurrent for a photon flux spanning a wide spectral interval ® () can be
expressed as in Equation 2.31.

A2
Iph = / R()\) (I),\()\)d)\ (2.31)
A

1

In a classical example, the detector is envisioned as a bucket in a constant rain
of photon drops. The bucket collects photons during an integration time ¢;, and
the measurement is repeated N times. Given the random nature of the collection
process, it is likely that each reading will be different from each other. Indeed,
the measurement fluctuation, denominated photon noise, follows a Poisson dis-
tribution in which the average count of photons in a time interval is equal to its
variance. Equation 2.32 describes the variance of the photocurrent i2 expressed as
a power.

i2 = 2e" L Af (2.32)

In which Af is the bandwidth indicating the range of temporal frequencies that
can be captured following the Shannon theorem of sampling, thus relating it to the
integration time: Af = 2%

The photocurrent can be estimated a priori but not measured directly, as it cannot
be distinguished from other currents that concur in the generation of the reading
measurement. The dark current /;. is an ever-present current contribution in a
sensor that depends on the thermal agitation of the atoms in the lattice. It can be
considered as a baseline error and in fact, its measurement is usually carried out in
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conditions of total darkness (hence the name). Thermal agitation and the random
crossing of the depletion region by free charges follow a Poisson distribution as
well. Thus, the shot noise associated with the dark current zg 4c can be expressed
as in Equation 2.33. ’

02 g0 = 2¢ Iy Af (2.33)

Another type of noise generated by thermal energy is the so-called Johnson noise
z? (Equation 2.34). In this instance, the Brownian-like motion of electrons present
in all types of conductive elements generates a current that is proportional to the
temperature and to the approximated resistance of the detector RR.

o AKTAf
i = "R, (2.34)
Background noise, telegraph noise, reset noise, readout noise, and 1/f noise all
contribute to the formation of the total noise in a sensor. However, shot noise and
Johnson noise are usually the ones that are more indicated to describe the behavior
of a detector, as their typical contributions dominate the others [6]. The Signal-
to-Noise Ratio (SNR) plays a crucial role in understanding the performance of a
detector by quantifying the relative strengths of the useful signal and the unwanted
noise. In many cases, the SNR serves as a primary health check for characterizing
detectors, as it provides a clear and concise measure of sensitivity, signal quality,
and overall reliability. A high SNR indicates that the detector can reliably detect
weak signals and provide accurate measurements, while a low SNR implies that
the noise dominates the output. Detectors can also be characterized by their Noise
Equivalent Power, which is the power of the smallest detectable signal, assumed
to provide a SNR equal to 1.

2.4.2 Materials for Detection

The most used semiconductor for the detection of radiation between 380 nm and
780 nm is by far Silicon. Silicon defined and continues to define the Contemporary
Age in which the world is transitioning to be digitally dominated. Photodetectors
are only one of the several devices that can be manufactured with Silicon, as most
electronic components deploy this precious element whose extraction is regulated
by international laws for sustainable reasons and as an economic safety net [76].

Pure Silicon is rarely found on Earth and is characterized by a shiny appearance
when exposed to standard conditions of temperature and pressure. Its macro-
crystalline structure provides mechanical resistance and a high melting point of
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Figure 2.14: (a): Absorption coefficient and absorption depth of Silicon at a temperature
T = 300 K. Data source: PV Education [77]. (b): Energy band-gap and corresponding
wavelength as a function of temperature. The formula used for computing the band-gap is
Wy = 1.165 — 2.84T - 10~* [78].

more than 1100°C. It must be pointed out that in its pure state, the properties of
Silicon are not ideal for the absorption of visible radiation, as it is possible to
observe in Figure 2.14a. Moreover, Silicon works at room temperature as an in-
sulator, since its electrical resistance increases with temperature. Being a good
insulator and not a good absorber are two features that so far do not make Silicon
an appealing material for the detection of light. Figure 2.14b reports the band-gap
energy (expressed in electron volts) and the corresponding cutoff wavelengths as
a function of temperature. We notice that the spanned spectral range is found at
wavelengths in the NIR, meaning that the more energetic visible radiation can eas-
ily excite electrons to the conduction band, while at the same time, not a lot of
cooling is required to operate in the most efficient temperature zones.

Doping is a particularly effective practice for Silicon thanks to its electronic ar-
rangement in the valence band. Elements of Group IV and V are indeed suitable
for the generation of P-N junctions, as they can draw dopant elements belonging
to Groups III-V and IV-V. Another advantage of doping is the resulting decrease
in resistivity (and hence an additional increase in conductivity).

As we have observed, the band-gap energy defines the wavelength cutoff for which
an incoming photon stops exciting a valence electron. As we observe in Figure
2.14b, the usage of Silicon for the detection of IR radiation (for example at 1500
nm) is out of question since the operating temperature would have to be so high
that would eventually damage the electronics. Higher cutoff wavelengths (and
lower band-gap energies) can be achieved by using a compound of semiconductive
materials. However, not all combinations can generate an efficient new detector.
When structures of different materials are merged, their intrinsic geometries need
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monly used semiconductor compounds. Image source: Prof. Helmut Foll, University of
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to match. In particular, the parameter that requires attention is the lattice con-
stant, a measure of the intra-distance of atoms in the crystalline structure. Figure
2.15 displays the lattice constant and band gap of commonly used semiconduct-
ors, highlighting the binary semiconductors as those compounds that are the result
of connecting two materials with an almost vertical line. If the lattice constants
differ, the repercussions on the resulting crystalline structure can take the form of
strong mechanical strains and so-called dangling bonds. If a chemical bond re-
mains hanging, the likelihood of Shockley-Read generation processes increases,
with electrons that are excited to the conduction band and consequently release
their energy as heat.

Binary semiconductors formed by the combination of two semiconductive mater-
ials, typically feature Group IV symmetry, as the constituting members usually
belong to Groups III-V or II-VI. This ensures that the resulting material will have
the same number of valence electrons as an atom of Group IV, which is a desirable
property when it comes to doping.

Buffer layers of semiconductive materials can be used as a workaround to man-
ufacture photodetectors such as Indium Gallium Arsenide (InGaAs). The lattice
constants of InAs and GaAs do not allow the growth of a homogeneous crystal
structure, but the introduction of an intermediate layer of Indium Phosphate (InP)
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Figure 2.16: Cutoff wavelength as a function of operating temperature and concentration
of Cadmium Telluride (CdTe) in a ternary compound of Mercury Cadmium Telluride ex-
pressed as Hg, _ Cd,Te.

can facilitate this process. However, the relative concentrations of InAs and GaAs
need to be carefully tuned to obtain a lattice matching with InP. This is usually
achieved using a In53Gas7As compound. Changing the concentrations of the com-
ponents also affects the bandgap energy and the cutoff wavelength, as it is possible
to observe from the lines that connect the various materials in Figure 2.15.

The operating temperature plays a major role in the detection of IR radiation since
it significantly affects the bandgap energy of semiconductor materials and their
quantum efficiency. Let us consider the case of the IR sensor Mercury Cadmium
Telluride, in which the concentrations of Mercury Telluride and Cadmium Tellur-
ide are tuned to generate the compound Hg, _ Cd,Te. Figure 2.16 illustrates how
the cutoff wavelength is affected by the operating temperature and by the concen-
tration of Cadmium Telluride [80]. We can observe that in order to sense radiation
at wavelengths A, < 7000 nm, a cooling system that brings the operating temper-
ature 7' < 150 K (equivalent to -123 °C) must be deployed, while at the same time,
there exists a constraint on the relative abundances of HgTe and CdTe. This is a
common feature for detectors of infrared radiation, and one of the main reasons
for generally more expensive costs on the market.
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2.5 Toward Reflectance Imaging Spectroscopy

2.5.1 Imaging Principles

Photodetectors exploit the characteristics of semiconductor materials to absorb ra-
diation and convert it into electrical signals. By finding a way of counting the
generated electrons, it is possible to effectively measure the amount of incoming
radiation, knowing that the two quantities are directly proportional. This measure-
ment, or at least part of it, is carried out in the building block of the image sensor,
the pixel.

A pixel (from picture element) can be defined as the assembling of a photosensitive
material and the accessories that facilitate the collection of radiation, its selection,
and the electronic circuitry that helps in the reading of the measurement [81]. Fig-
ure 2.17 illustrates the cross-section of a generic pixel in which the fundamental
elements are highlighted.

The first defining parameter for pixels is the fill factor, the proportion of photo-
sensitive area to the total surface of the pixel (pixel size) [82]. Fill factors are
generally lower than 100% because of the presence of circuital elements like wires
that do not contribute to the absorption of photons. The efficiency of the light
collection can then be improved by adding a microlens that focuses the incoming
radiation on the central sensitive area of the pixel [83].

As photons are absorbed in the bulk of the sensitive material during the integration
time, the generated electrons flowing across the depletion region are collected in
a capacitor (potential well), in which an electric field is able to momentarily trap
them. The capacity of the well, also called charge capacity, is a parameter that
defines the saturation level, or the upper limit for the number of electrons that can
be stored. There is then an intrinsic relationship between the saturation level, the
brightness of the imaged object, and the integration time. As we have already
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discussed in Section 2.4.1, even in conditions of total darkness there will be a flux
of electrons across the depletion region. The dark current sets indeed a lower limit
for the number of collectable electrons. We can then define the dynamic range of
a pixel as the ratio between the saturation level and the dark current expressed as
numbers of electrons [84].

Sometimes, a hot pixel can act as a saturated pixel even in conditions of low
light, because the level of dark current that affects it is anomalously high [85].
Dead pixels display a constant response regardless of the incoming radiation level,
whereas clipping pixels tend to show a saturation behavior without actually reach-
ing the saturation level dictated by the charge capacity.

Pixels can be connected to form stripes and matrices to effectively become image
sensors. An image can be indeed defined as an assembling of pixels in which
the local variation in signal output defines certain patterns or a distinguishable
scene. When pixels are connected, the pixel pitch is defined as the center-to-center
distance [86]. The pixel pitch is usually larger than the pixel size as gaps typically
exist between pixels. The pixel proximity is a good solution to have compact image
sensors, but it comes at the expense of possible pixel cross-talk [87] and blooming
[88], an effect in which the charges of a saturated pixel overflow to the neighboring
ones (horizontal blooming and smearing in the vertical direction). The deployment
of the microlens can however mitigate pixel cross-talk.

For the capturing of images, two main technologies are deployed: Charge-Coupled
Device (Charge-Coupled Device) [89] and Complementary Metal-Oxide Semicon-
ductor (CMOS) [90]. The main difference between the two configurations resides
in how the collected electrons are read out from the potential wells [91]. The pixels
of a row in a CCD are connected to perform a sequential reading in which small
electric fields are progressively applied so that each potential well discharges its
electrons onto the next empty well until all elements in the row are emptied and
the measurement is completed. This methodology requires the assistance of a syn-
chronizing clock and reading errors can take place [92]. The reading of a CMOS
is less prone to errors because each pixel features a dedicated system for the indi-
vidual reading of information. Despite the fact that the additional circuitry tends
to decrease the fill factor, CMOS sensors are more widespread when imaging tech-
nologies are deployed to perform accurate metrology.

Regardless of what technology is adopted to measure the incoming radiation, when
the analog current is converted to a binary digital signal a quantization error will be
introduced [93]. Quantization is only one of many sources of electronic noise [94],
which can be limited by reducing vibrations and implementing better insulation
and shielding solutions. At times, the electronic noise sources generate currents
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Figure 2.18: Simplification of the optical system within a DSLR camera reduced to a
single thin positive lens. The object plane is found to the left of the lens, whereas the
image plane is found to its right. If the image sensor is placed in correspondence with the
plane where the image of the green object is formed, then all objects found at a distance
[ (with a tolerance given by the depth of field) from the lens will be images sharply. In
this instance, the blue object will appear out of focus on the image detector because found
outside of the depth of field.

that are in the same order as the photocurrent, thus resulting in a drastic reduction
of the SNR. To avoid this problem, the photocurrent is typically pre-amplified
before being converted into a digital signal [95].

2.5.2 The camera as a simple optical system

The microlenses that focus the incoming radiation on the individual pixels are only
the last (if we consider the direction of the light path) optical components that we
find in a digital camera. If we exclude the optical components designed to display
the live view of what is currently captured, the essential optics of a digital cam-
era (Digital-Single Lens Reflex - DSLR) is formed by a composite lens, typically
constituted by two or more lenses with different goals of collimation, focusing and
zoom [96]. For the sake of simplicity, we can introduce the fundamental para-
meters of an optical system by considering a composite lens system as a unique
resulting lens. A schematization of the fundamental optical distances and terms of
a simplified DSLR camera is reported in Figure 2.18.

In a digital camera, the incoming photons are restricted to interact with the lens
only in areas close to the main optical axes. The main reason for deploying a pupil
(or aperture) in front of the lens is to avoid the refraction of light in areas away
from the main optical axes, which are more affected by distortions and aberrations
[97]. The second reason is to limit the amount of photons that arrive on the sensor,
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thus avoiding saturation. The aperture of a camera can be controlled by tuning the
f-number (f#).

To simplify even further, we can consider the composite lens of a camera as a
thin lens [4]. In this way, we can have an ideal situation in which the principal
planes coincide with the lens surface. We can then define the second (because it
is found after the lens) focal point as the point on the main optical axes crossed
by refracted rays coming from an infinite distance (parallel to the optical axes).
Similarly, we define the first focal point as the point on the main optical axes
that produces a refracted ray parallel to the optical axes. Both points associate
focal planes perpendicular to the axes. The focal length is an important parameter
of lenses, as it can give information regarding the power of a lens expressed in
diopters, its magnification, and more importantly, it tells us where to place the
image sensor in order to have sharp images. It might seem that sharp images
of objects can be obtained only if said objects are found at a defined distance.
However, a certain tolerance is inherently present. Objects found within the depth
of field, an area around the optimal acquisition distance, are still imaged sharply
[98]. The depth of field of a system is inversely proportional to the square of the
focal length and the diameter of the aperture pupil.

The angular field of view of a camera is then defined by taking into account the size
of the image sensor, the focal distance, and the aperture of the system. A related
quantity to the angular field of view is the éfendue [99], which is proportional to
the product of the diameter of the pupil and the solid angle intended as the spread
of light that can be collected.

2.5.3 Quantities related to image sharpness

Having already introduced the term image sharpness, let us delve more into the
theory of it while introducing more advanced concepts related to imaging systems.

When we are asked to judge whether an image is sharp or not, we tend to shift
our attention to some particular features and neglect others [100, 101]. Areas of
an image that depict uniform scenes such as the clear sky or other artificial smooth
materials usually are not of interest, because they contain low spatial frequencies.
On the other hand, complex scenes containing high spatial frequency can help us
in taking the decision regarding image sharpness. Neglecting for a moment the
human sensitivity to various frequency contents, we can define a sharp image as
that image that faithfully represents simple elements such as lines and points.

The Point Spread Function (PSF) is a measure adopted to quantify the sharpness
of an image system. We can say that during the image formation process, a point
in the real-world scene is transferred onto the sensor by a convolution with the PSF
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Figure 2.19: a) Representation of the PSF produced by a lens. b Typical camera response
to stimuli with fixed contrast and varying spatial frequency. The effect of the contrast loss
(in red in the plots) is magnified for visualization purposes.

[102]. A punctual light source (usually a laser) is imaged, and the intensity pattern
on the image sensor is recorded. The ideal recorded image should represent a circle
of uniform intensity with a radius proportional to the magnification of the optical
system. Real PSFs, however, are diffraction-limited, meaning that the uniform
intensity in the circle cannot be achieved. Instead, a decreasing intensity is usually
observed as we move away from the center of the circle. Optical aberrations and
distortions also tend to deform the shape of the circle [97]. Astigmatism, a second-
order aberration, is caused by a different curvature on specific axes of the lens, thus
leading to PSFs with elliptical shapes. Coma, another second-order aberration,
makes the PSFs look like a comet (hence the name), exhibiting a trace-like shadow.
A schematic representation of PSF is reported in Figure 2.19a.

A fundamental quantity of an imaging system is the spatial resolution, usually
intended as the highest spatial frequency that a system is able to resolve. The
measurement of this quantity is usually related to an extension of the PSF, the Line
Spread Function (LSF). The typical inputs for the measurement are reported in
Figure 2.19b, and the resolution is defined as the number of line pairs (black and
white) per unit of distance (usually mm). If the LSF produces blurry lines, there
would be a spatial frequency for which a pair of black-white lines will be indis-
tinguishable, and therefore the resulting signal will be gray (a mixture of white
and black). A factor that can influence at which spatial resolution we encounter
the breaking point is the contrast between a pair of lines, a measure related to the
ratio of the luminances. The Michelson contrast (Equation 2.35) [103] is usually
adopted.

Inpax + Inin '

The Modulation Transfer Function (MTF) encapsulates how a system reacts to
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varying contrasts and resolutions and is thus a good figure of merit to compare
systems for specific applications [104].

Another measure of spatial resolution that sometimes is exchanged, probably erro-
neously, with the resolution of spatial frequency, is the Ground Sampling Distance
(GSD). The GSD represents the size of the minimum spatial detail that can be
resolved by the system, as it is a translation of the pixel size into real-world dis-
tances. The factors that influence the GSD are the acquisition distance, the angular
field of view, and the number of pixels on the sensor [105].

2.5.4 Color and multispectral imaging

Color, along with shape, is probably the main feature we use to communicate the
appearance of objects [106]. Yet, unlike shape, it is arguable that color does not
exist [107], as it is the product of our perception. Without getting into thorny
philosophical discussions, it is possible to state that shape features do depend on
perception as well, but they can be unequivocally measured, whereas it is possible
to measure physical correlates of color perception [108], but the interpretation of
this measurement might be subject to population variability, and its communication
is made challenging by factors such as cultural and linguistic background [109,
110].

Human visual perception starts with light entering the pupil, being refracted by the
cornea and the lens, traveling through the vitreous humor in the vitreous chamber,
and landing on the retina [111] (Figure 2.20a). The retina is the image sensor
of the eye and its pixels, the photoreceptors, cover it heterogeneously [112]. No
photoreceptors are found in the area of the blind spot, where the optical nerve starts
its path toward higher levels of perception that are not treated in this dissertation.
While within a classical image sensor all pixels are devoted to the reception of
the same type of radiation, the photoreceptors found on the human retina have a
precise division of tasks. Rods are wide-band photoreceptors that are sensitive to
low levels of light, and thus experience saturation in conditions of daylight. When
only rods fire signals, no color can be perceived and visual perception is said to
be in the scotopic domain. Cones, on the other hand, are photoreceptors with a
narrower spectral sensitivity than rods and do not fire in conditions of scotopic
vision. Three types of cones, named after the range of wavelength they respond to,
are found on the retina. S-cones (short) are sensitive to wavelengths in the range
380-510 nm, M-cones (medium) fire when exposed to wavelength from 420 to 650
nm, whereas L-cones (long) are sensitive to the interval 470-780 nm. Photopic
vision is enabled when the intensity of the incoming light is sufficiently high and
all rods are completely saturated. Mesopic vision can be defined as that transition
area in which mixed activities of rods and cones coexist.
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Figure 2.20: a) Horizontal section of the human eye with main structures highlighted. b)
Rods and cones average distribution expressed as a function of angular distance from the
fovea. Images source: [112].

As already mentioned, the distribution of photoreceptors is not homogenous on
the retina (Figure 2.20b). The proportion of rods to cones is approximately 20:1,
while within the cones, L-type and M-type dominate with ranging proportions
among a population, and S-type represents only 2% of the cones. The fovea, which
subtends an angle of 2° and is found displaced by an angle of 4° with respect to
the main optical axes of the eye in the temporal direction, is the area in which
humans have the highest concentration of cones and the lowest concentration of
rods, which rapidly decreases to zero in the central part, denominated foveola.
The fovea is therefore the most exploited area of the retina, as proper color vision
is not enabled outside of it. Moreover, the best spatial and temporal resolutions
are also achieved in this little region [113]. The human visual system is a peculiar
imaging system that simultaneously shows inefficient and efficient properties. It is
inefficient because only a very small part of the retina is deployed, but on the other
hand, it is extremely efficient because it is able to provide a satisfactory vision
despite its poor spatial resolution and thanks to the abilities of its processor to use
temporal integration and spatiotemporal memory.

The perception of color, however, is not limited to the firing responses of the dif-
ferent types of cones, as more processes occur in the higher levels of vision in the
brain [114, 115]. To simplify the problem, the human visual system is considered
as a whole, and its spectral sensitivity functions were experimentally measured
for the first time in 1931 [116]. In the color-matching experiment, visual ob-
servers were asked to match the appearance of monochromatic stimuli by tuning
three dials containing three reference primary monochromatic lights (e.g. blue at
435.8 nm, green at 546.1 nm, and red at 700 nm). The resulting Color Matching
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Figure 2.21: a) Normalized cones responses. b) Color-matching functions obtained from
the original 1931 color-matching experiment. ¢) XYZ color matching functions in which
Z(A) mimics the response of S()\) in a) and () matches V().

Functions (CMF) are reported in Figure 2.21b. The main feature of these func-
tions concerns the negativity interval of the matching function related to the red
primary 7(A). Indeed, the monochromatic stimuli in this spectral range could not
be matched unless a certain amount of red monochromatic light was added to the
input, hence the negative values. The RGB color space is then defined by the de-
ployed amounts of the three primaries. Equation 2.36 shows how to compute the
tristimulus RGB values, also called chromaticities coordinates.

[R,G, B|
b = ——— 2.36
I:T’ g’ ] R + G + B ( )
in which R, GG, and B are in this case the amount of each component deployed in
the color-matching experiment and r + g + b = 1.

However, the RGB color space is not a convenient environment when it comes to
the direct relationship with the human visual system, and the presence of negative
values in 7(\) represented an additional complexity in the early computations of
the 1930s [117]. The color-matching functions were then modified by converting
the primaries, and the XYZ color space was defined. The 2° Colorimetric Observer
functions reported in Figure 2.21c represent still today the standard proposed by
the CIE (Commission Internationale de I’Eclairage). Here, the indication of 2° is
deployed to describe the viewing conditions of the color-matching experiment, in
which observers could only use the fovea area, hence the 2°.

The conversion of the [#()),g(\),b(A)] functions was performed so that Z(\)
matches the fundamental S-cones response (confront with Figure 2.21a), while
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y(\) matches the spectral luminous efficiency function V' (\), which represents the
average spectral sensitivity to light stimuli of varying wavelengths. The matching
with V' (\) enables the XYZ color space to be directly related to a measurable
physical quantity such as luminance.

The tristimulus values of XYZ (Equation 2.37) can be obtained by integrating
the product of the observed object with the SPD of the illuminant and the CMF
(constituted by Z(\), y(\), and Z(X)) over the range of wavelengths in the visible
range. The value of the constant k is selected so that a white object with constant
Ref (\) = 1 yields a luminance value Y = 100.

700nm
[Z(N), 5(N), 2(\)] = k /4 . Ref(\) - SPD(\)- CMF(A\)dXx  (2.37)

To keep this introduction compact, we cannot explore the various implications
of the XYZ color space and its relationship to other color spaces that deal with
different aspects of color imaging. Within the scope of this thesis, to describe
how a camera sees and records color, the XYZ and RGB color spaces are more
than sufficient. The XYZ color space represents a good connection environment
between physical measurements of visible radiation and human perception, and
it is therefore used as a landing space in many devices like cameras that capture
colors. Readers interested in a better understanding of color science could refer to
[118, 119].

In order to see colors like a human, a camera must be equipped with a set of
sensitivity functions that mimic those of the human visual system. This is ob-
tained by applying spectral filters (typically wide band-pass filters) in front of the
photosensitive area of the pixels (confront with Figure 2.17). However, only one
spectral filter can be applied on a pixel, thus resulting in a single response value.
To obtain a 2D color representation of a scene, the most popular solution is to ap-
ply the spectral filters in a prefixed pattern. The most famous pattern, depicted in
Figure 2.22a, is the Bayer pattern [120]. Here, the green filters cover the image
sensor twice more densely than the red and blue filters because of the finer spatial
frequencies that can be sampled with this spectral filter and also in an attempt to
emulate the response of the human visual system to wavelengths that would be cat-
egorized as green, in which both M-type and L-type cones fire at high rates. From
the spectral filter array, three image planes with missing values can be extracted
and filled by interpolation in a process called demosaicing [121] (Figure 2.22b-c).
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Figure 2.22: a) Typical Bayer spectral filter array b) Laying a Bayer pattern (simplified
version reported for visualization) over an image creates three images with gaps.c) Demo-
saicing creates three distinct image planes with no gaps by interpolation

Multispectral imaging

When a camera is calibrated, the raw values are directly related to physical quant-
ities, and thus it is possible to say that the effect of the camera sensitivity functions
is discarded [122]. After demosaicing, a pixel is represented by three values that
ideally lay on the irradiance spectrum produced by the interaction of the SPD of the
illumination and the reflectance of the observed object. Although a series of spec-
tral characterization methods [123] and spectral reconstruction from RGB [124]
exist, a way to retrieve more accurate spectra, is to add more color channels.

The term Multispectral Imaging (MSI) has been used to indicate those imaging
systems that produce an image with more than the three classic R, G, and B planes
[125]. In the following paragraphs, we will briefly look at various ways in which
such images can be obtained.

The three typical methodologies (illustrated in Figure 2.23) to increase the num-
ber of channels in a monochrome or standard RGB camera concern the sequential
application of color filters, adopting different illumination sources, and the design
of more intricate color filter array patterns [126]. Combining the different meth-
odologies is also an option, but it will not be treated for the sake of brevity.

A monochrome camera typically only includes an IR filter to block unnecessary
radiation and does not deploy a Bayer color filter array. Not deploying micro-filters
provides advantages in terms of quantum efficiency [129], as the removal of optical
layers decreases the likelihood of unwanted reflections. However, monochrome
responses are not sought after in the field of color imaging. A filter wheel [130]
is a technology that deploys a certain number (typically from six to twelve) of
wide-band spectral filters that rotate in front of the camera to select the portion
of the spectrum to analyze. This methodology is clearly limited to static objects
and shows clear limitations on the number of filters that can be mounted on the
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Figure 2.23: a) Filter wheel and typical transmission spectra of wide band-pass filters
from UV to NIR range. Upper figure source: [126]. Data source for the plot: Midwest
Optical Systems. INC [127]. b) Schematization of a MSI system for the scanning of film
in transmission mode deploying multiple LED sources in an integrating sphere. Figure
adapted from [128] with permission from authors. ¢) Typical SFA patterns showcasing
different shapes and numbers of deployed filters. Figure source: [126]

wheel, but allows to achievement of good levels of image quality by carefully
selecting individual integration times for each filter. Similarly, a monochrome or
RGB camera can be deployed in combination with various illumination sources
with more or less narrow emission spectra, depending on the application [128,
131].

Having to rotate between filters and illumination sources can sometimes repres-
ent an unsurmountable obstacle in an image capture pipeline. Multispectral high-
speed quality control and video are challenging to put into practice with sequen-
tial acquisition unless snapshot solutions like Spectral Filter Array (SFA) [126],
closely related to the already discussed color filter array, can be deployed. The
main research questions that were asked during the development of such techno-
logies concerned the maximum number of applicable filters, their arrangement on
the SFA, and the interpolation methodology.

Depending on the number of implemented channels and their inherent properties
such as bandwidth and relative distribution, a MSI system allows its user to recon-
struct a reflectance spectrum more easily than a characterized color camera [132].
This property, in conjunction with the relative ease of designing an imaging set-up
and the relatively inexpensive costs, made MSI an attractive imaging technique for
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the study of CH artifacts all around the world [133], even in smaller institutions.
MSI can be used as a preliminary observation technique, especially when one of
the deployed channels works in the UV range, thus allowing the investigation of
the varnish layer of paintings [134].

2.5.5 Spectroscopy Principles

The word spectrum has different meanings, also in an optical context. It can be
used interchangeably to define the range of wavelengths (or frequencies) in which
electromagnetic radiation oscillates, or it can define the continuous distribution
of material properties, such as reflection and transmission, over an interval of
wavelengths.

Continuous quantities are common in daily life but pose computational challenges.
Quantization, as discussed with light detection, converts continuous data into dis-
crete signals for processing. Integrals are often simplified using summations. Sim-
ilarly, it is better to represent continuous spectra by discrete data points. But then,
what makes a spectrum, a spectrum?

A series of non-negative data points can be described by the spanned interval of
wavelengths and by the number of recorded data points. Taken individually, these
two properties do not promptly define a spectrum, but their ratio, also called spec-
tral resolution, is arguably one of the most important features of a spectrum. In a
uniformly sampled continuous spectrum, the spectral resolution is the difference
in wavelength between two consecutive data points. A spectroscopic system can
be thought of as a measurement device that samples a continuous quantity into
discrete data points. Sampling, whether it takes place by selecting a monochro-
matic light source or by filtering the incoming radiation, cannot happen punctu-
ally on the spectrum. As observed in Figure 2.23a, the transmission of a filter
tends to approximate a Gaussian function. When a narrow-band filter is deployed,
the central wavelength defines the measured point on the spectrum (the nominal
wavelength), whereas the Full Width at Half Maximum (FWHM) is typically ad-
opted to characterize the spectral resolution of systems with uniformly distributed
selective functions [135].

The Nyquist-Shannon theorem of sampling states that in order to reconstruct an
aliasing-free signal, the sampling rate must be at least twice the highest frequency
present in the signal [136]. Thus, the number of points needed to reconstruct a
spectrum depends on the shape of the signal. The Nyquist-Shannon theorem is
useful to evaluate if a spectroscopy system is suitable to measure certain spectra,
but manufacturers prefer to define their spectral resolutions a priori. In the context
of measuring reflectances in the visible and infrared ranges, typical spectromet-
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Figure 2.24: Sampling a recorded spectrum with different FHWM (spanning from 3.19
nm, as originally measured by the device to 77.60 nm) leads to loss of information.

ers display a spectral resolution that varies from 0.5 nm to 10 nm. The effect of
deploying different FWHM is illustrated in Figure 2.24.

Most reflectance curves extracted from natural materials in the visible range dis-
play a certain degree of smoothness [137], whereas artificially manufactured ma-
terials can sometimes showcase spiky features in their spectra. With this notion in
mind, smoothness is a characteristic of spectra that is visually investigated to judge
the quality of the measurement. Local spikes in a reflectance spectrum are nor-
mally associated with noise and are usually corrected with smoothing techniques
such as Savitzy-Golay filtering [138] (Figure 2.25).

2.5.6 Collection of spectra

Punctual spectral measurements in the visible and infrared (NIR and SWIR) can
be carried out with three distinctive techniques, namely filtering, dispersion, and
interferometry. When a measurement is defined as punctual, it is typically inten-
ded that the measurement area is relatively small and the output is a 1D vector. A
typical punctual device such as a spectroradiometer usually involves the usage of
an integrating sphere or fiber to minimize the degree of polarization of the incom-
ing radiation and thus record an unpolarized measurement. When the sensor is a
2D matrix designed to capture images, this implementation cannot be performed.

Filtering methods for the collection of reflectance spectra involve the selection
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Figure 2.25: Example showing a spectrum to which noise is added in a first step, then
Savitzy-Golay filtering with different parameters is applied in an attempt of denoising.
The resulting spectra resemble the original one, although some differences can still be
appreciated.

process either at the illumination source or at the sensor. The sensor can be consti-
tuted by a single pixel, as the filtering of different frequencies takes place sequen-
tially. The most deployed systems of this kind are based on monochromators [139]
(for the filtering of the illumination) and on Liquid Crystal Tunable Filters [140]
(LCTF, for the filtering of radiation at the sensor level). Filtering methods offer
the possibility to tune optimal acquisition parameters for each wavelength, but at
the same time, they can be slow and not ideal for the sequential collection of data
points.

Some of the most diffused spectroscopy systems rely on the presence of a dis-
persive element that splits the incoming radiation into the different constituting
wavelengths [141] typically by exploiting optical properties of material like the
refractive index, or by enforcing the generation of diffraction by etching a series
of narrow slits on an appropriate substrate. The prism (Figure 2.26a) is a classic
example of optical dispersion as it exploits the wavelength-dependency of the re-
fractive index. The diffraction grating (Figure 2.26b) represents a valid alternative
to dispersion by refractive index. When light passes through a diffraction grating
with hundreds of equally-spaced and equally-sized slits per millimeter, multiple
diffraction patterns defined by orders can be observed. Each pattern splits the ra-
diation and thus, an image sensor can be aligned to the first order (the most intense
in terms of brightness) to measure the contribution of each spectral component.

Prisms have some inherent efficiency-related advantages over gratings since all
the refracted radiation can be measured and not only the one related to the first
diffraction order. Moreover, it is possible that the diffraction order signals can be
mixed, thus generating the so-called second-order errors [143]. On the other hand,
systems that adopt diffraction gratings allow the observation of larger spectral in-
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Figure 2.26: a) Dispersion of radiation by use of a prism. b) Schematization of the work-
ing principle of a diffraction grating. The orders of diffraction must not mix to accurately
measure the spectral components at the edge of the operating range. Image source: Meet-
Optics [142].

tervals and are more compact as they do not require large angles or the introduction
of additional optics for realignments.

A novel methodology for the collection of reflectance spectra exploits the fact that
the temporal profile of a signal and its spectrum in the wavelength domain are
linked by the Fourier Transform [144]. An interferometer can then be deployed
to generate delayed replicas of a signal using a beam splitter. The resulting in-
terferogram obtained by applying different delays can then be transformed into
a spectrum with the Fourier Transform. This methodology for the acquisition of
spectra is promising since it does not require the presence of a dispersive or filter-
ing element, and it can thus operate in response to low light levels.

2.5.7 Spectral Metrics

Once spectra are measured and their quality assessed, they are usually stored in
spectral libraries. Spectral libraries represent a vital resource to researchers in
conservation science and various application fields as they store the fingerprints of
materials. A typical application when investigating a new artifact is the comparison
of the retrieved spectra with those spectra stored in the spectral library. In the
ideal scenario, if a high similarity is found then it is likely that the material under
examination is known and conservation treatments can begin. In the following, we
are going to explore the most common ways of comparing spectra.

When two spectra are plotted at the same time, it is evident for the visual observer
to spot differences in magnitude and shape qualitatively. Quantitative measures of
spectral difference can be computed with metrics and distances. These two terms
are sometimes used interchangeably, but they refer to slightly different entities.
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Indeed, all metrics are distances, but not all distances are metrics. A metric is such
if it respects five fundamental properties [145]:

> Reflexivity: d(x,z) =0

> Non-negativity: d(z,z) > 0

>~ Symmetry: d(x,y) = d(y, x)

> Identity of indiscernible: d(z,z) =0+ z =1y

> Triangular inequality: d(z,y) < d(x, z) + d(y, 2)

whereas a distance must comply with reflexivity, non-negativity, and symmetry.

Most distance functions originate from the general definition of the Minkowski
formula (Equation 2.38) for two generic spectra x and y defined over the spectral
interval with N data points.

N 1/p
M(z,y) = (lei - yilp> (2.38)
i=1

in which p represents the Minkowski order. By varying the order value, it is pos-
sible to obtain a series of distances, some of which respect all the properties to be
labeled as metrics. In the case of p = 0.5, for instance, the triangular inequality
is not respected, whereas Manhattan (p = 1), Euclidean (p = 2), and Chebychev
(p = oo) distances are all metrics. The Root Mean Square Error (RMSE, Equa-
tion 2.39) is a weighted extension of the Euclidean distance and is one of the most
commonly deployed metrics [146].

N

1
RMSE(z,y) = || + > (i — yi)? (2.39)
=1

A spectrum can be considered as a vector in the N-dimensional space generated
by its sampled wavelengths. In this environment, the difference between two spec-
tra can be quantified by the angle between them. The cosine distance is usually
adopted, in a form denominated Spectral Angle (SA, Equation 2.40) [147].

N
Zi:1 T Yi

SA(z,y) = cos™*

(2.40)
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Figure 2.27: Example of a spectral library projected onto the AG/AW space. Two
macro-clusters can be easily identified.

The concept of spectral angle is tightly connected to the concept of spectral shape.
Indeed, SA measures the shape similarity between two spectra, neglecting any
magnitude difference. For this reason, the property of identity of indiscernible is
not respected, as SA(x,y) = 0 can be obtained V& = « - y, in which « represents
a scalar multiplier.

A way to simultaneously assess magnitude and shape differences between spectra
is provided by the Kullback-Leibler Pseudo Divergence (KLPD) [148]. This met-
ric is constituted by two components, an intensity difference AW and a spectral
shape difference AG. Moreover, KLPD is a user-friendly visualization tool since it
allows to plot spectra in a 2D space, the AG /AW projection (Figure 2.27). Here,
each data point is a spectrum with AW and AG coordinates computed with re-
spect to an arbitrarily selected spectrum. This space can be used to cluster similar
spectra and assess the distributions present in a spectral library.

When spectra are considered as probability density functions, it is possible to es-
timate the level of correlation. The Pearson coefficient has been adapted to yield
the Spectral Correlation (SC, Equation 2.41) [149].

Clay) = 21 @ =D =)
VEN, (@i - 23S, - )

(2.41)

Similarly to SA, SC evaluates the shape similarity between two spectra, and there-
fore cannot be considered a metric. However, SC is considered to be an improve-
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ment over SA because SC(x,y) = 1 (the maximum similarity) can be obtained
V& =a-yandVz =+ y, in which [ represents a constant magnitude shift.

The distances and metrics introduced so far produce a numerical output that is sup-
posed to provide insights regarding the global comparison between two spectra. If
from a point of view of quantification this is a desirable outcome, a single number
cannot explain from where in the spectra the possible similarities or dissimilarities
come from. To this purpose, local distances can help in visualizing the spectral
region responsible for a high/low similarity score. All distances introduced so far
can be transformed into their rolling counterpart, where a spectral window pro-
gressively slides across the spectra and computes the distance locally [150]. The
output is then a new spectrum-like plot that enables different levels of interpret-
ation. Equation 2.42 illustrates the local spectral correlation using & to represent
the spectral bands and w as the window width.

k4w _
S (= 3) (i — 9)
k+w k+w _
SR - 02 S i 0

LSCy(x,y) (2.42)

2.5.8 Hyperspectral Imaging a.k.a. Reflectance Imaging Spectroscopy

It took some introductory pages, but we now have all the instruments to be able to
properly define Reflectance Imaging Spectroscopy as the marriage between ima-
ging and spectroscopy. With this powerful imaging technique, each pixel can pixel
associated with a reflectance spectrum, thus enabling the simultaneous investiga-
tion of spatial and spectral properties of a scene.

Reflectance Imaging Spectroscopy originated in the field of remote sensing, with
NASA being one of the first major investors in the acquisition of satellite images
[151]. Around the same time, the term hyperspectral imaging started to circulate
and was used when discussing imaging spectroscopy. This term is not wrong, but
according to the Working Group IEEE P4001 [152], which sets its goals on stand-
ardization of terminologies and quantities, the term RIS should be preferred. In
this dissertation, we try to refer to the technique as RIS, whereas in the articles, in
order to reach a broader audience, the HSI nomenclature was sometimes adopted.
In this dissertation, the resulting images are termed hyperspectral, as an alternat-
ive terminology is not yet provided in the standard. Another term that requires
certain care when used is image cube. A hyperspectral image can be thought of
as a 3D structure with the spatial coordinates x, y and spectral coordinate z. The
term cube is attributed as a convention since the numbers of rows, columns, and
spectral bands almost never match. The more appropriate term would be image
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parallelepiped, which is frankly a mouthful.

The boundary between MSI and RIS seems to lie on a fuzzy continuum of defin-
itions that take into account the number of bands and the spectral resolution of
the sensors. However, given the usual range of operation of spectral systems, an
unofficial boundary is set on the spectral resolution for color imaging, classifying
a system with a spectral resolution lower than 10 nm as belonging to the spectro-
scopic domain [153].

2.5.9 Methods for capturing hyperspectral images

The available image sensors are notably 2D structures, thus forcing the acquisition
of hyperspectral images to resort to some sort of sequential data collection, be it in
the spectral, spatial, or temporal domains.

Before delving into the different sequences adopted, let us discuss snapshot RIS.
Although it would be a great commodity to record dense 3D information (meaning
high spatial and spectral resolution), the task at hand is an extremely challenging
one. Spectral Filter Arrays are at the moment the technology that approximates the
most this ideal scenario, but at the current state-of-the-art, these systems can only
be deemed to be multispectral [154].

Hyperspectral images can be acquired by sequentially collecting information along
the spectral dimension deploying staring systems. In this configuration, which is
similar to the way multispectral images are collected, the preferred solution is to
deploy LCTFs [140], given their high selectivity when it comes to the filtering of
incoming radiation.

Another methodology that has already been mentioned in this dissertation, spec-
troscopy by interferometry and Fourier Transform, can be extended to collect hy-
perspectral images in the temporal domain [155]. Given the absence of dispersive
and filtering elements, the potentiality of such devices in RIS is promising for the
acquisition in static conditions like in the CH field. On the other hand, devices
with this working principle cannot be mounted on Unmanned Aerial Vehicles or
satellites for Earth Observation purposes.

The most commercially diffused systems for RIS deploy dispersion elements (in
particular diffraction gratings) and a sequential acquisition along the spatial di-
mensions. The whiskbroom configuration is comparable to a sequential acquis-
ition of single-point spectroscopy measurements [141], like in the case of Fiber
Optics Reflectance Spectroscopy (FORS) [156]. Differently from FORS, which is
typically a hand-held device, whiskbroom cameras are mounted on a support con-
nected to a motorized stage moving along the two spatial directions (z,y). The
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spatial resolution can then be decided by the user and is limited by the sensitivity
of the motorized stage. On the other hand, selecting a high spatial resolution will
proportionally increase the time needed to scan a certain area.

While whiskbroom systems only need an image sensor constituted by a stripe of
pixels, pushbroom devices make use of a whole 2D pixel matrix that can be filled
by sequentially scanning the spectral profiles of a spatial line of the scene [141].
The hyperspectral image is then composed by stacking the collected spectral lines.
Pushbroom systems are ideal for the acquisition of hyperspectral images in the
context of Earth Observation, where the camera moves relatively to the scene, and
when translational stages are deployed so that the scene moves relatively to the
camera. In this configuration, two fundamental directions are defined. The along-
track direction corresponds to the direction of movement of the camera or scene.
The across-track direction is perpendicular to the along-track one and is where the
spatial lines are sampled from the scene.

In this dissertation, the deployed hyperspectral systems are of the pushbroom type
coupled with a translational stage [157, 158], thus the assessment of quality and
calibration procedures will be specific to the case at hand. When a pushbroom
system is coupled with a translational stage, the illumination source and the camera
are kept fixed while the scene moves in the along-track direction.

2.5.10 The spatio-spectral trade-off

A well-known trade-off in the field of RIS concerns the number of pixels that an
image sensor can allocate to the detection of spatial or spectral information. In
other words, spatial resolution and spectral resolution coexist in a conflict of one
over the other [159]. The reason for this boils down to the inherent pixel response
and its SNR.

When the pixel pitch is reduced and more pixels are introduced in an image sensor,
the spatial resolution increases but the SNR decreases, as the noise of the individual
pixels remains unchanged while the signal must be divided amongst more units.
A strategy to increase the SNR back can involve the widening of the bandwidth,
which in turn leads to a decrease in spectral resolution. Similarly, increasing the
number of pixels in the spectral direction by having narrower FWHMs will make
the SNR decrease, and acceptable levels of SNR can be restored by increasing the
pixel pitch, thus decreasing the spatial resolution.

RIS sensors are then built considering this fine balance between the spatial and
spectral resolution, while at the same time, research efforts are poured into devel-
oping sensors with lower electrical and thermal noise to push the boundaries of the
tradeoff forward.
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2,511 Quality of RIS systems

The term guality in an imaging context is related to a broad field of research that
makes use of notions from vision science, psychology, and signal processing [160].
The high dimensionality of hyperspectral images makes their visualization a chal-
lenging task, and thus evaluating image quality via standard methodologies is not
feasible.

Here, we discuss a series of parameters that can be investigated to evaluate the
performances of a hyperspectral imager. Such parameters are usually evaluated at
an early stage of the life of a RIS system and should be tested periodically but not
on an everyday basis since their evaluation is not straightforward.

The SNR (Equation 2.43), probably the most indicative parameter of a RIS system,
can be measured by recording a Lambertian-like surface uniformly illuminated (in
controlled laboratory conditions this is achieved through the usage of an integrat-
ing sphere). The SNR is then computed spectrally as the ratio between the mean
value of the band and its standard deviation:

(k)
o(ky)

Since SNR and quantum efficiency are closely related, the SNR curve tends to
mimic the behavior of the quantum efficiency of the sensor. The classic shape
that falls toward the extremities of the spectral interval is also typically used to
determine the operating range in the first place [161].

SNR) =

(2.43)

When we think of a hyperspectral image as a 3D geometrical entity, the fact that
the 2D images that compose the stack are co-aligned is often taken for granted.
Misregistration of a pixel in adjacent bands in a hyperspectral image is quantified
with keystone [162], which is an optical distortion that sprouts from misalignments
in the composite system made of the slit (aperture) - diffraction grating - image
sensor. Keystone can be evaluated by collimating a broadband point light source
and by recording the center of gravity of the PSF band-wise (Figure 2.28a). If the
deviation is in the order of a fraction of a pixel, then the system can be considered
keystone-corrected.

Similarly, optical distortions can take place along the spatial dimension when the
system is exposed to monochromatic inputs (for example by recording an integ-
rating sphere in controlled laboratory conditions). In this instance, the distortion
takes the name of smile [162] because of the typical bent shape of a spectral line
across the field of view (Figure 2.28b). Similarly to keystone, if the deviation is
in the order of a fraction of a spectral band, then the system can be considered
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Figure 2.28: Schematization of keystone a) and smile b) in a RIS system. In the presented
instances, both smile and keystone exceed the distortion limit of 1 pixel.

smile-corrected.

The pixels distributed across-track devoted to the capturing of spatial information
are subject to optical distortions due to the fact that each pixel possesses a field of
view that varies according to the position of the pixel with respect to the central
spatial pixel. This information is usually encapsulated in a sensor model that can
be used to correct image artifacts that squeeze and expands pixels in the across-
track direction [163].

2.5.12 Acquisition pipeline

In a classic imaging setup, the four main components are an object of interest,
an illumination source that sends photons to it, an imaging device able to capture
and record the reflected photons, and a reference target with a known reflectance
factor. We have already decided what our imaging device will be, so now we
need to formulate some requirements that can help us in obtaining good-quality
hyperspectral images. For the moment, we will consider the case of single-object
(a relevant artifact), single-light source, and single-pushbroom RIS device.

Pushbroom RIS systems represent a convenient solution for the capturing of hy-
perspectral images because of their flexibility when it comes to scanning objects
of varying dimensions. On the other hand, typical systems are built with a fore
optic that only allows them to be focused at a specific acquisition distance. This
leads to the generation of a constraint regarding the topography of the artifacts
that can be scanned. Flat objects are privileged, but this is a mostly ideal condi-
tion. Indeed, most artifacts like paintings, manuscripts, and textiles, for one reason
or the other, present topographical reliefs. As we already observed, paintings are
produced sometimes with peculiar pictorial techniques such as impasto to confer a
perception of depth, whereas parchments and textiles can lose their original shapes
when exposed to non-ideal levels of temperature and relative humidity [27]. The
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depth of field of the lens can thus be used as a parameter to decide if an artifact
is suitable for scanning or not, but as we will see when discussing Flat Fielding
(Section 2.5.13), objects with complex topographies and marked reliefs can have
serious implications on the calibration process.

The illumination source must be selected considering two criteria of benefit. Firstly,
a light source must not induce any irreversible change to the artifact and thus has to
be selected respecting recommendations regarding light dosage and operating tem-
perature [31]. Once these factors are validated, a source with a certain power can
be placed at a suitable, harmless distance. At the same time, the illumination must
be chosen so that it is beneficial for the data collection. For RIS, it is important to
deploy a broadband light source (or a combination of several light sources) that has
enough emission, especially in those wavelengths where the quantum efficiency of
the sensor is lower. Once a decision is taken, the illumination should be as uniform
as possible on the across-track direction in correspondence with the aperture slit.
For historical artifacts, it is also recommended that the light source acts only on
this line, so as to not illuminate parts of the artifact that are not imaged.

When it comes to the adjustments that can be made at the stage in which the ima-
ging setup has already been built, every fine-tuning should be performed with the
goal of increasing the SNR, while at the same time protecting the artifact. Unfortu-
nately for us, high SNR and preservation do not go hand in hand, as the methodolo-
gies to increase SNR involve increasing the integration time as much as saturation
allows it and frame averaging, i.e. the multiple scanning of a line designed to in-
crease the SNR by a factor v/ N where N is the number of scans. Both procedures
to increase the SNR increase the artifact exposure as well, so every instance must
be carefully designed to meet the specific needs of preservation.

Finally, the presence of a reference target in the scene is crucial for the computation
of the reflectance factors of the scene [164]. Typical targets are made of Spectralon,
a material developed by Spherelab that approximates a Lambertian surface [165].
Spectralons come at different global reflection levels and with more or less stable
reflectance curves in the range between 250 nm and 2500 nm. In a line-scanning
environment, these targets are usually placed before or after the object of interest,
at the same camera distance as the artifact, so that the whole scene receives the
same amount of irradiance.

2.5.13 Calibration pipeline

In the previous sections, we have reviewed how the collection of photons triggers
the generation of electric currents that, if transformed into digital signals can then
be stored as digital numbers in a file accessible by means of various software. At
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Figure 2.29: Full pipeline of data collection, reading, and calibration. Figure inspired
from [161]. The different color shades serve to segment the processing steps into semantic
areas: green for scene, blue for optics, orange for photodetector, purple for electronics,
and yellow for software.

this stage, we refer to the values as being raw, meaning that they are the total
product of interaction between light source, object, and factors related to the in-
trinsic properties of the imaging device as well as parameters introduced by the
user when the images were captured. The goal of a calibration pipeline is to pro-
gressively discard all these effects until only the material-related information (the
reflectance in the case of RIS) is left. The pipeline adopted in the articles presented
in this dissertation can be found in Figure 2.29.

Geometric Correction

The first step of the pipeline can be performed on RAW data and involves ac-
counting for the optical distortions introduced on the across-track direction by the
variation of individual pixel fields of view. Moreover, a second distortion can be
introduced in pushbroom system if the camera slit aperture and the movement of
the scene are not exactly perpendicular [163]. The general correction model can
be expressed as indicated in Equation 2.44.

V(z,y) € [M] x [N], I(z,y) = D[h(z,y),v(z,y)] (2.44)

in which the transformation h accounting for the across-track distortion can be
derived from the sensor model of the camera, whereas the transformation v related
to the along-track distortion depends on the way the setup is built and must be
obtained experimentally.
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Radiometric Correction

The effect of camera-dependent and user-dependent parameters are discarded with
a radiometric correction [166]. The goal of this correction is to perform a trans-
formation of data from RAW to relative radiance (RAD), hence the name. The
formulation of the correction, reported in Equation 2.45, is system-dependent and
is related to an acquisition model that is inverted.

[RAW (z,\) — DC(z,\)] - h-c

L(z,\) = n(A) - RE(x,\) - SF-A-t-w-AXA) - A

(2.45)

The camera-dependent parameters are intrinsic to the system and cannot be changed
by an external user. They are: quantum efficiency 7, gain matrix RE, aperture A,

pixel field of view w, scaling factor S'F, spectral bandwidth (FWHM - A)), and

central wavelength A. The user can modify the integration time ¢, thus influencing

the dark current signal DC'.

Flat-Fielding

As already mentioned when discussing light sources, the illumination should be
uniform on the acquisition line of a pushbroom camera. However, intensity fluc-
tuations can still take place and can be observed when imaging a homogeneous
achromatic material. In most instances, the Spectralon already present in the scene
can fulfill this purpose, but a standardized material is not strictly necessary. The
whole scene can then be flat-fielded by arithmetically dividing each spatial line by
the line acquired on the homogenous material.

The selected wording, flat-fielding, already tells a lot of the expected use that one
should do. Indeed, this procedure is designed to work on strictly flat materials,
but what should be the best solution for those objects that have features that can
be scanned by hyperspectral systems because their reliefs do not exceed the depth
of field limits? A non-flat-fielding should be adopted, but the surface topography
must be estimated a-priori or within the same system [167].

A pushbroom system with a fixed camera position and fixed illumination can be
considered advantageous when performing a flat-fielding correction if we consider
that typical diffuse materials generate diffusive surface scattering thanks to their
rugosity. If the spatial resolution of the system is able to capture these local vari-
ations, then flat-fielding would not work correctly because of the introduced noise
of an individual scanned line. However, it is possible to capture a series of ad-
jacent lines that once averaged can result in an appropriate approximation of the
light field arriving on the acquisition line.
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Reflectance Normalization

The flat-fielded radiance values of a pixel in the scene are transformed into re-
flectance via a band-wise arithmetic division by the flat-fielded radiance values
of the Spectralon target and consequent multiplication by the reference reflectance
curve, which is usually provided by the manufacturer of Spectralon. Equation 2.46
encompasses the transformation from relative radiance values L(x, \) to reflect-
ance p(z, \) encompassing both flat-fielding and reflectance normalization. Here,
((x, \) represents a spatio-spectral radiance line extracted from a flat-fielding tar-
get, whereas s(\) is the flat-fielded spectrum extracted from a potential Spectralon
target and 7(\) is the reference reflectance provided a priori. It is important to
point out that Equation 2.13 inverts the radiative transfer model following the as-
sumption that the observed object is flat, matte, and diffuse.

_ L@ s (2.46)

o) =T v

2.5.14 Multivariate analysis for hyperspectral images

A possible definition for a good-quality hyperspectral image that captures a scene
illuminated by a broadband source (not an LED or a Mercury lamp for example)
could be of a spatially sharp image content with smooth spectral features.

If a spectrum varies smoothly, the difference between adjacent spectral bands is
likely to be small. This leads to two fundamental conclusions that are usually both
debated as positive and negative aspects when discussing hyperspectral images:
band correlation and redundancy [168]. If on one hand having similar adjacent
bands can simplify computation operators, on the other, the redundancy can hinder
them and represents a challenge for data management, especially for problems
related to storage and data compression [169]. In the end, spectral smoothness is a
blessing and a curse of RIS.

The high spectral redundancy makes hyperspectral images optimal targets to apply
dimensionality reduction techniques that can transform a dataset with hundreds of
channels into a reduced but similarly meaningful dataset with a handful of channels
that do not necessarily refer to spectral information [170]. Reducing the dimen-
sionality of hyperspectral data can help in reducing noise, generating new features,
and visualizing data highlighting underlying patterns that would not be so evident
in a more standard visualization scenario.

Multivariate analysis can be applied to examine hyperspectral images by consider-
ing the pixels to be individual observations, whereas their reflectance acquired at
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Figure 2.30: Example of PCA applied to a hyperspectral image.

the sampled wavelengths can be considered the variable of the dataset. Multivari-
ate analysis techniques usually do not take into account the spatial arrangements of
pixels and can be performed without any loss of information on apparently noisy
and meaningless images whose pixels got randomly shuffled. This can sometimes
be seen as a shortcoming, but nonetheless, the potential to extract meaningful in-
formation is still significant.

Principal Component Analysis (PCA) is a multivariate statistical technique that
transforms the variables of hyperspectral images related to the observations, into
new variables, denominated Principal Components (PCs), which are linearly un-
correlated between themselves [25]. The application of PCA to hyperspectral
imaging involves constructing a covariance matrix from the data, followed by the
computation of its eigenvectors and eigenvalues. The so-called first PC is then the
linear combination of original variables that explains the most variance, whereas
the subsequent PCs capture progressively less variance. The data is then projec-
ted into a new space of lower dimensionality by selecting a subset of the PCs that
can highlight the most significant patterns. Figure 2.30 illustrates an example of
PCA applied to the case of a hyperspectral image in which some patterns are not
as visible in the original capturing as in the newly projected principal components.

In PCA terminology, the terms scores and loadings are often used, but they do not
directly translate to eigenvalues and eigenvectors, although they are related. We
can think of eigenvectors as the directions in the newly projected space in which
the variance of the data is maximized, while the eigenvalues quantify the variance
explained along each eigenvector. The scores are the coordinates of the newly
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projected observations onto the eigenvectors, whereas the loadings indicate the
relationship between each variable and the new eigenvectors (PCs). Thus, a high
loading represents a variable that is highly linearly correlated with the observed
PC.

PCA exploits Singular Value Decomposition (SVD, Equation 2.47), a matrix fac-
torization technique that decomposes the observation matrix A into three new
matrices: an orthogonal matrix U containing the left eigenvectors, a diagonal
matrix ¥ containing the singular values, and a transposed orthogonal matrix V¢
containing the right eigenvectors. The role of SVD is to estimate the principal
components of U from the covariance matrix computed from the original observa-
tions.

A=UXV! (2.47)

Other matrix factorization techniques are particularly effective on multi-band im-
ages. Independent Component Analysis (ICA) [171] works similarly to PCA, with
the difference that each new component is found so that it is a linear combination
of original variables statistically independent from all the other components. The
main difference is then that the PCs are found sequentially following a variance
explained-based ranking, whereas the ICs are computed all at once. ICA tries to
find independent components in mixed signals and is then sometimes useful in de-
composing images into different image sources, like in the example of an outdoor
reflection on a window looking inside a room.

PCA and ICA can sometimes be challenging to interpret since the new spaces into
which the features are projected are computed unconstrainedly. So, reflectance
data are sometimes projected with negative values, which do not carry much phys-
ical meaning. Non-negative Matrix Factorization (NMF) [172] is a decomposition
technique that overcomes this problem, providing a data reduction with values that
remain strictly positive.

2.5.15 RIS for Cultural Heritage Analysis

One of the most fundamental tools dominating the RIS analysis scene is undoubtedly
the spectral library, a collection of individual spectral signatures (reflectance, trans-
mittance, absorbance, etc.) related to pure or compounded components that have
found use in the production of historical artifacts. Numerous institutions across
the world have been collecting spectral signatures with the goal of creating and
sharing large databases for research and archiving purposes [173-175].

The optical characteristics of pigments in their mass-stone form (the powder),
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binders, pigments diluted in different concentrations of binders, dyestuff, mord-
ants, fibers, etc. are all subject to be stored in spectral libraries. Typically, spectral
signatures are included in a library either by the direct extraction from artifacts
or with the usage of mockups. In order to be able to include a signature from an
artifact it is necessary to have an auxiliary analytical measurement that can pin-
point the composition of materials present in the measured area [176]. Producing
mockups from scratch, on the other hand, allows researchers to accurately know
all the materials deployed and thus does not require an auxiliary measurement to
be involved [177].

At this point, a premise is necessary. In the context of Heritage Science, it is highly
unlikely to encounter pure endmembers as such. Through the ages, artists have
experimented with all kinds of materials to generate the colors, optical effects,
paint consistencies, and textures that eventually ended up on the canvas. As a
result, finding a match for all materials contained in a newly examined artifact is
not something that can be taken for granted. If a spectral library is not available a
priori, then it is possible to operate according to two alternatives that by no means
intend the endmembers as pure materials, but rather a rough approximation that is
used for labeling simplicity.

The first alternative requires the exploitation of prior knowledge, which can be in
the form of expert knowledge regarding the history of the artifact, the historical
context in which it was placed at the moment of its creation, and beliefs regarding
specific regions of interest. Prior knowledge can also be intended as previous
acquisition campaigns operated with different techniques such as XRF and FTIR
in some areas of interest [176].

When prior knowledge cannot be exploited in any form, then it is possible to estim-
ate the main spectral signatures directly from the scene. This practice is possible
thanks to the development of Endmember Extraction Algorithms (EEAs) in the
field of remote sensing [178]. Here, the term endmember is used to define a spec-
trum contained in the spectral library which represents a defined material in its
purity. The concept of purity is however highly dependent on the context and on
the criteria imposed by the user. In remote sensing, typical endmembers indicate
water, grass, canopy, rocks, etc., but the definition is tightly connected to the avail-
able spatial resolution. When a low-altitude drone is deployed, the endmember
-canopy- likely becomes not pure enough, and distinctions must be made between
tree species.

Assuming that the observed scene contains a certain number of pure materials is
a good starting point to begin the search for endmembers. Consequently, only
a handful of pure pixels are present in the scene, whereas the nonpure ones (the
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vast majority) are considered to be the result of a combination of the endmem-
bers [179]. In the simplest case, the signal of a pixel Y()) is assumed to be a
linear combination of the endmembers e(\), thus implying a linear mixing model
(Equation 2.48).

Y(A) = zq: ei(\) - i + b(N) (2.48)

=1

in which ¢ is the number of endmembers, and « are the relative concentrations or
abundances of the endmembers. An additional level of band-dependent noise b(\)
must also be included. In this configuration, two constraints are typically applied
to the concentration vector. The non-negativity constraint allows the abundances
the be strictly zero or positive o; > 0Vi € {1,...,q}, whereas the sum-to-one
constraint ensures the energy conservation principle by not allowing the loss or
creation of matter ) ¢, a; = 1. In some applications, to allow a certain degree of
tolerance, the sum-to-one constraint can be relaxed by a certain percentage.

One of the first EEAs to be developed, the Pixel Purity Index [180], seeks to geo-
metrically find the endmembers as the vertices of the smallest simplex that con-
tains the observed data in an N-dimensional space. Similarly, the N-FINDR [181]
method deploys the complex of N-dimensional simplex, but the endmembers are
found by iteratively growing the simplex from within the data. The stopping cri-
terion is set so that the simplex connecting the purest pixels is larger than any
simplex connecting the pixels found as combinations of others. The Vertex Com-
ponent Analysis [182] draws from both predecessors and projects the pixel spectra
in an N-dimensional space assuming that every spectrum is the product of a lin-
ear combination of a certain number of endmembers. The endmembers are then
found iteratively as those linear combinations that include only small concentra-
tions of the other presumed endmembers. Some EEAs have the disadvantage (or
sometimes advantage) that a certain user proficiency is required, especially in de-
termining the number of endmembers to be extracted, which is necessary inform-
ation for the algorithms to initiate their search and has a significant impact on the
performances [183]. This can be beneficial in contexts in which the palette of a
painter is known to limit the extraction of meaningful signatures but also can leave
a user clueless and having to repeat the procedure many times until a somewhat
optimal solution is found. Recent developments of fully automated EEAs [151]
have focused their efforts on considering the possibility that pure pixels may not
exist within a scene [184, 185].

Endmembers are fundamental tools to identify materials, but it is natural to think
that within a complex scene, a series of factors can concur to produce local ap-
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pearance differences. Usually, these differences help humans infer shapes, illu-
mination, texture, and material properties. The endmember -grass- related to a
data collection conducted on a sunny day should still be able to recognize grass
even when a mountainside casts a shadow on it or on a rainy day. A spectral sys-
tem, however, is not likely to overcome these differences, unless it becomes aware
of the concept of spectral variability [186]. In RIS for CH artifacts, the spectral
variability of a spectral signature is dictated mostly by the interaction of the spatial
resolution of the imaging system and the surface roughness, which can be summar-
ized in the BRDF. Micro-shadows and partial specularities can also be considered
instances in which an endmember changes its spectral signature. The main idea
for conducting RIS analysis with spectral variability is to consider bundles of N
endmembers rather than individual endmembers. This will produce more robust
results, at the expense of an increase in computational requirements.

A carefully designed set of endmembers (or bundles of endmembers) is crucial to
conduct the two most popular analysis techniques of artifacts by means of RIS:
spectral mapping [187-192] and spectral unmixing [177, 179, 193-195]. In spec-
tral mapping, each pixel spectrum is compared to each signature contained in the
spectral library, and a similarity score is assigned. The pixel then receives a label
corresponding to the element in the library with which it shares the highest similar-
ity. The result is then a map of endmembers (Figure 2.31). There is no free-lunch
rule for the choice of the similarity measure to adopt, although it has been proved
that the Spectral Correlation represents a more robust version of the Spectral Angle
[149]. The typical outcome assigns a label to each pixel, but by defining quality
thresholds on the similarity scores it is possible to leave those pixels that do not
achieve a good match unclassified. This is typically performed to avoid false posit-
ive cases, which can in turn have unwanted repercussions in the selection of wrong
conservation treatments.

Spectral unmixing aims to destructure the spectrum of a pixel into a weighted com-
bination of endmembers according to a mixing model Y'(A\) = f(E()\, q),C(q))
in which E(, q) represents the spectral library and C/(q) is the concentration vec-
tor of individual abundances «;. We have already seen how the linear model of
Equation 2.48 is an example of a mixing model. However, when we consider
typical mixing occurring in paintings and textiles, it is not easy to envision lin-
ear mixing at the microscopic level. Indeed, linear mixing is designed to resolve
instances in which signal mixing takes place at the camera level because two or
more signatures, spatially separated in reality, are represented within a single pixel
value. Pigments and dyestuff, on the other hand, mix more intimately and thus
a linear model is likely to be not suitable. Non-linear mixing models are for ex-
ample based on subtractive mixing [196] (Equation 2.49) and on the more famous
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Figure 2.31: Example of spectral mapping with three endmembers bundles. A pixel re-
ceives a label corresponding to an endmember if the correlation score is higher than a
certain threshold. Otherwise, it remains unclassified (pixels in red).
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Kubelka-Munk [197, 198] model for opaque materials (Equation 2.50).

q
Y(A) =JJeN)™ +b(N) (2.49)
=1
Y, —1+5— (K)2+2K (2.50)
] S S ‘

in which Y, represents the reflectance of an infinitely thick (opaque) surface, and
K and S are its corresponding absorption and scattering coefficients. When mixing
takes place, K and S are computed as a linear combination of the absorption and
scattering coefficients of the individual endmembers (Equation 2.51).

q
K:Zki~ai S:Zsi~ai (2.51)
=1 =

Spectral unmixing boils down to inverting the mixing model in order to retrieve
the concentration vector. This is usually carried out by a constrained optimization
applying the non-negativity and sum-to-one constraints. Moreover, regularization
can be enforced to limit the realm of possible solutions [199]. Lasso L; regulariza-
tion has been proven to be quite efficient since it limits the number of endmembers
that can be selected within a mixing. This is a convenient procedure to adopt since
it reflects the reality in which colors were obtained by mixing no more than three
to five pure pigments or dyes. Equation 2.52 reports a typical constrained cost
function for an optimization that solves the unmixing problem.

2

N q
1 o
J = argmin Z Y; — H eiill +AlIC, (2.52)
=1 7=1
q
sty > 0Vi€{l,...q}, > ai=1 (2.53)
=1

The product of spectral unmixing is then a series of ¢ concentration images in
which the pixel values are included in the interval [0, 1]. Concentration images
offer more information than a spectral map, but they encounter the same visualiz-
ation problems as multispectral images, and the pixel-wise compositions can only
be looked up in large tables.
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2.6 Fusion of VNIR-SWIR data

The first step to fuse two sets of data is to understand how the production of the
data takes place at the sensor level. In the previous sections, we examined how
photodetectors are constructed and their working principles. Moreover, when in-
troducing the sensors deployed for RIS, the trade-off between spatial and spectral
resolution was highlighted.

The size of sensors and the number of pixels they can host along the spatial and
spectral directions depend on a variety of factors including but not limited to the
material of the photosensitive area, the type of sensor (CCD or CMOS), the de-
sired spectral bandwidth, and the covered spectral range. Therefore, if we compare
sensors for imaging in different spectral ranges, we will observe arrays of different
sizes expressed as numbers of pixels. The most direct consequence of this is that
the resulting images, acquired at the same acquisition distance, will display differ-
ent spatial resolutions in terms of GSD. A combination of image registration [200]
(Section 2.6.1) and sharpening [201] techniques (Section 2.6.3) can be deployed
to harmonize the GSD of two different image datasets by spatially aligning one
scene to the other.

If the goal is to form a unified spectral image that covers two or more spectral
ranges originally separated, it is convenient that the unified spectrum is continuous
across the two ranges, with a uniform sampling rate. However, when spectra are
extracted from matching areas, it is possible to observe that the values do not
connect smoothly (or do not match in instances in which the spectral intervals
overlap). Therefore, a spectral alignment, or splicing [202] (Section 2.6.2), is
needed to obtain smoothly connected spectra that resemble the true nature of the
collected data.

2.6.1 Image Registration

The spatial alignment of images belonging to the same scene is a classic prob-
lem in Computer Vision, with solutions that span different scenarios and needs of
accuracy [200]. Generally, the problem is described with two images, one fixed
image, serving as a reference, and one moving image, also called the target. As
the name suggests, the moving image is the one that is aligned with the reference.
The solution of image registration boils down to finding the homography, i.e. the
transformation matrix, that transforms the target image so that it appears as it was
observed from the camera viewpoint used to capture the reference image. The
general homography is a 3 X 3 matrix in which each element refers to a specific
geometrical transformation.

The simple geometrical operations of scaling, shifting, and rotation are included in
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Figure 2.32: Schematization of a dual-imaging system with different spatial resolutions.
When the camera objectives are aligned (top), the projective transformations are neglected,
whereas they have a significant influence when the camera objectives are not parallel (bot-
tom). Each element in the transformation matrix is responsible for the various operations
of scaling, rotation, translation, and projection.

the transformation that is denominated similarity. A similarity transform is perhaps
the most likely to take place in the case of two pushbroom hyperspectral cameras
with parallel across-track directions. However, if there is no safety regarding the
parallelism of the camera objective, a user might consider that a geometric trans-
formation of shearing is present as well, and a projective transform might become
then more suitable. A brief schematization of the different situations and related
geometric transform can be found in Figure 2.32.

In the context of multi-band imaging, it can be assumed that each hyperspectral
image is internally co-registered. Therefore, a unique geometric transform can be
used to connect the two hyperspectral datasets.

Another distinction to be made when defining an image registration problem con-
cerns the nature of the images that need to be aligned. Multimodal imaging [200]
is a crucial practice in many application fields, including medical and CH imaging
[203]. Multiple devices capturing different types of radiation can be deployed to
extract large amounts of information from an artifact. Since the goal of multimodal
imaging is usually to fuse information from different sources, the general tendency
is to collect data in an overlapping field of view, trying to maximize the image sim-
ilarity beforehand, at the experimental stage. On the other hand, unimodal imaging
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deploys a single device, and therefore its registration problems tend to deal with
captures at different viewpoints, either at different scales or camera projections.

The algorithms developed to learn the homography matrix are classified into four
main categories: feature-based, area-based, hybrid approaches, and deep learning-
based [200]. Feature-based approaches usually involve the deployment of sequen-
tial actions to compute a homography matrix. The first stage concerns the detection
of keypoints in both fixed and moving images. Depending on the rationale of the
method, keypoints can have different meanings. Amongst the others, Harris key-
points [204] compute local gradients in both x and y directions to identify corners,
whereas Scale-Invariante Feature Transform (SIFT) [205] points are computed us-
ing a multi-resolution approach to ensure that a point is relevant regardless of the
scale it is observed at. Each keypoint is then associated with a feature vector of
variable (depending on the method) length. The way features are computed usu-
ally takes into account the gradients in a local neighborhood around a detected
keypoint. According to carefully designed distances, the feature from the fixed
and moving images are then matched, and a geometric transform is learned usu-
ally deploying methods such as RANSAC (RANdom SAmple Consensus) [206]
to build a certain resistance to potential outliers in the matched keypoints.

For multi-band images produced with RIS, features can also consider spectral in-
formation and thus can help find more robust matches [207, 208].

Area-based methods focus on solving an optimization problem in which the cost
function reflects the quality of the alignment of the images. In instances in which
the two images are collected at a similar spatial resolution but with different mod-
alities, e.g. an XRF image and a color image, area-based methods can be useful
for finding matching structural patterns where the pixel intensity differences are
too dissimilar. The similarity can be computed with statistical measures coming
from information theory like Mutual Information (MI) and its normalized version
(nMI) [209].

Feature-based and area-based methods can be used in combination to solve prob-
lems of multimodal image registration at different scales, exploiting the advant-
ages of both methodologies [210]. A common framework can involve alternating
between the two families of methods to finely tune the homography matrix at each
iteration.

As in most Computer Vision tasks, the coming of deep learning represented a
leap in image registration. The bottlenecks have been for years the need for large
amounts of training data and the necessity of generalization to adopt trained neural
networks in different application fields. Recently, the development of generative
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networks has pushed the capabilities of deep learning even more forward [211].

Evaluating if a registration procedure has been successful is not an easy task, both
from visual and computational standpoints. If we opt to visually evaluate an image
alignment, it can be possible that the different geometrical transformations intro-
duce local distortions that can be difficult to track and compare, especially when
the size of the image increases. The main challenge encountered by computational
methods is the lack of ground truth. By approximation, the reference image is
usually deployed in this role. Classical intensity-based distances like RMSE can
be used, but only if the images are acquired with the same conditions of illumin-
ation and instrumentation. The Peak Signal-to-Noise Ratio (PSNR) is one of the
best indicators to evaluate image quality [160] when it comes to color imaging,
but its usage to evaluate non-perceptual images can be sometimes not straightfor-
ward. A commonly accepted practice computes the so-called pixel displacement
[212]. Once the moving image has been aligned, the process of keypoint detection
and matching is performed again. By tracking the coordinates difference of the
matched pixels it is possible to provide an average pixel displacement error and
set an acceptance threshold. In the case of multi-modal imaging, where it is not
possible to match pixels, the same distances or metrics used in the cost function
are usually deployed.

2.6.2 Spectral Splicing

The word splicing is quite an unused term in the context of spectroscopy and RIS,
but it represents a well-defined operation that is perhaps better described with a
practical example.

Going back for a second to the domain of 1D spectroscopy, let us assume that a
spectroradiometer is deployed to capture the reflectance of a material in a wide
range spanning the visible and the infrared. Neglecting the internal structure of the
instrument, which might include complex optical components, we have discussed
how it is impossible to perform the measurement with a single detector. Let us as-
sume then that visible radiation is captured with a silicon sensor, in the range from
400 nm to 900 nm, whereas IR radiation is captured with an InGaAs sensor sens-
itive in the range from 900 nm to 1800 nm. Once the measurement is performed,
it is possible to observe that the resulting curves are displaced (Figure 2.33a). The
spectral jump can be ascribed to various factors such as the decreasing SNR at the
end of the sensitive spectral range, a possible different bandwidth deployed by the
different detectors, and the operating temperature of the detector, which tends to
affect more significantly silicon sensors that do not typically deploy strong cooling
systems [213-215].
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Figure 2.33: Spectral splicing correction example. In a) it is possible to observe the dis-
crepancy in measured reflectance at the junction wavelength. In b), two possible splicing
corrections (parabolic and multiplicative) are applied on the spectrum related to the visible
range, while the infrared spectrum remains unchanged and acts as a reference.

If the curves are simply connected, the resulting spectrum would have a shape
that is highly unlikely for both natural and artificial materials. For this reason, a
splicing correction is applied. Splicing, which is a term borrowed from biology in
the process of RNA transcription !, smoothly connects two spectral curves affected
by some degree of discontinuity so that the resulting spectrum has a plausible shape
(Figure 2.33b).

Simple splicing corrections can be performed by deciding which spectrum remains
unchanged and consequently, which one is transformed. A global multiplicative
factor or an addend can be applied [202]. However, these corrections apport a
change even at those wavelengths in which the quantum efficiency of the detector
is reliable. In most spectroscopic devices the deployed splicing correction makes
use of a parabolic correction [217] that affects more significantly those data points
found closer to the junction wavelength.

A splicing correction is therefore needed whenever spectral information is acquired
in adjacent or overlapping spectral ranges since detectors behave according to their
intrinsic properties and can produce slightly different measurements of the same
quantity. We will see in Chapter 3 how the effect of spectral jumps is amplified in a
RIS system and how a new ad-hoc splicing correction is necessary to consistently
obtain smooth spectra.

2.6.3 Hypersharpening

We have discussed at length how sensors deployed for the imaging of radiation
belonging to different portions of the electromagnetic spectrum tend to have dif-

'"RNA (ribonucleic acid) splicing is the process of removing introns and joining together the
remaining exons to create the mature RNA molecule that can be used by the cell to make proteins
[216].
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ferent sizes. In addition to the specific needs of a manufacturer and the construc-
tion limitations dictated by the spatio-spectral trade-off, this is also the product of
economics, with expensive materials that are not easy to source and are used in
limited quantities, thus leading to smaller sensors.

If the spatial quality of an image is dissatisfactory or it does not meet some pre-
defined requirements, this can be changed computationally to some extent with
image sharpening techniques. Before delving into the topic, it is necessary to make
a premise. In its common meaning, the term image sharpening refers to techniques
and algorithms that enhance the overall quality of an image while maintaining its
original size. Examples of this are histogram equalization and contrast stretching
[218]. The problem at hand, however, involves the fusion of images of different
sizes, so it is necessary that while the image quality is improved, the spatial res-
olution increases. In this thesis, we will use the term -sharpening- according to
the last definition, identifying the instance in which the resolution of an image is
enhanced by exploiting the presence of another image of higher resolution (and
captured with a different device) of the same scene.

Another premise regards the technique called Super-Resolution [219]. Super-
Resolution algorithms try to enhance the resolution of an image following a pre-
determined set of empiric rules (single-image Super-Resolution) or by exploiting
the presence of multiple views of the same scene (multi-frame Super-Resolution,
typically captured with the same device from different distances and angles). This
thesis does not treat this subject.

In conditions of simultaneous data collection, two sensors of different sizes can
be deployed at the same acquisition distance, thus leading to the resulting images
having different Ground Sampling Distances (GSD). This is the typical case of
remote sensing imaging, where spectral sensors are frequently used in combination
with a monochrome or RGB camera with significantly better GSD. In this context,
to sharpen an image means to increase the spatial resolution (overall quality and
image size) of a lowly resolved image by injecting spatial details coming from a
more highly resolved image [201].

Depending on what source is deployed as a high-resolution image, the task at hand
takes on different names. A typical problem in remote sensing is pansharpening
[220], in which a lowly resolved multispectral or hyperspectral image is sharpened
using the spatial details of a panchromatic image generated by a monochrome
broadband camera. In the instance in which two hyperspectral images are captured
at the same time hypersharpening [221] can be performed by injecting the spatial
details of the more highly resolved image (typically the one deploying a silicon-
based sensor).
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The simplest sharpening technique, which not coincidentally is used as a starting
point by more advanced techniques is a bicubic interpolation. Here, the new im-
age of higher resolution is obtained by extrapolating the pixel values in the gaps
created when the image is upsampled. This roughly upsampled image is then
refined according to four main classes of pansharpening methods [201]: Com-
ponent Substitution, Multiresolution Analysis, Variational Optimization, and the
always-present class of deep-learning methods, for which here a description is not
provided.

The first pansharpening methods to be developed belong to the class of Component
Substitution techniques [201]. Here, the lowly resolved image is projected into a
different space in which its spatial and spectral components are separated and the
spatial component is replaced by the spatial structures present in the panchromatic
image. The main challenge presented by these techniques is the potential introduc-
tion of spectral distortions induced by the new spatial structure which are almost
blindly injected. To reduce this effect, new-generation Component Substitution
algorithms usually consider a prior segmentation of the image and have changed
the injection rule by adopting statistical modeling.

Much robust spectral quality can be achieved with Multiresolution Analysis ap-
proaches [201], which deploy multi-scale decomposition of the panchromatic im-
age. The way in which the low-resolution version of the panchromatic image is ob-
tained usually characterizes the methods belonging to this class. On the downside,
the spatial quality that can be obtained is not usually at the same level as Com-
ponent Substitution approaches. A significant improvement has been brought to
Multiresolution Analysis techniques by including sensor-specific parameters (such
as MTF) to estimate the involved images at resolutions different from the original.

A general improvement, coming at the same time with much higher computa-
tional complexity, is brought to pansharpening techniques by approaches based
on Variational Optimization [201]. Here, the pansharpening problem is cast as an
optimization of a sensor model that relates the originally acquired panchromatic
and lowly resolved images to the desired output image of higher resolution. The
problem cast as such is heavily ill-posed, meaning that the straightforward inver-
sion of the model leads to noise amplification. Therefore, it is crucial to constrain
the optimization by including prior beliefs regarding the desired highly resolved
image.

The nature of pansharpening problems is an obvious landing field for the devel-
opment of Deep Learning techniques [222]. Pre-trained neural networks repres-
ent now the standard in remote sensing applications since the generated high-
resolution images are produced with very low spatial and spectral distortions. The
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common challenges belonging to deep learning approaches apply to this set of
problems as well: the need for large amounts of data, pre-labeling of training data,
and the need for generalization to different targets.

Most of the techniques developed for pansharpening can be adapted to work in the
case of hypersharpening problems with little effort. However, when we are presen-
ted with two hyperspectral sets, one of which needs to be sharpened, a simple
question arises: What is the panchromatic image? [221] The hyperspectral set of
higher resolution should produce a 2D image that has to work as a spatial refer-
ence for the lowly resolved hyperspectral set. It is however clear that given the
internal variation of channels present in images that span large spectral intervals,
the panchromatic image cannot be the same for all bands (this is better illustrated
in Chapter 3). With this reasoning in mind, two approaches are proposed to tackle
the problem of panchromatic image generation, producing a panchromatic image
for each band of the lowly resolved set.

In the first criterion, denominated band selection, the most appropriate band is
directly extracted from the set of highly resolved images. The suitability of an
image can be subjected to different user-dependent choices, but the resulting pan-
chromatic image is typically the band that minimizes a distance or maximizes a
similarity. Typical approaches can involve the minimization of RMSE or the max-
imization of correlation, structural similarity, or mutual information.

The second criterion, denominated band synthesis, generates a panchromatic im-
age from the highly resolved set, but without picking a specific spectral band. This
methodology is more prone to user creativity, as the criteria for generation can
abide by specific needs hardly generalizable to other instances. Examples of band
synthesis include the average along the spectral dimension of the whole or partial
set and an image related to a component of PCA, ICA, and NMF. A synthesized
band can also be generated by an optimization problem that again can aim at min-
imizing a distance or maximizing a similarity. In this case, the optimization can
learn weights that are assigned to each spectral band of the highly resolved set.

In the general formulation of a hypersharpening problem (Equation 2.54), the goal
is to estimate band-wise the weights w that transform the highly resolved hyper-
spectral set H into its panchromatic version p;, based on the properties of the
lowly-resolved image h;. The hyperspectral set H has M bands, whereas the set
h has N bands. For completeness, it is necessary to express that each band of
h is affected by random noise b;, although many methodologies assume it to be
negligible.
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M

Pi= Y wig-Hy+b (2.54)
k=1

When the criterion of band selection is applied, the band m that better satisfies the
imposed conditions (Equation 2.55 illustrate correlation) is selected, and thus the
weight wy, is set to 1 whereas the remaining weights are set to 0. The compar-
ison is usually carried out between the band of / interpolated at the resolution of
H, indicated by he,p and a version of the original high-resolution image H that
has been sequentially downgraded and interpolated back at its original resolution,
indicated with H.,,.

- - 1, ifm=m
M = argmax corr(hp exp, Hm exp) = Wik = 0. otherwise (2.55)

The application of band synthesis requires solving the optimization problem re-
ported in Equation 2.56 to find the weights related to the i band of h:

arg H11Ui‘n | Rieap — ﬁwp -w; \2 (2.56)

Evaluating the quality of hypersharpening

The ill-posed nature of the sharpening problem, which welcomes infinite solu-
tions, poses a quite enigmatic riddle regarding the evaluation of the final sharpened
products. Relating perceptual metrics to the case of multi-band imaging (some-
times referring to non-perceptual image domains like IR) is not a viable way.
Moreover, if an image needs to have its resolution increased in the first place, it
means that a high-resolution version is not available. This plainly translates to the
fact that evaluating the results of pansharpening and hypersharpening is a complex
matter because of the lack of ground truth.

The most popular way of evaluating the performances of pansharpening algorithms
relies on the generation of the ground truth from the very dataset used. Indeed, the
procedure known as Wald’s protocol [223] treats the originally captured image of
low resolution as the ground truth, while at the same time, both originally captured
sets are degraded to lower resolutions. By doing so, it is expected that by sharpen-
ing the now degraded version of h the solution should approximate h itself. Be-
cause of the reduction of scale involved, the evaluation is said to be conducted at
Reduced Resolution. A schematization of Wald’s protocol is illustrated in Figure
2.34.
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Figure 2.34: Example of hypersharpening the i band of a lowly resolved hyperspectral
image, following Wald’s protocol and a typical multiresolution analysis approach.
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Wald’s protocol is based on two fundamental properties: consistency and syn-
thesis. Consistency is evaluated by degrading the sharpened image and spectrally
comparing it to the originally captured h. Synthesis assumes that the sharpened
image would be the result of acquiring h with a larger sensor. This last property
leads to the protocol being based on a quite adventurous assumption, namely the
scale-invariance of the methodology. Indeed, it is implied that if a series of meth-
ods can be ranked according to their performances at a certain resolution scale,
then the same ranking will be maintained at different resolutions.

Over the years, effort was poured into developing strategies to evaluate the product
of sharpening algorithms at Full Resolution, where there is no direct comparison
with a reference image. Regardless of the lack of ground truth, the developed
measures are designed in a way that the measured distortion would be zero if
the ground truth was actually present. The most used Full Resolution evaluation
measures are Quality with no Reference and Hybrid Quality with no Reference
[224, 225].

2.7 Spectral and Polarization Imaging

The term polarization has come up several times during this dissertation when
introducing different topics. We have previously defined the polarization of light in
its classic wave-related meaning as the direction of oscillation of the electric field
perpendicularly to the direction of propagation. We have also defined the status of
polarization in the more intuitive cases of linear, circular, and elliptical polarization
for single waves, whereas when bundles of waves with different polarization states
move jointly, the resulting radiation is described as unpolarized.

Another instance in which we encountered polarization is when we discussed the
Fresnel coefficients of reflectance and transmission that define the behavior of an
optical interface in response to incoming light at different incident angles. Particu-
larly, specular reflections with a defined polarization state can be generated by the
interaction of unpolarized incident light at the Brewster angle. Finally, we have in-
troduced how deploying carefully designed polarization filters in front of a camera
can aid in reducing the presence of specular reflection in a scene.

Adding polarization information to a scene can be a valid asset to perform tasks
such as image segmentation and classification of materials, which in the context of
Heritage Science can help in possibly detecting materials used in undocumented
conservation treatments, and allow material classification where specular reflec-
tions are detected and computationally removed.

The main component that enables the characterization of polarization informa-
tion of a scene is a polarization filter that is placed in front of the camera, typ-
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ically denominated a Polarization State Analyzer (PSA). When polarized light
passes through a linear PSA, the registered intensity depends on the relative angle
between the oscillation angle of polarization and the orientation of the nanowires
that usually constitute the filter. When the main axis of the filter is aligned to the
polarization of light, the recorded intensity I is the same as the input [y, whereas
if the filter is consequently rotated by 90°, then no light passes. Equation 2.57 de-
scribed the variation between minimum and maximum points following the Malus
law.

I = Iy cos*(h) (2.57)

The three fundamental §-dependent properties of linear polarizers are their trans-
mittance, extinction ratio (often referred to as contrast ratio), and polarization ef-
ficiency. Transmittance can be defined as the ratio of light that passes through at
a given rotation angle, thus defining 77 for the maximum transmittance, and 75 in
its relative perpendicular direction. The contrast ratio is defined as 77 /T5, whereas
the polarization efficiency can be thought of as a Michaelson contrast for polarizers
since their expressions are similar: (77 — 1%) /(11 + 1»).

Recalling the formulation of the dichromatic model (Equation 2.28), the recorded
intensity corresponding to light reflected off a surface I,. can be split into an unpo-
larized diffusive component 4, and a potentially polarized or partially polarized
specular component. Thus, if a polarizer is rotated at an angle # in front of a
camera, the intensity measurement can be described as in Equation 2.58.

(0, )) = %Id()\) Iy e(N) + Ipo(N) cos2(0 — ) (2.58)

Here, the specular component is further split into a constant part relative to the
angle of the polarization filter /), ., and a variable term representing the amplitude
of a cosine function I, ,, which also depends on the polarization angle of the
incoming light ¢ [226]. Figure 2.35 proposes a simulation of this measurement.

Polarimetric information can be extracted from a scene by capturing images while
at the same time rotating a polarization filter in front of the camera. Stokes imaging
can be performed to describe the polarization state of reflected light by estimating
the first element of the Stokes vector [4] S = [So S1 S 0] ! In particular, Sy
describes the total power of the incoming light, while the S; and So components
express the difference between intensities measured through orthogonal directions
of the polarizer.
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Figure 2.35: Simulation of a partially linearly polarized light passing through a linear
polarizer after a surface reflection.

Equation 2.59 describes the pixel response of a single PSA to a particular input
Stokes vector.
I1=AS8 (2.59)

where [ is the pixel response, S is the polarization state of the input light, and A =
[ag a; ao 0] is the analyzer vector which embeds the polarizer characteristics
such as transmission, polarizing angle, and extinction ratio coefficient. If assuming
ideal transmission and extinction ratio, the analyzer vector is only a function of the
rotation angle, and Equation 2.59 can be rewritten as in Equation 2.60.

I(0) == [1 cos20 sin20 0]S (2.60)

DO | —

An important feature of Stokes imaging is that it does not necessarily require po-
larized incident radiation, although polarized light would allow us to infer depol-
arizing properties of the examined material. On the other hand, Mueller imaging,
which can be thought of as the next step of Stokes imaging, compulsorily requires
the deployment of polarized radiation. The result of Mueller imaging is a 4 x 4
matrix that not only describes the polarization properties of the reflected light but
encompasses the polarization properties of the material. Moreover, Mueller ima-
ging requires the presence of a Polarization State Generator which manipulates the
polarization state of the incoming light, so that the characterization involves more
than the linear states, but also circular and elliptical states.

Since it is known that the intensity follows a cosine-like law, it is not necessary
to collect images of a scene rotating the PSA at a fine sampling. Indeed, it has
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been demonstrated how only three measurements are needed to recover the Stokes
vector efficiently and with little levels of noise [227]. What is crucial is to capture
images at meaningful rotation angles of the PSA, which means spanning uniformly
sampling from the period of the cosine function, between [0, 180]°.

If for example, four measurements are performed, the intensity vector is defined
by:

Igl 1 cos (291) Sin (291) 0 So
ey | _ 1 |1 cos(202) sin(202) 0| [S:
F=17 1l W92 |1 cos(205) sin(20) 0] |
Iy, 1 cos(204) sin(264) 0] [ O

in which W is the analysis matrix that combines the four analyzer vectors A and
014 are the polarizer angles of the four PSA configurations. Equation 2.61 shows
that the Stokes vector S = [5’0 5’1 Sg O]t can be computed from I for each
pixel in the image.

S =WHI. (2.61)

in which W is the pseudo-inverted PSA matrix estimation. The Stokes vector of-
fers the possibility to assign intuitive parameters, namely the degree of polarization
p and the angle of linear polarization ¢ (Equation 2.62).

/q2 2
p= M ¢ = 1 arctan <52> (2.62)

S() 2 Sl

The capturing of purely polarimetric images has been made much more compact
by the development of Polarization Filter Arrays (PFAs), following the principle of
Spectral Filter Arrays in the context of MSI. A full polarimetric image can then be
recovered by demosaicing. The extension of polarimetric imaging to embrace the
spectral domain is not straightforward [228], as the various studies in combining
it with MSI, and thus developing Spectral Polarization Filter Arrays, demonstrate.
Fusing polarization and RIS is something for which we are not technologically
ready if we consider the problem from a sensor development standpoint. The sub-
sequent acquisition of hyperspectral images at different angles of a PSA, although
time-consuming, is a valuable alternative to further characterize the reflective prop-
erties of materials [229].
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When fusing polarization and RIS, it is crucial that the selected PSA is able to work
within the spectral range of the imagers. By construction, linear polarizers tend
to exhibit broadband properties more than their circular counterparts, which are
typically built with anisotropic materials that introduce a phase delay between the
polarization components. This requirement, which makes the capturing of spectral
information related to circular polarization hard, at the same time highlights the
challenges of building a Mueller spectral imaging setup.



Chapter 3

An overview of needs and
limitations

After a long excursion in the theory that governs the capturing and analysis of RIS
data, it is now the moment to delve into the more practical aspects that are treated
in this dissertation. By doing so, it is perhaps beneficial to re-explore the research
questions proposed in Chapter 1 under a more critical and knowledgeable lens.
With this chapter, we want to dissect the aspects that work synergically toward the
achievement of the ultimate goal of this thesis, e.g. to allow conservation science
practitioners to deploy VNIR-SWIR RIS in the most advantageous way.

The ultimate goal of this thesis is to allow conservation science practitioners to
deploy VNIR-SWIR RIS in the most advantageous way. The definition of this
goal, in relation to the state-of-the-art knowledge at our disposition, leads us to
further define five sub-goals related to different aspects:

To better keep the discussion level on track, we introduce an example in which
two hyperspectral images of a scene representing a historical textile have been
captured. The goal is to obtain a fused hyperspectral image F defined in the image
domain D with spatial coordinates (x,y) and spectral sampling in correspond-
ence of wavelengths A € A defined in [\in, Amaz]- Equation 3.1 illustrates how
F(z,y,\) can be computed by applying an appropriate transform 7 to the indi-
vidually captured hyperspectral images V (x,, ¥y, Ay) and S(xs, ys, As), respect-
ively associated with the VNIR and SWIR spectral ranges.

F(:U,y,)\) = T[V(xvayva)\v)7s(xsay37As)] 3.1
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Figure 3.1: From top to bottom, schematization of image registration (R), splicing (S),
and hypersharpening () for a pair of hyperspectral images of a historical textile.

The role of T is broad since it can represent the combination of various trans-
formations such as image registration, spectral splicing, and hypersharpening. In
the following, the individual transformations will be indicated with R, S, and H
respectively. Figure 3.1 summarizes the purposes of the three transformations.

RQ1a: What are the factors and decisions that influence the per-
formance of spatio-spectrally aligning two hyperspectral images
coming from two different sources and electromagnetic ranges?

Spatial alignment

When the concept of image registration was introduced, the key aspects were ex-
plained in terms of image source and camera viewpoint. When the nature of the
two images to be aligned is the same, we have an instance of unimodal imaging,
whereas multimodal imaging represents a case in which the two images are cap-
tured by different systems deploying diverse imaging models. Analyzing the issue
at hand, it is possible to observe that aligning V and S presents at the same time
features that can be traced back to instances of unimodal and multimodal ima-
ging. It is unimodal because the nature of the image is the same, as both cameras
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capture the scene irradiance that later is converted to reflectance. Moreover, the
presence of overlap between the spectral ranges can be a factor of unimodality
strengthening. On the other hand and with the due limitations, a dual RIS system
can sometimes be thought of as a multimodal imaging example. Although V and
S are captured following the same imaging principle, the resulting spatial content
is sometimes not preserved when comparing single bands related to far regions of
the electromagnetic spectrum extracted from V and S.

Based on these observations, it was decided to term this specific registration prob-
lem as mildly multimodal. The presence of a spectral overlap in which the two
systems supposedly reach a measurement agreement (it is known that they do not)
cannot always be taken for granted, and multimodal features tend to prevail when
the reflectance properties are considered at distant wavelengths.

Multimodal image registration can be addressed straightforwardly by maximizing
a similarity measure when the two images have a comparable resolution. When
this is not the case, template matching techniques [230] can be deployed to find
an area within the reference image that contains the target image. As the issue
at hand is not strictly a template matching instance (the field of view of V and S
is generally maximized experimentally), multimodal registration techniques must
address the difference in resolution between moving and fixed images.

When feature-based methods are considered, it is important to point out that ex-
tracting spatio-spectral features can have questionable usability, given that the in-
herent spectral characteristics refer to different wavelengths. Traditional feature
matching methods such as SIFT used for unimodal image registration are claimed
to possess certain robustness to local changes in intensity but showcase a lim-
ited range of action when it comes to matching features extracted from images
at different wavelengths. As illustrated in Figure 3.2, SIFT benefits from the us-
age of bands extracted at similar nominal wavelengths, as the number of matched
SIFT points quickly decreases as the distance from the junction wavelengths is
increased.

Operating around the ends of the available spectral ranges, as the SIFT method
would suggest, is often considered a risky practice, given that the typical SNR
curves of the sensors tend to quickly decrease due to a decrease in quantum effi-
ciency and the increase of noise sources related to optical aberrations and second-
order distortions, especially in RIS systems that deploy dispersive elements. In
Section 2.5.14 we have introduced the concept of hyperspectral redundancy and
how it affects negatively a handful of operations mostly related to computational
efficiency and data storage/compression. In this case, however, it is possible to
exploit redundancy in its positive role, as it can be used to generate a new image
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Figure 3.2: Number of matched SIFT points obtained by sampling the individual bands
of V and S. As we approach a potential overlap or the junction wavelength, the number
of obtained matches quickly increases.

with reduced noise.

The generation of new images can be traced back to the concept of image synthesis
introduced in Section 2.6.3 when discussing hypersharpening. Indeed, the problem
of registering V and S can be tackled with the same paradigms of band selection
and band synthesis. However, before either selecting the two most correlated bands
or synthetizing a suitable reference-target pair, it is crucial to decide the arrival
venue, or in other words, the resolution at which the images are aligned.

When an artifact is digitized, the proposed guideline is usually to strive for the
highest possible spatial resolution. Upscaling S without the application of sharpen-
ing techniques, and thus using simple bicubic interpolation, can result in a scenario
in which the evaluation of the final result is quite complicated, and the computa-
tional and storage costs increase drastically. On the other hand, downscaling V can
lead to a significant information loss, as the ratio of resolutions between sensors
working in the visible and infrared is typically included between 4:1 and 8:1 [231].

When a hypersharpening problem is tackled following the band synthesis [221]
approach, for each band of S, the algorithm seeks a suitable linear combination
of bands of V to generate the panchromatic image, and thus the image pair is
formed by an individual band of S and a synthesized image from V. This results
in a wavelength-dependent transform # ). As we have introduced in Section 2.6.1,
given that the bands of V and S are assumed to be internally co-registered, it is
not necessary to loop through the bands, as R is wavelength-independent. Thus,
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a single R can be learned from a suitable pair of images synthesized from V and
S. However, Equation 3.2 shows that synthesizing two images from V and S is a
highly ill-posed problem:

2

Ny, Ny,
arg %uur)l Z (u; - Vi) — Z (wj - Sxj) (3.2)
’ i=1 j=1

2

The image registration problem cannot thus be addressed straightforwardly with
a band synthesis approach. Equation 3.2 can be constrained in the case in which
one of the two terms (the synthesized version of V or S) is generated through
a pre-determined strategy (for instance band-averaging within a specific spectral
interval), thus leaving room for uncertainties due to user decisions and variability.

Spectral alignment

Satellites for earth observations are often equipped with a series of detectors sens-
itive to different portions of the electromagnetic spectrum [232, 233]. In most
cases, the captured spectral bands are adjacent or overlapping. It is then legitimate
to wonder why with these contiguously sensitive sensors no effort was spent on
performing splicing. The reason probably lies within the specific spectral region
in which the sensor concatenation would take place. If we observe the responses
of typical VNIR and SWIR sensors, their junction point is found at about 950 nm
- 1000 nm. These particular wavelengths generally do not allow accurate retrieval
of parameters from the Earth’s surface due to the high absorption coefficient of
water (vapor) [234], and thus it is often preferred to remove the bands and leave
spectral holes behind.

In the field of spectroscopy, the state-of-the-art splicing correction is represented
by the parabolic correction [217] described by Equation 3.3, in which the reflect-
ance curve coming from the system working in the visible (not cooled, and there-
fore affected by warm-up noise) is connected to the reflectance of the infrared
through the applications of coefficients learned as:

c _ (()\1 . )\2) — )\1)2Ap
Az Pro (A2 — A1)?

+1 (3.3)

Here, the spectral range indicated by A; : )g is pre-defined based on the sensor
characteristics, and thus the correction is able to handle only a limited series of
instances. Indeed, the parabolic correction is deemed reliable up to cases in which
the spectral difference Ap is smaller than 6% in its relative terms [213]. For ap-
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Figure 3.3: Relative spectral discrepancy between an instance of co-registered
V(zs, ys, Ay) and S(x,ys, As). More than 40% of pixels have a Ap% greater than 6%
and would lead to unsatisfactory splicing results when corrected with the current state-of-
the-art methods.

plications of spectroscopy, however, this limit is rarely exceeded and the parabolic
correction can easily suffice the quality requirements.

As we have discussed in Section 2.6.2, when a spectroscopy system and a RIS
system are compared, the sources of noise in the latter are more numerous and
amplified. The acquisition geometry of punctual spectroscopic systems is seldom
comparable to that of a hyperspectral camera, and this is translated into a higher
BRDF variance among neighboring pixels.

When we consider the issue at hand more closely, the fact that the images to be
spliced have a different spatial resolution can be considered an additional (and
highly significant) source of noise. Indeed, if we consider the instance in which
there exists a 4:1 resolution ratio between V and S, this means that 16 spatial
pixels in V are condensed into a single pixel in S. Moreover, the image registration
procedure is usually considered successful if the pixel displacement is smaller than
the unit value, but even a fraction of a pixel is enough to introduce significant noise
and amplify the discrepancy in reflectance values at the pixel level.

Thus, accounting for all the additional noise sources, it becomes highly likely
that the relative spectral differences can exceed the limits set in a spectroscopy
environment, as Figure 3.3 demonstrates. Consequently, this highlights the need
for a dedicated splicing correction for RIS.

A splicing correction able to handle the smooth connection of hyperspectral im-
ages should obey the following requirements:
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> Minimal intervention. Only the wavelengths that are more significantly af-
fected by noise should experience the stronger part of the correction, and thus,
spectral bands away from the noisy region should ideally remain unchanged.

> General. The correction should be applicable to different types of hyperspectral
data (reflectance, transmittance, etc.), while at the same time, it should be able to
handle various instances of spectral overlap, if any.

> Adaptive. The relative spectral discrepancy depends on the complexity of the
scene and on the geometry of the experimental setup. The correction should be
able to adapt to different levels of Ap%.

> Evaluation. Two spectra can be connected in infinite ways and as a result,
evaluating the product of a splicing correction is not straightforward. A quantitat-
ive evaluation paradigm needs to be developed to measure the similarity between
computed and expected results. Moreover, it is possible that the classical spec-
tral metrics introduced in Section 2.5.7 cannot fully encompass the properties that
need to be evaluated in this specific instance.

RQ1b: What are the implications of sharpening techniques de-
veloped in remote sensing when translated to proximal sensing
applications?

With the due distinctions, it is possible to draw a number of parallels between
remote sensing imaging for Earth Observation and imaging of mostly planar arti-
facts in the context of CH imaging. Indeed, if today the field of Heritage Science
has been enriched by non-invasive analysis through RIS, this is thanks to the de-
velopments that have been produced over the years in the field of remote sensing.
In Section 2.5.15 we have observed how directly applying an analytical technique
such as spectral unmixing without considering carefully the matter at hand can
lead to results that are not entirely satisfactory. In particular, we have observed
how it is crucial to change the mixing model depending on the application.

Similarly, it is legitimate to wonder if the techniques developed to sharpen lowly
resolved satellite images need some level of adaptation prior to being applied in
a context for which they have not been tested before. This question stems from
the observation that historical artifacts tend to segment their information within a
contained spectral range [235, 236]. This is particularly evident for textiles, which
are prone to exhibit characteristic features of dyes in the visible range and fiber-
related features in the infrared [189, 190]. From a global image standpoint, this is
translated to a rather radical change in the appearance of textiles when single-band
images are examined individually.
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Figure 3.4: Comparison of remotely sensed image (a) and proximally sensed image of a
textile (b). The normalized mutual information charts at the bottom show a rather clear
information separation taking place at around 700 nm, especially for the textile scene. The
comparison between a color rendering (RGB) and an infrared false color rendering (FCIR)
of the scenes highlights the non-preservation of spatial patterns in the textile.

Figure 3.4a displays how for a remote sensing image (captured by the Airborn
Prism Experiment APEX satellite [237]) the spatial features related to edges are
typically preserved when switching from a visible-related visualization to an infrared-
related one. On the other hand, in an image of a textile the dye information is not
transmitted to the infrared range, and thus only the fiber information is preserved
(Figure 3.4b).

Blindly applying a sharpening technique to increase the resolution of S would
lead to injecting untruthful spatial information extracted from V, thus generating
the possibility of false-positive detection in a potential classification task.

Besides the consideration of spatial pattern preservation, blind algorithms to sharpen
images have been commonly accepted because the sharpening problems in remote
sensing popularly deal with instances in which both image sources (highly and
lowly resolved) belong to the same portion of the electromagnetic spectrum: pan-
chromatic image and multispectral, multispectral and hyperspectral VNIR, etc.

Algorithms belonging to the Component Substitution family of sharpening tech-
niques are highly prone to inject unwanted spatial details onto the lowly resolved
image since they exploit the difference between the panchromatic image and a lin-
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ear combination of the bands of the lowly resolved image to extract the spatial
details to be transferred over [238]. Algorithms belonging to the Multi-resolution
Analysis family can be made context-aware by implementing a local correlation
measure to avoid the injection of spatial details that are unlikely to be present in
the lowly resolved image [239].

As sharpening research is now highly profused by deep learning approaches, ques-
tions have been raised about the generality of the methodologies. Recently, some
works highlighted the shortcomings of neural networks that had been trained on
datasets of specific satellites when sharpening images coming from different de-
tectors, and therefore research efforts were poured into making the networks more
flexible [240]. However, what is still missing is an evaluation framework of such
methodologies, not only for different sensors but for completely different domains.

RQ1c: Is it possible to develop a paradigm for the joint analysis
of VNIR-SWIR RIS and polarimetric imaging?

From the standpoint of capturing radiometrically meaningful data, the ideal surface
of an object should be flat. If we follow this reasoning, most historical artifacts
would represent sub-optimal examples of objects to be studied by means of RIS.
However, it is commonly accepted to allow small radiometric fluctuations as long
as the surface is quasi-planar, with the limits typically set by the depth of field of
the optics.

As we have observed in Section 2.3.1 and 2.7, the interaction of directional light
with surfaces at particular angles of incidence can sometimes generate specular
reflections with various degrees of polarization. The presence of specularities can
hinder the material analysis and thus a polarimetric imaging system can help to
detect and remove such image flaws thus allowing to uncover what is hidden un-
derneath.

The fusion of spectral and polarization imaging systems is non-trivial and has been
proposed for applications in food analysis [241], computer vision [242], and target
detection [243], but never in a CH framework. Moreover, the application of spec-
tral and polarization systems is usually limited to either multispectral systems or
hyperspectral systems working in the visible range [228], and thus the extension
to a VNIR-SWIR domain represents uncharted territory.

A key advantage of spectro-polarimetric imaging is that it allows the examination
of the polarization-related properties of materials, which can then be used later
on as features. An example of a relevant spectro-polarimetric feature that can be
extracted from CH objects such as paintings is the correlation between the degree
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of linear polarization and the amount of reflectance [244, 245].

The implementation of a polarimetric RIS VNIR-SWIR finds its challenges in the
sourcing of appropriate optical interfaces able to provide meaningful polarimetric
information in the whole considered spectral range. Indeed, not all polarization
filters offer a broadband capability, due to the way the filters are manufactured.
Circular polarizers, for example, are quite A-selective, and thus, the capturing of
circular polarization information is limited, preventing the complete implementa-
tion of Mueller imaging. Linear polarizers are more broadband and thus can enable
the implementation of Stokes imaging. Integrating a polarimetric framework onto
an existent RIS one presents challenges that are highly dependent on the available
instrumentation, and so, there could be a high variability in the way the system is
calibrated. With this question, we want to achieve an efficient spectro-polarimetric
calibration by deploying the available imaging setup (introduced in Chapter 4).

RQ2: Can we improve the typical tasks conducted in RIS ana-
lysis for CH considering the full extension of the spectral data in
the VNIR-SWIR ranges?

A limitation of recent works conducted deploying a dual VNIR-SWIR RIS system
is that often the two datasets are analyzed independently. However, it seems that
there is a clear reason for that. Historical artifacts like paintings and textiles have
a peculiar response to radiation in the visible and infrared ranges. Backing up the
separation theory is the fact that there is a strong belief that the visible range is
strictly associated with the features that characterize pigments and dyes, whereas
the infrared is typically strongly associated with information regarding the fibers
of a textile or the layers found underneath the paint layer in a painting. Thus, it is
plausible that very little information mixing takes place.

It is however arguable that by adding new features (reflectance values at different
wavelengths) to the observations (the pixels), the cross-talk of data, intended in
its positive meaning, can be beneficial to the detection of underlying patterns that
could not be observed while keeping the spectral sets separated. On the other
hand, while performing VNIR-SWIR fusion may introduce a series of practical
benefits related to pixel correspondence, it is not mandatory that the processing
is conducted on the whole extension of the spectral range, and analyses can be
carried out on appropriate spectral subsets, depending on the needs and the nature
of the studied artifacts.



Chapter 4

Summary of Articles

The first part of this chapter takes a wider overview of the articles that contribute
to this thesis. Here, we shall look at a grouping based on their individual scopes,
as well as introduce the targets on which the methodologies are demonstrated and
evaluated. After that, the imaging setup common to all supporting articles shall be
presented in detail. Finally, each supporting article is summarized.

4.1 Atrticles grouping

The five contributing articles of this dissertation consider three main categories of
approaches:

> Data fusion-oriented. Articles A1 and A2 deal directly with matters related to
the technicalities of fusing the RIS data coming from the two independent VNIR
and SWIR cameras from the spatial and spectral perspectives, respectively. Article
A4 belongs to this category as well as it concerns the application of hypersharpen-
ing to hyperspectral images of CH. Article AS is based upon a pre-existent frame-
work of hyperspectral data fusion and implements polarimetric imaging on top of
that.

> Material analysis-oriented. Articles A3 and AS investigate different mater-
ial properties exploiting the consolidated fusion framework. The former applies
classical RIS analytical techniques such as spectral mapping and spectral unmix-
ing for the study of textiles, whereas the latter examines the spectro-polarimetric
properties of a mockup painting.

> Dissemination-oriented. Article A4 finally fits a category of its own, as one of
its goals was to introduce the full fusion framework to an audience represented by
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Mockup targets

Data fusion-oriented Dissemination-oriented

Material analysis-oriented

Figure 4.1: Grouping of the supporting articles by scope and by nature of the deployed
targets, which are illustrated on the right-hand side of the figure.

the CH community.

An additional article grouping can be performed by considering the nature of the
targets that are imaged. Articles A1, A2, and AS focus on works in their first steps
of experimentation, so it was decided to not take any chances with potentially
damaging historical artifacts. Therefore, these articles make use of mockup targets
represented by a series of planar surfaces either fabricated with the goal of being
mockups or collected from around the laboratory facilities because of their suitab-
ility to the experiments. Opposite to that, Articles A3 and A4 dealt with historical
textiles. Figure 4.1 illustrates the article grouping and the deployed targets.

The mockup targets include a commercial postcard from Gjgvik (Norway) depict-
ing Skibladner, the oldest paddle steamer still in service, a painting of flowers, a
textile piece made of cotton from the HyTexiLa database [163], a series of mockup
mixtures of seven pigments in different known concentration (data available from
[177]), and an oil painting made using mixtures of those same pigments.

The historical targets are three Paracas [246] textiles belonging to a small col-
lection housed at the Department of Collection Management, University of Oslo
(Ui0).

4.2 Imaging setup

The common base imaging setup for all supporting articles of this thesis is schem-
atically reported in Figure 4.2. The imaging setup deployed in Article AS slightly
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Figure 4.2: Schematization of the imaging setup adopted in the articles of this thesis.

differs from this depiction because of the inclusion of polarization elements and
because the hyperspectral imagers are used sequentially and not simultaneously.

An intrinsic advantage brought by the pushbroom system is that the illumination
source needs to shine only in a small area corresponding with the line field of
view of the camera, thus avoiding unnecessary illumination of parts of the artifact
that are not presently imaged. For this reason, it is advisable to use illumination
sources that can focus their outputs on small areas. The deployed illumination
sources were unpolarized halogen lights for both VNIR and SWIR scenes. These
light sources have broadband SPD that can effectively cover the whole extension
of the VNIR-SWIR spectrum, but come at the cost of producing heat on the surface
due to their infrared content. For what concerns the geometry, the 45/0 imaging
Standard is aimed at.

Both hyperspectral imagers are manufactured by Hyspex (Norsk Elektro Optikk,
Norway), and their main features are reported in Table 4.1.

The scene laid out on the translational stage is constituted by the target and a
Spectralon calibration reference. The translational stage then shifts the scene in
the along-track direction at a speed that is synchronized with the framerate of the
cameras. The framerate is computed from the selected integration time and poten-
tially by the number of averaging frames. Frame averaging is one of the strengths
of this dual RIS system as it allows to drastically increase the SNR by a factor v N
for N averaged frames. In this particular case, it becomes advantageous because
the high IR content of the halogen SPD typically allows the selection of very short
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Hyspex VNIR-1800 Hyspex SWIR-384

Sensor CMOS (Silicon) HgCdTe
Disperive element Grating Grating
Cooling NA 150K
Spatial pixels 1800 384
Spectral bands 186 288
Spectral range 400-1000 nm 950-2500 nm
Overlap range 950-1000 nm

Bands in overlap 16 9
FWHM 3.19 nm 5.45 nm
FOV (across-track) 17° 16°
GSD @ 30 cm ~ 50 um ~ 200 um
Noise floor 2.4 e- 150 e-

Table 4.1: Features of the two hyperspectral imagers deployed in this thesis.

integration times for the SWIR camera in comparison to the VNIR camera. So,
while the speed of the stage is decided according to the longer integration time, it
is possible to perform multiple acquisitions of the same SWIR line, and thus in-
crease the SNR. Another way to experimentally increase the SNR is to accurately
estimate the dark current, and this can be performed at the software level by se-
lecting an appropriate number of dark images to be averaged before and after the
measurement.

The main limitation of the system is represented by the low flexibility to adapt to
different sizes of objects to scan, due to the fact that the fore optics only works with
pre-designed lenses and no adjustable focus. This provides however an advantage
to image quality when the system is used in its ideal conditions.

4.3 A1: Hyperspectral VNIR-SWIR image registration: Do not
throw away those overlapping low SNR bands

This article tackles the problem of spatially registering two hyperspectral images
V and S acquired with the setup depicted in Figure 4.2. In particular, rather than
focusing on a method survey, the work looks into whether making decisions in
a certain way affects the final result, and if it does, how the final performances
change according to the decisions taken.

The registration problem is described as a mild multimodal instance characterized
by a large difference in spatial resolution and small possible translations and ro-
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Figure 4.3: Image registration process described as a decision tree.

tations that can be due to the manual positioning of the cameras with respect to
the target. The process that brings to learn the transform R can be depicted as
a decision tree in which each branch leads to a different solution to the problem,
as illustrated in Figure 4.3. The structure of the tree is characterized by five de-
cision layers, although different registration methods can slightly alter this since
they require skipping some layers because of their working principles.

The identified decisional factors are the following:

> Guiding Image. The first decision determines the spatial resolution arrival
venue, thus which spectral set is to be taken as the reference, and consequently
which spectral set acts as the target.

> Spectral range. At this step the decision is whether the whole spectral range
of V and S is adopted or if only the overlapping range is considered, bearing in
mind that this range is notoriously affected by a significantly lower SNR for both
cameras.

> Pair Generation. The moving-fixed image pair is generated at this step, either
following the band correlation paradigm (selecting the two most correlated bands
of V and S) or synthesizing the new bands using the first component image of
PCA.

> Scaling. The large scale transformation can be learned intrinsically within the
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image registration process or can be performed a priori to facilitate the application
of area-based methods in a more straightforward manner.

> Transform. Finally, the last decision concerns what type of transform to apply
to the target image. In the simplest scenario, an affine transform should describe
the registration problem. If the objectives of the cameras are considered not paral-
lel, then a projective transform is more appropriate.

The decision tree is explored in all its branches for four registration methods
(feature-based, spectral feature-based, hybrid, and area-based), and four scenes
representative of different complexities. At each iteration, a transform R is learned
and applied to register an image pair arbitrarily generated from the overlapping
range. Five evaluation indexes are adopted, four represent image quality metrics
measuring different characteristics: Peak Signal-to-Noise Ratio, Ground Sampling
Distance Error, truncated structural similarity (structural similarity without lumin-
ance component [247]), and normalized Mutual Information. A multiband quality
index (ERGAS [248]) is also estimated. The performance results are then invest-
igated in a multivariate analysis framework (PCA).

The main takeaway of the work is that despite showcasing low levels of SNR, the
overlapping bands can be considered a valuable asset to perform image registration
in the specific instance. A clear correlation between scene complexity and method
performance is observed, and among the methods, the one termed Maximum of
Wavelet Transform Phase Cross-Correlation (MWTPXC) [210] turned out to be
the more consistent. On the other hand, the performance of the technique based on
the extraction of spectral features turned out to be poor in comparison to the other
methods.

Limitations

In the article, the impact that the paradigm of band synthesis has on registration
problems of this kind is most likely understated. This is due to the way the bands
are synthesized in the article, i.e. by arbitrarily deciding to compute the PCA and
extract the image related to the first principal component. However, the paradigm
of band synthesis is more consistent and based on the computation of an appropri-
ate image by solving an optimization problem. It is highly likely that by correcting
this, the band synthesis decision would correlate with better performances.

In connection with the previous point, the evaluation is conducted through the
usage of an image pair selected arbitrarily. It is plausible that by adopting a more
rigorous criterion the analysis of results can be more robust.

Another important limitation is represented by the lack of knowledge of how gen-



4.4. A2: Logistic splicing correction for VNIR-SWIR reflectance imaging spectroscopy 113

eralizable this work is to other examples of VNIR-SWIR image registration that
deploy different cameras. For example, a way of quantifying what is the lower
limit of admissible noise in the overlapping range is missing.

4.4 A2: Logistic splicing correction for VNIR-SWIR reflectance
imaging spectroscopy

This article deals with the spectral alignment that needs to be performed to smoothly
connect two co-registered hyperspectral images V and S affected by spectral dis-
continuities or jumps.

A first attempt of splicing was performed in the supporting article S1: Radiometric
spectral fusion of VNIR and SWIR hyperspectral cameras. Here, splicing was con-
ducted by applying global multiplicative factors to both VNIR and SWIR curves
solving an optimization problem. Although this method could not be generalized
to different image contents (the optimization was conducted on standardized tar-
gets), analyzing its shortcomings helped in defining the desirable properties of a
splicing correction.

Article A2 starts by reviewing the state of the art in splicing corrections in spec-
troscopy and by raising awareness regarding the need for a dedicated splicing cor-
rection in RIS. This is due to the fact that stronger sensor mismatches take place in
an imaging system because of a much higher local BRDF variance and image re-
gistration misalignments, as well as the intrinsic image sensor characteristics that
differ from sensors deployed in spectroscopy.

A new logistic splicing correction for RIS is proposed. The correction deploys the
presence of an overlapping range or a junction wavelength to smoothly connect the
spectra at the pixel level. Following the guidelines exposed in Section 3, the new
splicing correction aims to be adaptive to different levels of spectral discrepancy
and to be respectful of the shape of the original spectra, introducing perturbations
only in the spectral bands more affected by spectral jumps. It was found that
learning the correcting coefficients in the form of a logistic function would suffice
these requirements.

An important contribution of the article is the evaluation of the methodology, typ-
ically a tricky topic in cases in which a unique solution does not exist. The ground
truth was measured with a Lambdal050 spectroradiometer [139] (Perkin Elmer
inc.) that provided continuous spectral data in the overlap range of the two cam-
eras. Using the external data, it was possible to quantify the perturbation brought
by the newly proposed correction and compare it against the existing state of the
art. The results show that the logistic correction tends to better preserve the ori-
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Figure 4.4: Extreme cases in which the proposed splicing correction seems to not perform
correctly. a) With flat spectra the solution can lie in between, but based on how the cor-
rection is formulated, spectral shape differences are introduced to not change the whole
extent of the original spectra. b) The proposed correction seems to benefit from the local
complexity of the curves: as the angular frequency w of the cosine function is increased,
the proposed curves look like more realistic spectra.

ginal spectral shapes in instances of high spectral discrepancies, resulting in being
the most robust method when compared to the traditional techniques.

The logistic splicing correction proposed in this article has been made publicly
available within a GitHub repository that includes Matlab functions to splice hy-
perspectral images and single spectra. Link to the repository: https://github.
com/federigr/HyperspectralSplicingCorrection.

Limitations

Upon testing the correction, a few instances in which it achieved unsatisfactory
results were highlighted. When the spectra to be connected are mostly flat (Fig-
ure 4.4a), correcting the spectrum with a logistic function can introduce unnatural
details. However, we should interrogate ourselves and wonder what the best result
should be in this instance: a stepped connection or a flat average spectrum that
perturbates the original spectra at all wavelengths? So, for the moment, it seems
that the correction works efficiently on more complex signals where introducing
small local variations does not provoke significant shape alterations (Figure 4.4b).



4.5. A3: Reflectance imaging spectroscopy for the study of archaeological pre-Columbian
textiles 115

4.5 A3: Reflectance imaging spectroscopy for the study of ar-
chaeological pre-Columbian textiles

This is the first article that tackles material analysis reaping the benefits of the
technical work conducted for articles A1, S1, and A2. In this article, two out of
the five Paracas textiles housed a the Department of Collection Management of the
University of Oslo are analyzed by means of RIS. The specific analysis is placed
in a broader context in which other analytical techniques like Surface-Enhanced
Raman Scattering spectroscopy are applied to the artifacts to reveal their chemical
composition.

Once a unique hyperspectral image is obtained from the fusion of the individual
VNIR and SWIR, several Region Of Interest (ROIs) are identified by an expert in
conservation science and familiar with the textiles. Such ROIs are selected based
on the belief that they might contain relevant spectral features that can be traced
back to dyestuff and fiber identification. Recalling the notion that the surface of
a textile is non-flat, it was decided to operate in a spectral variability framework,
thus associating with each ROI a bundle of endmember spectra, rather than an
individual endmember.

In a preliminary step, the endmembers contained in the spectral library underwent
spectral unmixing, to potentially discover if possible dye-mixing took place and to
possibly identify purer endmembers. Based on the unmixing result and on previ-
ous knowledge, a series of selected endmembers was produced. A second set of
filtered endmembers was iteratively generated in an automatic manner by explor-
ing the clustering properties of the projection of the endmember ROIs in the KLPD
space.

The two selected endmember sets were then used to perform spectral mapping,
first considering the whole spectral range, and then individually the visible range
for dyestuff mapping, and the infrared range for fibers mapping.

If the results proposed by the analysis of the visible information were of interest,
but expected, those coming from the infrared mapping have elicited some sur-
prises. Indeed, by using the automatically selected endmembers it was possible
to enhance the presence of an invisible (to the human eye) vertical pattern (Figure
4.5). This certainly represented an exciting result for which the causes are still
to be clarified, with possible explanations tracing back to the manufacturing tech-
nique of the textile and the possibility that the textile had been folded for centuries.
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Figure 4.5: Enhancing the vertical pattern resulting from the fibers mapping in the SWIR
range on an RGB rendering of textile UEM37914.

Limitations

In hindsight, this work could have benefited from a technical adjustment, if we
consider the context of this thesis. Indeed, the work does exploit the data fusion,
but only to go back to considering separately the VNIR and SWIR ranges for
the analysis of dyestuff and fibers. Although this was a decision dictated by the
nature of the data and the scope of the article in its publication venue, the data-
fusion aspect could have been exploited more, for example by subdividing the
spectral range differently so as to include spectral bands originally belonging to
the different cameras.

4.6 A4: Full VNIR-SWIR hyperspectral imaging workflow for
the monitoring of archaeological textiles

This article was initially designed to be a cross-disciplinary exercise, so as to dis-
seminate the work done to fuse hyperspectral images to a CH community repres-
ented by the attendance of the Archiving conference. The problem of sharpening
proximally sensed images is also tackled, so to have a twofold goal with this work:
present a full fusion workflow, and raise awareness towards the fact that not all
sharpening methods are alike and lead to similar quality results.

In order to demonstrate the last point, two popular empiric sharpening methods
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Figure 4.6: Unsupervised spectral mapping of the SWIR scene by extracting the most
relevant spectral signatures. The ground truth image is obtained following Wald’s protocol,
thus allowing a comparison with the sharpened versions.

are selected: the Gram-Schmidt (GS) method, belonging to the Component Sub-
stitution family, and the Modulation Transfer Function - Generalized Laplacian
Pyramid - Context-Based method, belonging to the Multiresolution Analysis fam-
ily. Out of the two, only the latter is deemed to be context-aware, and thus it does
not blindly inject spatial details from the spatially highly resolved image onto the
lowly resolved one.

While both methods are able to generate a visually pleasing enhanced version of
the SWIR scene, this should not mislead the user. Indeed, by performing an un-
supervised spectral mapping, it was possible to display how the mapping was af-
fected by the sharpening method (Figure 4.6), and how this could lead to a misin-
terpretation of the data, and to a poor conservation or preservation decision when
the GS method is deployed.

Limitations

This work was designed to disseminate information and raise awareness regarding
carefully selecting the sharpening methods to be deployed. By doing so, it targeted
two selected sharpening techniques, and therefore its robustness could be increased
by conducting a comprehensive review of existing methods for applications in CH,
assessing strengths and weaknesses in generalizing solutions.

The presented workflow stops at the formulation of the hypothesis that a fused
VNIR-SWIR hyperspectral image is a bulky dataset, without addressing topics
related to data management and storing that are valuable in the field of heritage
archiving. This certainly leaves ground for interesting future work to make hyper-
spectral imaging a more sustainable technique.
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4.7 A5: Relationship between reflectance and degree of po-
larization in the VNIR-SWIR: A case study on art paintings
with polarimetric reflectance imaging spectroscopy

The last article of the collection tackles the implementation of a polarimetric ima-
ging framework on top of the already existing VNIR-SWIR RIS system. High
importance is given to the process of spectro-polarimetric calibration since the
imaging setup contains polarization elements that cannot be controlled with abso-
lute precision.

Indeed, there is no possibility of knowing the exact angle of the polarizers mounted
in front of the cameras, and therefore the first part of the polarimetric calibration
is devoted to this experimental estimation. A set of linear polarizers with known
orientation angles is placed in the scene as a reference, thus allowing the estimation
of the analysis angles by inversion of the cosine law that models the intensity of
light transmitted by the filters.

The joint spectro-polarimetric calibration allowed the pixel-wise computation of
the spectral Stokes vectors and consequently, the degree of polarization was estim-
ated.

The negative correlation between reflectance and degree of polarization previously
studied in the visible range [244] was investigated, considering the full extension
of the spectrum, and with a multi-resolution approach. In this way, it was pos-
sible to observe a significant influence of the surface topography on the measured
correlation, hinting at the fact that observations made with spectroscopic systems
might not hold in a much more complex imaging scenario. Moreover, while in-
vestigating the spectral behavior of the correlation, it was found that in general,
the correlation is present and significant in the visible range, but then it completely
disappears (complete decorrelation) in the range recognizable as the NIR, whereas
in the last part of the spectrum (SWIR), a more fluctuating behavior was observed.

Limitations

The article focuses most of its efforts on implementing and describing the spectro-
polarimetric calibration, which is achieved successfully. While the observations
regarding the fluctuation of correlation through the VNIR-SWIR spectrum are in-
teresting, there are still a few questions that need to be addressed. Amongst these
questions, it is legitimate to wonder whether this behavior can only be associated
with the examined target or if the observations can be generalized. Moreover, the
question regarding the causes of the behavior remains unanswered, with only a few
speculations in place.



Chapter 5

Discussion

In this chapter, we will take a step back to examine the overall picture drawn by the
research described in this thesis. In Chapter 1, two main research questions (four
overall questions considering the subdivision of RQ1) were defined to accomplish
the previously set research goals. The purpose of the present chapter is to reflect
upon the proposed RQs and examine how our knowledge regarding the treated
topics has changed, thanks to both the contribution of the published articles and
the insights gained in three years of research in which it is honestly admissible that
more was learned from the mistakes rather than from the successes.

The second part of the chapter takes a further step back and reflects on the global
contributions and impact that this thesis has/could have in the field of Reflectance
Imaging Spectroscopy for the applications to Cultural Heritage artifacts.

5.1 Revisiting the Research Questions

RQ1: How to efficiently build a fused hyperspectral image starting from two
hyperspectral images in the VNIR and SWIR?

The first RQ proposed in this thesis was tackled in practice from different angles.
For this reason, it was decided to address this RQ by splitting it into three sub-
questions that treat different topics that once interlaced all cooperate towards the
resolution of RQ1. Thus, addressing the sub-questions of RQ1 deals with con-
siderations related to the imaging setup and processing. The fusion of VNIR and
SWIR RIS takes place in five main steps, two related to image capturing (setup
designing and inclusion of additional modalities), and three related to data pro-
cessing (spatial registration, spectral splicing, and resolution sharpening). The
identification of these steps alone can be considered a way to answer RQ1, but the
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details of each individual block are explained in the following sections.

RQ1a: What are the factors and decisions that influence the performance of
spatio-spectrally aligning two hyperspectral images coming from two differ-
ent sources and electromagnetic ranges?

At the start of Chapter 3, the fusion problem (Equation 3.1) of the two hyper-
spectral images V (z,, Yy, \y) and S(xs, ys, As) was defined through the imple-
mentation of a generic transform 7 that acts on both V and S to generate a fused
hyperspectral image F(x, y, \) that presents sharp spatial features, indicating good
single-image quality, and smooth, discontinuity-free spectra that point at realistic
spectral features for the examined objects. The transform 7 can be split into
the contributions of individual transforms, identified as image registration (spa-
tial alignment, R), spectral splicing (spectral alignment, §), and hypersharpening
(resolution enhancement, ).

Learning the transform R boils down to estimating the homography matrix that
geometrically warps one spectral set onto the reference system (same point of view
and same spatial resolution) of the spectral set assumed as reference. Since V and
S are individually internally co-registered, a single homography is sufficient to
spatially align all spectral bands involved.

In article Al., we have identified in detail a series of decisional factors that can
alter the performances of image registration at the processing level. An additional
factor that was identified was the impact of the image scene complexity, but that is
in principle not controllable, although it can help assess if fused VNIR-SWIR RIS
can be a suitable tool for an accurate digitization and material analysis.

The spectral redundancy that characterizes hyperspectral images can be considered
an asset rather than an obstacle to processing since it helps us denoising those low
SNR bands present at the extremes of the spectral ranges because of the manufac-
turing limits of the sensors. In the context of image registration, this represents an
advantage to the deployment of feature-based techniques that are claimed to be ro-
bust to magnitude differences but are indeed facilitated by more similar responses,
found indeed in correspondence with similar nominal wavelength bands.

Spectral alignment, or splicing, is needed due to a series of noise sources that result
in the non-matching output of sensors measuring the same quantity, i.e. spectral
reflectance at a given wavelength. The transform S in this case is applied to both
spectral sets V and S in order to first harmonize their spectral responses in the
overlapping range (if present), and then to accordingly modifying the remaining
of the spectra in a respectful way, finding a fine balance between maintaining the
original spectral shapes and obtaining a plausible solution of the connected spec-
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trum. The driving parameter in splicing is the relative spectral difference between
the two responses, and thus a correction should be effective for a wide range of
discrepancies that might take place in a RIS scenario.

Besides designing a suitable correction, our task is also to facilitate the processing
at the experimental level by adopting an appropriate imaging setup whose goal is
to maximize the BRDF similarity between the two independent imaging devices.
By doing so, a beneficial effect is also brought to the image registration problem.

As introduced in Section 2.3.7, the BRDF describes the proportion of reflected
light off of a surface as a function of illumination and observation angles (Equa-
tion 2.26). If we consider an imaging system constituted by a scene and a classic
DLSR camera, we can approximate the camera objective as a single point, so that
each pixel, translated into real-world points in space is defined by two observation
angles, the azimuth angle (elevation) and the zenith angle. Throughout the scene,
the two angles vary according to the position of the pixels. In a pushbroom sys-
tem, the variation is experienced only for the angle that changes in the across-track
direction (the zenith), since the relative position in the along-track direction of
pixels is constant with respect to the sensor. For this reason, we can think of a line
scanning system as a geometry simplifier. This can be considered an advantage
for material analysis, but certainly constraints the usage of line scanners for the
rendering of perceptually ultra-realistic images.

During the time in which this thesis was conducted, we have experimented with
different imaging setups for VNIR-SWIR RIS, and we have been able to highlight
the strengths and shortcomings of each one of them, thus allowing us to decide on
the final image setup described in Section 4.2. A schematization of the four setups
that we have analyzed is reported in Figure 5.1.

Figure 5.1 does not report the case in which the cameras are deployed subsequently
leaving the acquisition geometry unchanged. This instance, although it is a valid
option, involves a level of instrumentation handling that is normally discouraged.

The key features that can be used to assess the pros and cons of each setup are
speed of acquisition, impact on the examined target, and similarity of the BRDF.
The setup depicted in Figure 5.1a is the one adopted in all contributing articles. The
same geometry allows the maximization of the BRDF as long as the alignments
are respected at the practical level. This is not the fastest setup available, since it
deploys only one illumination source per camera, which at the same time allows
being more gentle on the artifact as the developed heat is more controlled. On the
other hand, the setup of image Figure 5.1d could be deemed risky because of the
amount of radiation incident on the examined artifacts, even if it is the fastest and



122  Discussion

a) )

5850 5, B0 ¢ HB0¢

s W04

Figure 5.1: Schematization of four identified possible imaging setups for VNIR-SWIR
RIS. The letters V and S indicate the VNIR and SWIR cameras respectively, while the
letter ¢ indicates a light source. a) Single-light, same geometry (setup currently adopted).
b) Single-light, symmetric geometry. Sometimes deployed in fixed frameworks. ¢) Double
light, co-boresighted. d) Double light, same geometry.

allows the capturing of a highly similar BRDF.

Sometimes, because of practical needs, fixed frameworks can be deployed in which,
for the sake of time and space constraints, the imaging setup resembles the illus-
tration of Figure 5.1b. In this case, however, the captured BRDF of the VNIR
and SWIR setup is not the same. Moreover, when the topography of the surface
cannot be approximated to a flat plane, height reliefs cast shadows that are imaged
symmetrically by the two cameras. This would then require an additional step in
image pre-processing to carefully treat the shadow area before proceeding to ana-
lyze the pixels involved. It is worth pointing out that line-scanning imaging can
introduce some differences in the way shadows are perceived when compared to a
DLSR camera. When a standard camera is deployed to image a scene, the length
of the shadows cast by the reliefs will depend on the height of the obstacles and on
the distance between the light source and the obstacle. Moreover, the proportion
of umbra and penumbra will also be affected by the same factors. When the same
scene is scanned by shifting it across the field of view of a line scanner, the distance
between obstacles and the light source will be the same for all reliefs. Thus, the
resulting shadow distribution will be different than the one acquired by a staring
system. Moreover, the ratio of umbra and penumbra can be considered constant
for all reliefs. This last property makes the pushbroom system approach a system
where the illumination source is at an infinite distance and can be a useful insight
in studies in which the goal is to retrieve the topography of the examined scene.
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The co-boresighted system depicted in Figure 5.1c can be considered the fastest
among the four, although a risk assessment regarding incoming radiation should
be performed. Moreover, it suffers from BRDF differences due to different obser-
vation directions and the need to assume a projective transform when registering
the images, thus allowing an additional degree of freedom that can result in noisy
homography learning.

As we have highlighted in article Al., the scene complexity intended as surface
topography has an impact on the performance of image registration, which in turn
affects the spectral discrepancies that need to be corrected during splicing. Thus,
if adopting different imaging setups changes the perception of the imaged surface,
a careful assessment must be conducted when a specific artifact is presented. In
the instance in which the surface is approximately flat, the setup depicted in Figure
5.1b can suffice the requisites if the assumption of an isotropic BRDF is in place.
Otherwise, the other BRDF-preserving setups should be privileged.

Lastly, a note on the illumination source. In the setup illustrated in Figure 4.2, halo-
gen lights are deployed individually on the fields of view of the VNIR and SWIR
cameras. These lights are used for their IR content, but if the purpose is to extract
spectral reflectance, nothing forbids the usage of a different light source for the
VNIR range, as a lower IR emission would be beneficial to the heat development of
the surface. It is important however to ensure geometry alignment between the two
independent setups and always operate in a camera and illumination-independent
space like reflectance, as the comparison of radiance or irradiance could be mean-
ingless.

RQ1b: What are the implications of sharpening techniques developed in re-
mote sensing when translated to proximal sensing applications?

In Chapter 3 we have observed the intrinsic differences that exist between a re-
motely sensed image of the Earth surface and that of a proximally sensed textile.
In particular, we have shown how typically, the spatial patterns related to edges
tend to be preserved in the former instance when passing from a visualization in
the visible to the infrared, while in the latter this does not happen to due the reflect-
ive properties of dyes and fibers. This lead us to the observation that the techniques
developed for sharpening remotely sensed images could not be straightforwardly
applied to the Cultural Heritage imaging domain.

However, a category of sharpening methods deemed context-based is claimed to be
able to selectively neglect the spatial details that are injected onto a lowly resolved
image. Upon testing of a sharpening technique belonging to this family (Mod-
ulation Transfer Function - Generalized Laplacian Pyramid - Context Based) in
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article A4, it seems that the performances are satisfactory, both from a visual and
analytical standpoint. Thus, the need for a dedicated hypersharpening technique
for CH artifacts does not seem so urgent.

A few options can be worth exploring to improve the performances. For example,
most empirical sharpening techniques are based on the inherent properties of spe-
cific sensors as they are developed on a case-specific basis. The MTF of a sensor
is usually the leading characteristic to compute intermediate images deployed in
sharpening, and thus a prior sensor characterization would be necessary before be-
ing able to work at full capacity. This can be hard to achieve without proper instru-
ments and sensor manufacturers might not be so willing to share the information.
Neural Networks, although they too would benefit from sensor models, could be
a workaround to develop a CH-specific sharpening method. The usage of Neural
Networks trained on satellite images for the sharpening of proximally sensed im-
ages is questionable, given that the sharpening performances already decay when a
Neural Network is deployed on images acquired with a satellite imager not present
in the training set.

RQ1c: Is it possible to develop a paradigm for the joint analysis of VNIR-SWIR
RIS and polarimetric imaging?

To answer the question with brevity: yes. In article AS; we have designed a system
for the capturing of hyperspectral images in the VNIR and SWIR jointly with
polarimetric information. Due to space limitations, the setup had to be designed in
a way that allowed the sequential capturing of VNIR-polarimetric and then SWIR-
polarimetric data. This is the first point where improvement can be sought after.

The imaging paradigm that we proposed can be adapted to the instrumentation and
needs of other research institutions since it is highly dependent on the availabil-
ity of specific components. However, the robustness of the spectro-polarimetric
calibration was the main point that we wanted to showcase. Indeed, the usage
of reference polarizers with known orientation angles in the scene proved to be
an economic solution to estimate the angle of the analysis polarizer in front of the
camera, there where the orientation of this last component cannot be known a priori
due to its manual mounting and rotation. An analysis polarizer could be mounted
on a rotational stage, but that would encounter a series of practical challenges that
could end up degrading the overall image quality.

As we discussed in Chapter 3, the ultimate goal of studying material-related po-
larization properties would be to recover the full Mueller matrix, while at the mo-
ment, only the Stokes vectors can be recovered at the pixel level. However, this
is already a good starting point that allows us to study the polarization properties
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of the reflected light and can thus enable the speculation of hypotheses regard-
ing the optical properties of the examined artifacts. The development of a Mueller
hyperspectral-polarimetric system is something that in the foreseeable future could
not be accessible, but starting from the study of similar multispectral systems [249]
it is possible that such technology will be available in the years to come.

RQ1c finds its connection to the broader reach of this thesis in the way spectral
splicing is inserted in the pipeline. If we examine the imaging paradigm, we have
introduced how it is possible that the analysis polarizer in front of the camera is
controlled manually. This means that it is highly unlikely that the rotation angle of
the VNIR and SWIR analyzer matches, thus disabling the possibility of splicing
the reflectance images as they are captured.

A requisite of splicing is indeed that the two spectral sets must capture the same
quantity in the same (or as much as possible from an experimental standpoint)
conditions. When discussing RQ1a we have introduced that it could be possible
to deploy different illumination sources, reminding that spectral fusion takes place
in a space that discards the influence of the illumination. Similarly, before apply-
ing splicing in a polarimetric context, it is necessary to discard the effects of the
polarizing filters placed in front of the cameras. The Stokes space can represent
such an environment, so the spectral Stokes vectors undergo splicing to obtain a
unique fused version of spectral Stokes images between 400 nm and 2500 nm.

When we examine the Stokes vector of a pixel, the Sp(\) component is repres-
entative of its reflectance, while S;(\) and Sa(\) indicate the difference between
intensities measured through orthogonal directions of the polarizer. When the de-
gree of polarization of a pixel is low, it is usually due to S7(\) and Sa(\) being
small and flat. These two characteristics tend to trigger challenging scenarios (high
relative spectral discrepancy and simple spectral shape) for the proposed splicing
correction, as we have introduced in Chapter 4. Thus, it could be worth exploring
a dedicated spectral Stokes splicing correction.

RQ2: Can the performances of the typical tasks conducted in RIS analysis for
CH be improved by considering the full extension of the spectral data in the
VNIR-SWIR ranges?

In Chapter 3, we have highlighted a lack of joint spectral analysis when RIS is
deployed in the VNIR and SWIR range for applications in Cultural Heritage, ex-
plaining that especially in the instance of textiles the two ranges are used separately
to conduct dyestuff and fiber analysis, respectively. On the other hand, we have
argued how adding additional features to a system of observations could lead to the
enhancement of patterns that could not be observed when considering the feature
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sets independently.

Considering the breadth of RQ2 and the related state-of-the-art status, it was not
possible to fully address this question directly. However, the analytical tasks con-
ducted in article A3; helped to gain some important insights that are hereby dis-
cussed. Our observations are based only on the task of spectral mapping, as spec-
tral unmixing in article A3; was performed only on the visible range, according to a
prior belief that fiber mixing was not yet discovered as a practice by pre-Columbian
civilizations in South America. The spectral mapping performed considering the
whole extension of the spectral range from 400 nm to 2500 nm could segment
meaningful areas, but in the end, was not as informative as the mapping conducted
on the SWIR range. In this particular case, this could also be due to the selected
endmembers, which in the case of the SWIR analysis were in inferior numbers.

So, to concisely answer RQ2, it does not seem that there is a clear advantage
to using the full range in classic analytical tasks such as spectral mapping and
unmixing. To elaborate on this conclusion, we have identified three main reasons:

1. Wrong domain of application: As we discussed at length, the spectral re-
sponse of textiles tends to segregate the information related to colorants and
fiber substrates. Colorants showcase relevant spectral features in the range
400 nm to 780 nm, while fibers, which appear mostly achromatic, tend to
show characteristic peaks and valleys in the deeper infrared. The semantic
nature of the information that can be extracted from historical textiles, how-
ever, seems to be endangered when a wider spectral range is considered,
and thus the interpretation can become more challenging. For this reason,
we label this particular application as wrong: not because VNIR-SWIR RIS
should not be applied at all, but because the analysis of full-range spectra is
not more advantageous than considering carefully selected spectral subsets.

2. Curse of dimensionality: Adding features to an already high-dimensional
space is sometimes counterproductive. This is known in the field of data
science as curse of dimensionality [250] and its first repercussion affects
the modeling perspective of spaces. Indeed, as the space dimensionality in-
creases, the data points become more spread out and the sparsity of the sys-
tem increases, thus making it difficult to gather observations in those data-
lacking areas to draw conclusions. Thus, to an increase in dimensionality,
an increment in observations should follow. The curse, besides bringing a
higher demand for computational complexity and data management in all
instances, is particularly effective when feature engineering approaches (or
in other words, when new features are created by already existing ones) are
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adopted without prior considerations, or when the new measured features
brought into the system do not possess a meaningful statistical relevance
and thus contribute only to increase the noise in the system. With this ques-
tion, we want to assess if joining spectra at the pixel level actually positively
contributes to having statistically meaningful observations.

3. Effect of increased dimensionality on spectral metrics: When dimensions
are added to two vectors, their quantitative comparison changes according
to the nature of the newly introduced features and their interaction with the
existing ones. An observed effect on historical textiles is the significant
spreading of the KLPD projections when the full range is considered against
the individual VNIR and SWIR ranges (Figure 5.2). This can be interpreted
as a consequence of the curse of dimensionality, whose more pronounced
effects are visible as a stretching along the AG (spectral shape) axes.

Indeed, spectral distances based on non-linear operators such as cosine dis-
tance (spectral angle) and correlation tend to exhibit a behavior that is quite
challenging to predict and interpret when the number of elements of a spec-
trum increases. Thus, the deployment of such evaluation techniques needs
to be carefully considered prior to usage. In Section 5.3, we consider an in-
stance that potentially can help in increasing the interpretation of similarity
measures of wide spectra.

4. Mixing model validity: Specifically for the case of spectral unmixing, the
mixing model assumes a central role in the assessment of the performances.
Given the typical complexity with which the painting layer and the dyestuff
are applied on their respective substrates, it could be possible that the cur-
rent state-of-the-art mixing models are not able to describe the phenomenon
accurately across the whole spectral range. Perhaps a revision of the full
approach is necessary, since typically the task at hand is to unmix pigments,
whereas this is hardly achieved when considering spectral ranges that en-
compass multiple structures and signal sources.

5.2 Onthe orderof R, S, and H

In article A4., we presented a workflow that operated at low resolution in order to
show the difference in classification performances of different sharpening meth-
ods. Here, the pipeline followed these steps: registration deploying the SWIR
spectral set as a reference, splicing correction, downscaling following Wald’s pro-
tocol for evaluation purposes, and hypersharpening at the original SWIR resolu-
tion. However, in a real scenario application, the desired output is produced at the
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Figure 5.2: KLPD projections and corresponding convex hulls of spectra included in the
spectral library of one of the Paracas textiles studied in article A3;. Fusing the VNIR and
SWIR spectral information results in a spreading of the projections along the AG axes.

original spatial resolution of the VNIR spectral set. In this instance, following the
above workflow is possible, but careful considerations are necessary.

The first observation is that both splicing and hypersharpening operations require
the two spectral sets to be spatially aligned. Image registration is thus the first step,
although it is important to point out that its evaluation can be trickier at full resol-
ution compared to when it is performed at LR due to the presence of extrapolated
pixels.

With this in mind, we are left with two alternatives:

1. R - H — S

2R - S —- H

Alternative 1 could find its challenges in the application of the hypersharpening
step. Here, it is possible that without prior splicing, the pixel values of the un-
spliced bands of the VNIR set would lead to the generation of sub-optimal pan-
chromatic images. On the other hand, alternative 2 might encounter a noise amp-
lification issue since the splicing step is applied on extrapolated pixels that did not
get treated in the sharpening step. We have therefore an instance in which both
splicing and sharpening need the other to work more efficiently. In this scenario,
the development of a joint step that solves both problems iteratively could be be-
neficial.
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Figure 5.3: Rolling spectral correlation between the first component of the Stokes vector
So and the degree of polarization, extracted from article AS;. In this instance, the rolling
spectral window is approximately 104 nm wide (19 equally sampled bands).

5.3 On the usage of rolling metrics

Connecting to the last point in the above list, we want to reflect upon the inter-
pretability of a single number as a result of the application of a spectral metric.
In many instances, a single spectral angle or spectra correlation value is used to
indicate the similarity of two spectra, but it is legitimate to wonder about the in-
terpretability of this when the dimensionality of the data increases in a way like in
the fusion of VNIR-SWIR RIS, where a feature doubling takes place.

To tackle this issue, in article AS; we have tried to use a rolling spectral correla-
tion (taking inspiration from the research on seismology) to identify regions in the
spectra in which two vectors are more or less correlated. As we illustrate in Figure
5.3, which is extracted from AS, with this visualization it can become straightfor-
ward to highlight the spectral regions that are more or less correlated.

It is however arguable that the implementation of rolling metrics could represent
a challenge in a computational environment (for example, what is the most appro-
priate spectral window width?), but likely a direction worth exploring to analyze
wide spectra without recurring to dimensionality reduction techniques.

5.4 Visualization opportunities

As we have discussed the risk that the curse of dimensionality poses to fuse two
already large datasets and how historical artifacts cast a curse of their own to the
wide spectral analysis, we finally try to look for the silver linings offered by the
definite information separation that takes place in textiles.

Over the recent years, museums and exhibitions from around the world have star-
ted expressing interest in fully digitizing their collections towards the production
of digital twins [251]. Digital twins can include virtual 3D reconstructions of an
artifact, long lists of metadata regarding its manufacturing, history, discovery, con-
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servation treatments, and preservation conditions, as well as an array of comple-
mentary visualizations that enhance different structures. Among these, it is likely
that in the instance of a historical textile, a simultaneous visualization of mapped
dyes and fiber-related signals could be of high interest (Figure 5.4). The interest
does not stop at the contribution to the digital twin constitution, but such visualiz-
ations (rendered with the appropriate procedures) could be used in the context of
an exhibition to showcase exactly where different dyes and fibers concur.

Displaying a lot of information at once is both exciting and challenging. As ob-
servers, we only have a limited attentional span and the overcrowding of inform-
ation can be too much to digest at times. Hyperspectral images are inherently
high-dimensional entities and as such represent a difficult target for visualizations.
The usage of visualization techniques that do not find a place in a manuscript like
this thesis (videos, animations, interactive tools, etc.), can offer however a nice
gateway to explore visualization possibilities in dissemination and exhibition con-
texts. Among them, the International Image Interoperability Framework (IIIF)
[252] pioneers the integration of images represented in layers and their corres-
ponding metadata, while web-based and offline viewers such as Mirador [253]
and Butterfly Viewer [254] allow the interactive exploration of scenes represented
with multimodality. The usage of animations and interactive tools have historic-
ally helped the visualization of data obtained with RIS, and many opportunities,
limited only by our creativity, await.
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Chapter 6

Conclusion

6.1 Breadth of the Research

The term -mononumerosis- has been informally coined to indicate those instances
in which, in order to describe a spectral comparison, the whole evaluation is trus-
ted upon the usage of a single value computed by a metric [255]. By doing so, it
is possible that only one side of the story can be told, with the risk of having an
incomplete picture of the observed phenomenon. Similarly, being prone to tun-
nel vision when trying to bring developments to an already established technology
can be counter-productive. That is why this thesis work was always conducted
with the primary goal of being at the service of Cultural Heritage, and thus a mul-
tidisciplinary, multi-approach layer helped keep the full picture always available.
In doing this, the constant interface with experts in their sector was crucial, not
only to reach a valuable publication but to organically grow shared knowledge.

This thesis tackled the fusion of two techniques of RIS (VNIR and SWIR) for
applications in Cultural Heritage, with studies that ranged in various aspects of sci-
entific research such as technical-oriented, application-oriented, and dissemination-
oriented. Moreover, within the technical-oriented approaches, the problem at hand
was addressed from different angles that concerned different aspects of imaging,
starting from the initial setups to the implementation of processing steps and the
addition of further layers of complexity represented by spectral image multimod-
ality.

6.2 Contributions

The multi-approach featured in this thesis has the main result that the highlighted
contributions belong to different aspects of research:
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> Understanding of imaging setup: Although this particular aspect did not stem
into a research publication, the insights and reflections that were gathered are ex-
tremely valuable. Putting in perspective the implications that each imaging setup
has in combination with the complexity of the scene is crucial when assessing the
capability of a RIS system, as it influences the quality of intermediate processing
steps and can change the outcome of later analysis.

> Spectral splicing : A splicing correction dedicated to hyperspectral images
was something that was lacking in the landscape of RIS processing. With the
newly proposed logistic correction, we hope that more and more users can analyze
VNIR-SWIR spectral data more efficiently and in different ways.

> Polarimetric RIS: The proposed practical implementation of a VNIR-SWIR
polarimetric RIS system allowed for the retrieval of high-quality spectral and po-
larimetric data and can then represent a base framework for further analysis.

> Sharpening for CH: The consequences that specific sharpening methods de-
veloped for remote sensing, namely methods belonging to the Component Substi-
tution family, have on the spectral of the final sharpened image are known. How-
ever, the application of such methods and the impact of these consequences on
classification tasks performed on historical artifacts had not been showcased be-
fore. This contribution is indeed a natural consequence of observations performed
in a different imaging domain, but a much-needed one in the Cultural Heritage
domain, where new imaging techniques start to emerge.

6.3 Impact of the Research

Assessing the impact of research is not an easy task, especially in the early stages
and in the period immediately after the work is concluded. As it is not possible
to discuss how much the research presented in this thesis has impacted its field of
application, we can offer a reflection on the tangible impact that we have observed
so far and on the potentialities that lie ahead.

The contributing articles of this thesis are presented in an order that does not follow
the chronology of publication but rather follows a semantic division that helps in
having this dissertation flow more freely. However, it is clear how the first two
articles Al and A2; are instrumental to the production of the subsequent ones.
Indeed, the lessons learned regarding image registration and the developed splicing
correction are deployed to form the pre-processing basis in articles A3;, Ad., and
AS;.

The splicing correction proposed in article A2; can be considered to have the po-
tentially highest immediate resonance, as the concept of splicing is not all that
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popular in RIS. One of its strengths is that it is not limited to Cultural Heritage
applications, and it can be used to fuse spectral data of different natures, provided
that the BRDF (or BTDF, in case of transmittance data for example), is matched
between the deployed imaging systems.

With article AS;, we have tackled the fusion of RIS with polarimetric imaging in
the VNIR-SWIR, opening what it is possible to think of as a new framework to
compute characteristic spectro-polarimetric features of materials commonly used
for the constitution of historical artifacts at the imaging scale.

Another way of assessing research impact more practically is to analyze the pub-
lication venues of the different contributing articles. Article Al, was published
at the Workshop on Hyperspectral Image and Signal Processing: Evolution in Re-
mote Sensing (WHISPERS), an international conference organized yearly by IEEE
that gathers the community working on RIS, mostly in the domain of remote sens-
ing, but that in recent years has opened up to various proximal applications such
as food analysis and Cultural Heritage. Participating in WHISPERS allows for
gathering insights regarding the new trends and feedback from experts in both the
academic and industrial research areas.

The decision to publish Article A2; in Optics Letters (Optica group) stemmed from
the need to provide a concise solution to the problem of spectral splicing. The
journal publishes exclusively short communications (four pages) that can have an
immediate resonance in the field they address, also thanks to the accumulated no-
toriety that the journal acquired over the years (2022 Impact Factor 3.6).

Article A3; has been submitted with the goal of being published in a well-established
venue in the field of Heritage Science.

Article A4, was published in the context of the Archiving Conference organized
by the Society for Imaging Science and Technology, which gathers different pro-
files of practitioners in preservation. Thus, it was thought of as an optimal venue to
present and disseminate the conducted work, while at the same time raising aware-
ness regarding the sometimes tricky applications of advanced image-enhancing
techniques.

Finally, article AS; has been submitted aiming for a publication in an established
multidisciplinary venue, given the transversal topics that it addresses.

A more circumscribed vision of impact can be thought of as the collaboration
between researchers from different fields. Through the development of this thesis,
research groups have been brought together to interact, collaborate, and most im-
portantly, transfer high-level knowledge. This kind of impact does not immediately



136 Conclusion

resonate at the community level, but it still cannot be overlooked.

6.4 Future directions and perspective

During this thesis, we have discussed in detail different research questions, and
while trying to answer them, we have perhaps opened new paths leading to more
questions that can be addressed in the future. Here, we try to summarize new dir-
ections and perspectives that are worth exploring to push the research in combined
VNIR-SWIR RIS forward.

> Band-synthesis from two spectral sets: Image registration is highly dependent
on the two images that lead the learning of the connecting transform matrix, and
thus, an optimal way of generating two suitable images from the two spectral sets
can be devised. The problem is ill-posed by nature, but the introduction of con-
straints and carefully designed regularization rules could help in simplifying the
search for the appropriate image pair.

> Shadow treatment: When technical constraints are applied to the imaging
setups and complex surfaces are imaged, it is possible to face a sub-optimal situ-
ation in which the BRDF does not match at the pixel level. If this situation cannot
be avoided and analysis is still needed, then a methodology must be devised to treat
those areas that show non-matching lit and shadow areas. A shadow detection and
correction framework can potentially exploit the image difference at the spectral
overlap similar to the case of splicing.

> Joint splicing-sharpening: In the previous Chapter, we have highlighted how
splicing and sharpening need each other to work at full capacity. A processing step
that implements both simultaneously is therefore in the realm of possibilities and
worth exploring.

> Dedicated sharpening for CH: Although it does not seem that there is a need
to develop a dedicated empiric sharpening technique for CH, it is possible that a
leap forward can be achieved by deploying Neural Networks specifically trained on
proximally sensed objects. Since it is demonstrated that Neural Networks struggle
with data from different satellite sensors, it is foreseeable that an application of
Neural Networks trained for remote sensing and deployed on historical artifacts
would not perform as well as their empiric counterparts.

> Mixing models in extended spectral ranges: As much as the validity of com-
monly used mixing models such as the Kubelka-Munk theory is established in
describing the way paints mix in the visible range, more investigation is neces-
sary to explore the way spectral signals interact when multiple substrates are con-
sidered once paints and pigments stop having significant responses in the infrared
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range. The definition of an appropriate mixing model, not necessarily behaving
uniformly wavelength-wise, can be crucial to solving the unmixing problem in the
whole VNIR-SWIR range.

> Widening of users pool: The equipment that enables hyperspectral imaging is
typically a wish item at many institutions around the world, but it is rarely within
budget. In the context of the current global crises, efforts should be spent on
increasing accessibility to technology, which has already begun with the Iperion
HS consortium [256] but can be followed by preventive actions in those areas
where wars and climate disasters endanger people’s lives and the sustenance of
their identity through their heritage.

> Spectro-polarimetric features on mockups: Mockups have always repres-
ented a cornerstone for research in heritage science, and in this instance, they
should be no less. The computation of the spectral Stokes vector achieved with
VNIR-SWIR RIS can offer a venue for the design of features, and the correlation
between reflectance and degree of linear polarization can already be considered
one of them. It is however crucial to assess if there exists a feature variance that
will allow the discrimination of materials otherwise indistinguishable.
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ABSTRACT

We study the influence from a series of factors on the quality
of the registration of VNIR and SWIR hyperspectral images.
We specifically consider the registration of VNIR and SWIR
images of different spatial resolutions acquired in controlled
laboratory conditions on different historical artefacts. This
registration problem is defined by a large scaling difference
and small translation and rotation. We compare four methods
and demonstrate that the largest effects on the quality metrics
are due to the image contents and to the deployment of spe-
cific ranges of spectral bands. In particular, we demonstrate
that using bands of similar nominal wavelengths gives signif-
icant advantage. While those bands have typically low values
of Signal-to-Noise ratio and are frequently discarded, for this
application, they can be treated as a valuable asset.

Index Terms— Hyperspectral imaging, Registration,
VNIR-SWIR, Cultural Heritage

1. INTRODUCTION

In the field of Cultural Heritage, imaging spectroscopy is en-
countering a growing trend in popularity which makes the
technique more accessible to many facilities and laboratories
around the world. As a non-invasive, non-destructive tech-
nique, it represents a reliable tool for documentation, moni-
toring, and analysis of historical artefacts [1]. Another trend
that this field of research is experiencing is the deployment of
spectral data in different modalities and ranges of the electro-
magnetic spectrum. However, such modalities are usually
analyzed and processed independently, with conclusions and
findings that are eventually inferred by combining the indi-
vidual results.

Image registration is a preliminary step that allows the
combined analysis of separate datasets that refer to the same
scene. Data alignment is a compulsory requirement for pixel-
based analysis such as pigment mapping [2, 3] and spectral
unmixing [4] or further fusion processing like pansharpen-
ing and hypersharpening [5, 6]. Therefore, registered images
should be as close as possible to sub-pixel precision, in order
to provide accurate inferences regarding the material prop-
erties. The literature in remote sensing offers a plethora of
articles that address the problem of hyperspectral images reg-

istration, also in the case of different hyperspectral imaging
modalities.

Image registration techniques can be broadly divided into
two families: feature-based and intensity-based approaches
[7]. Feature-based methods require the detection of control
points in both fixed (or reference) and moving images; which
at a later stage are matched according to the similarity of their
constructed feature vectors. Examples of this family are the
SIFT [8] and SURF [9]. Intensity-based methods rely on the
optimization of a cost function that reflects the final quality of
alignment between fixed and moving images. This family is
often adopted to solve multimodal registration problems max-
imizing metrics such as correlation and Mutual Information
(MI). Normally, both approaches are performed on a prede-
fined fixed-moving image pair. However, in the case of hy-
perspectral imaging in two different modalities, these roles
are not defined, i.e., the decision of which spectral set is the
reference depends on the application. In addition, both fixed
and moving datasets are represented by a series of images,
which means that the spectral information can be exploited
to build richer feature vectors, as proposed in several regis-
tration attempts [10, 11, 12]. The abundance of images can
also be considered an asset in generating the most suitable im-
age pair that leads the registration, in the same fashion of the
band selection and band synthesis approaches adopted in hy-
persharpening [6]. In the field of Cultural Heritage imaging,
multimodal registration represents a crucial task, since his-
torical artefacts are often studied in cross-disciplinary frame-
works that require the capturing of images carrying different
information (topography maps, XRF, imaging spectroscopy,
FTIR, etc.). A popular approach was proposed in [13], where
the maximum of the modulus of the wavelet transform is de-
ployed to identify control points and then the local maximum
of normalized cross correlation between phase images helps
in identifying potential matched pairs between fixed and mov-
ing images. The method, referred here as to MWTPXC (Max
Wavelet Transform Phase Cross-Correlation), was developed
mainly for applications on historical paintings.

In this article we tackle the specific problem of registering
spectral data with two hyperspectral imagers working in com-
plementary ranges of the electromagnetic spectrum: Visible-
Near-Infrared (VNIR) and Shortwave-Infrared (SWIR) by
evaluating the influence of selected factors on the quality of
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the final aligned result. The capturing of hyperspectral data
for historical artefacts usually takes place in laboratory or in-
situ, with the latter being more challenging as several aspects
- such as the illumination - cannot be controlled as well as in
laboratory conditions. In this work, we adapt and compare
several registration methods to the case of VNIR-SWIR im-
ages. We perform an experiment on images of objects that
mock-up cultural heritage artefacts (paintings, textiles, draw-
ings), which images were acquired in controlled laboratory
conditions. We show that the methods benefiting from prior
scaling and overlapping bands perform the best.

2. IMAGING SET-UP AND PROBLEM
DESCRIPTION

The capturing set-up is illustrated in Fig.1 and it shows the
two HySpex hyperspectral imagers manufactured by NEO
(Norsk Elektro Optikk) - VNIR1800 and SWIR384 - in the
pushbroom configuration. In this system, the translational
stage shifts the scene across the fields of view of the cameras
which synchronously acquire the full spectrum of a single
spatial line per time of exposure. The VNIR camera deploys
186 spectral bands in the range 400-1000 nm, with 1800
pixels on the acquisition line. On the other hand, the SWIR
camera has 288 bands in the range 950-2500 nm, with only
384 pixels on the acquisition line. Thus, a scaling spatial
resolution ratio of approximately 4.6 exists between the two
datasets, while the difference in field of view for the two
imagers - 17° for VNIR and 16° for SWIR - introduces shifts
in the registration problem. The illumination geometry is
designed in a way that the irradiance impinging the target is
not harmful and does not exceed the light dosage limits for
historical artefacts [14]. The relative angles between camera,
target, and lights are the same for both VNIR and SWIR sub-
setups in order to avoid significant differences in intensity
due to the Bidirectional Reflectance Distribution Function
(BRDF) of the object surface. The deployed halogen lights
emit continuously in the range 400-2500 nm, but although
they are of the same model, the reading of illuminance on the
target in lux does not match. For this reason, working with
spectral reflectance factors instead of radiance data will facil-
itate the registration, especially for feature-based methods.
The registration of VNIR and SWIR spectral data can be
regarded as a mild multimodal registration problem, with the
multimodality that arises from the fact that the information
acquired comes from different regions of the electromagnetic
spectrum. However, the two imagers capture the same type of
information (spectral reflectance), and the multimodality be-
comes less accentuated if we consider that there exists a nar-
row interval (950-1000 nm) in which the two datasets share
overlapping nominal wavelengths. At a closer inspection of
the data in the narrow shared region it is possible to observe
that the spectral values do not concatenate accurately. This
is due to a series of factors such as the decrease in signal-to-

Fig. 1. Schematic representation of the dual camera imaging
set-up.

noise ratio (SNR) at the extremities of the two spectral ranges
[15] (as illustrated in Fig.2), the change in bandwidth between
the two sensors (CMOS and MCT), and the differences in
BRDF that exist at the pixel level, due to spurious differences
in angles between target, camera, and illumination.
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Fig. 2. Signal-to-Noise Ratio of the two hyperspectral im-
agers as a function of wavelength. The curves are obtained
capturing a standardized uniform 99% reflective Spectralon
tile and applying the ratio between the mean and standard de-
viation for each spectral band.

Since the spectral sets are internally co-registered, it is
assumed that is necessary to learn only one homography be-
tween a fixed-moving image pair that can then be applied to
the rest of the moving bands.

3. MATERIAL AND METHODS

In this section we describe the selected factors that potentially
affect the results of the registration performances. In order to
evaluate the quality of registration, five metrics are selected.
Three of them are commonly used to evaluate image similar-
ity: normalized Mutual Information (nMI) [16], Peak Signal
to Noise Ratio (PSNR), and Relative Dimensionless Global
Error (ERGAS) [17]. Two quality metrics are adapted to
suit the evaluation of VNIR-SWIR alignment: the Structural
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Similarity Index Measure (SSIM) [18] is modified to account
only for its contrast and structure components and renamed
truncated-SSIM (tSSIM):

20x0y +¢  oxy +¢/2

tSSIM (X,Y) =
(X,Y) 0% +0% +c oxoy+c/2

(¢))

In which X and Y are the examined images, o2 the vari-
ance of the image, o xy the covariance, and ¢ = 0.03L? (with
L being the dynamic range of the images). In order to com-
pare pixel distances across images with significantly different
spatial resolution, the commonly used pixel displacement is
modified to account for the real-world dimension of a pixel,
in a measure here called Ground Sampling Distance Error
(GSDE):

GSDE(X,Y) = Ap(X,Y) - g(X) [um] ()

In which Ap is the classic pixel displacement computed with
the euclidean distance between two matched points in images
X and Y, and g is the ground sampling distance of the fixed
image X (g is approximately 50 pum for VNIR and 200 pum
for SWIR, computed from a 30 cm distance between camera
and target).

The selected factors are of three types: registration meth-
ods, image contents, and related to decisions. The selected
registration methods include feature-based methods like SIFT
[8] and spatio-spectral SIFT [12] (SS SIFT), and a combina-
tion of feature and area based methods such as SIFT followed
by maximization of nMI (SIFT OPT) and MWTPXC [13].
The image contents, which mock-up historical artefacts and
are illustrated in Fig.3, are a drawing on paper (D), a flat paint-
ing (FP), a painting with textural reliefs (RP), and a piece of
textile (T). The factors related to decisions regard: selection
of reference image (VNIR band or SWIR band), considered
spectral range (full or overlap), modality of fixed and moving
images generation (band selection or band synthesis), scaling
(a priori or instrinsic in the homography matrix), and type of
homography (affine or projective).

In this study we perform the image registration task cov-
ering all the combinations of the reported factors. In total,
352 tasks are performed. Some of the factors do not apply
to all the methods, such as SS SIFT that does not require the
generation of a single band and operates only on same spec-
tral ranges. Similarly, MWTPXC requires the two images to
be always scaled to the same size a priori.

When the overlap range is considered, only the last 13
bands of VNIR and first 8 bands of SWIR constitute the avail-
able spectral sets. For the generation of single fixed and mov-
ing image pairs from the spectral sets it was decided to choose
the approaches of band selection and band synthesis. Band
selection picks the two most correlated spectral bands be-
tween VNIR and SWIR sets, while band synthesis generates
the bands using the first component of Principal Component
Analysis (PCA) performed on the images.

Fig. 3. Image contents in SRGB and IR (band-averaging).
From left to right: Drawing on paper (D), Flat painting (FP),
Painting with textural reliefs (RP), Textile (T).

4. RESULTS

The single-image quality metrics are computed after register-
ing a pair of test bands that are located in the overlap range
of the two spectral imagers, while ERGAS is computed on
the spectral datasets of the overlapping range, up-sampling
the SWIR data with linear interpolation to match the nominal
wavelengths of VNIR.

Since the highlighted potential factors are several, a Prin-
cipal Component Analysis was performed to inspect possi-
ble correlations and interactions. Fig.4 reports the loadings
plot of the evaluated conditions along the two first compo-
nents, which roughly explain 30% of the total variance. It is
worth to point out that this percentage is typically a low value.
However, by inspecting the next components (not shown) we
can corroborate similar conclusions. The performance met-
ric scores are highly correlated, taking into account that ER-
GAS and GSDE good performance exhibit a low score and
that nMI, tSSIM and PSNR good performance exhibit a high
score.

From this plot it appears that the most influencing factors
are the selected methods, two of the image contents (D and
RP), and factors like scaling, selected wavelength range, and
band generation. The positions of the loadings with respect to
the metrics suggest that points that lie close to the metric clus-
ter (tSSIM, nMI, PSNR) positively influences the results, and
conversely what lies further away provides a negative contri-
bution. We also conclude that for further examination (and
for simplicity) it is possible to refer to a single quality metric.

To evaluate the influence of the registration methods and
image contents Fig.5 reports the statistics related to normal-
ized Mutual Information in the registration tasks. SIFT OPT
and MWTPXC come out as the best performing approaches,
while SIFT and SS SIFT probably suffer from the intensity
differences that exist between the images. Amongst the im-
age contents, it is clear how the presence of textural reliefs
and specularities negatively affects the results, as in the case
of RP. Quite surprisingly, the textile image T did not pose a
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Fig. 4. Loadings of first 2 components of PCA. Only the
names of the most influential variables reported for clarity.
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Fig. 5. Statistics of nMI for groups of registration runs di-
vided into methods (left) and image contents (right).

To better appreciate the influence of the selected factors
on the registration performances it is possible to examine the
image contents individually. We quantified a factor influence
by regressing a linear model that relates the conditions of ob-
servation with the normalized Mutual Information of the reg-
istered images. By using this analytical technique and ap-
propriately normalizing the data, the sign of the regression
coefficients will provide information regarding the nature of
the influence: either positive or negative. By consequence,
the absolute value of the coefficients will give indications on
the degree of influence. A visualization of this analysis is
provided in Fig.6 in which it is possible to observe that the

exploitation of the overlapping range (950-1000 nm) brings
a positive contribution to nMI. Other factors of positive con-
tribution are the selection of the SWIR image as reference,
and the prior scaling (a negative contribution from learning
the scale intrinsically is highlighted). This analysis does not
solve the question on whether it is suggested to proceed with
band selection or band synthesis. Running the same analysis
excluding the observations where SS SIFT is deployed (i.e.,
when band generation is not a factor) it would appear that
band selection works better for the image contents of D, FP
and T, while band synthesis is preferred for RP.

D FP RP T

Ref VNIR
Ref SWIR
Range Full
Range OV
Band Selection
Band Synthesis {
Scale Prior
Scale Intr { { {
Trf Affine ‘

Trf Proj

Fig. 6. Linear model coefficients to describe the factors influ-
ence on nMI. Light-gray triangles pointing to the right denote
a positive influence on the registration result. Conversely,
darker triangles pointing to the left highlight negative effects.

To highlight the positive effects of considering only the
overlapping range of spectral bands, Table 1 reports the val-
ues of the quality metrics of full range against overlap for two
image contents - FP and D - when applying SIFT OPT, us-
ing SWIR as reference, with band synthesis generation, prior
scaling, and affine transformation.

Image nMI tSSIM ERGAS GSDE (um)

Ideal 2 1 0 0
Start  1.13 0.70 1.97 380

D Full A 1.19 0.85 1.66 150
Ov A 1.29 0.98 1.30 29.1
Start  1.13 0.45 4.51 822

FP Full A 1.11 0.45 4.75 996
Ov) 131 092 4.58 55.0

Table 1. Registration of some of the quality metrics compar-
ing cases of Full spectral range against Overlap.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on December 01,2022 at 09:34:50 UTC from IEEE Xplore. Restrictions apply.



5. CONCLUSION

Obtaining sub-pixel precision when registering hyperspectral
images coming from different modalities enables the further
processing and accurate study of historical artefacts. Know-
ing which factors improve or degrade the performances of
alignment is crucial to obtain the best possible results. With
the aid of multivariate techniques we highlighted that in the
case of VNIR-SWIR image registration a prior scaling, the
deployment of SWIR as reference, and the usage of the bands
shared by both imagers contribute positively in achieving
good results. In particular, we advise against discarding spec-
tral bands in the overlapping wavelength range that upon a
first inspection have a lower signal-to-noise ratio, since they
can actually be used as a valuable asset.
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