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... The quest for a conceptual (and practical) representation of spectral data...

* Explanations
* Challenge & Partial answers
* Discussions
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A diversity of spectral imaging
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A diversity of spectral imaging
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Issues related to this diversity

* Scientific perspective
* Repeatability
* Benchmark
* Dataset
* Metrology, quantification of errors

* Practical aspects

« Communication performance
* Video rate

* Storage
* Encoding

* Industrial development and deployment
* Portability to field

Applicability and generalisation of methods

Knowledge transfer

Learning

Market size

Once upon a time...

...And we believed we would design one
sensor for each application.




How is it adressed in Colour imaging ?

* Several spectral sensitivity sets but only one space of representation
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Y. Monno, S. Kikuchi, M. Tanaka and M. Okutomi, "A Practical
One-Shot Multispectral Imaging System Using a Single Image
Sensor," in IEEE Transactions on Image Processing, vol. 24,
no. 10, pp. 3048-3059, Oct. 2015, doi:
10.1109/TIP.2015.2436342.


https://doi.org/10.1007/s11263-013-0632-1

Sensor RGB and Perceptual RGB

* Several spectral sensitivities but one space of representation
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A relative success!

* The impact of spectral properties
can be limited

Abstract

Itis an ill-posed problem to recover the true scene colors from a color biased image by discounting
the effects of scene illuminant and camera spectral sensitivity (CSS) at the same time. Most color
constancy (CC) models have been designed to first estimate the illuminant color, which is then
removed from the color biased image to obtain an image taken under white light, without the
explicit consideration of CSS effect on CC. This paper first studies the CSS effect on illuminant
estimation arising in the inter-dataset-based CC (inter-CC), i.e., training a CC model on one dataset
and then testing on another dataset captured by a distinct CSS. We show the clear degradation of
existing CC models for inter-CC application. Then a simple way is proposed to overcome such
degradation by first learning quickly a transform matrix between the two distinct CSSs (CSS-1 and
CSS-2). The learned matrix is then used to convert the data (including the illuminant ground truth
and the color-biased images) rendered under CSS-1 into CSS-2, and then train and apply the CC
model on the color-hiased images under CSS-2 without the need of burdensome acquiring of the
training set under CSS-2. Extensive experiments on synthetic and real images show that our
method can clearly improve the inter-CC performance for traditional CC algorithms. We suggest
that, by taking the CSS effect into account, it is more likely to obtain the truly color constant images
invariant to the changes of both illuminant and camera sensors.

Shao-Bing Gao, Ming Zhang, Chao-Yi Li, and Yong-Jie Li, "Improving color
constancy by discounting the variation of camera spectral sensitivity,"
J. Opt. Soc. Am. A 34, 1448-1462 (2017)

Graham D. Finlayson, Mark S. Drew, and Brian V. Funt, "Spectral sharpening:
sensor transformations for improved color constancy,”
J. Opt. Soc. Am. A 11, 1553-1563 (1994)

Spectral sharpening: sensor transformations
for improved color constancy

Graham D. Finlayson, Mark S. Drew, and Brian V. Funt

School of Computing Science, Simon Fraser University, Vancouver, B.C., Canada V5A 1S6
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We develop sensor transformations, collectively called spectral sharpening, that convert a given set of sensor
sensitivity functions into a new set that will improve the performance of any color-constancy algorithm
that is based on an independent adjustment of the sensor response channels. Independent adjustment of
multiplicative coefficients corresponds to the application of a diagonal-matrix transform (DMT) to the sensor
response vector and is a common feature of many theories of color constancy, Land’s retinex and von Kries
adaptation in particular. We set forth three technigues for spectral sharpening. Sensor-based sharpening
focuses on the production of new sensors as linear combinations of the given ones such that each new sensor
has its spectral sensitivity concentrated as much as possible within a narrow band of wavelengths. Data-
based sharpening, on the other hand, extracts new sensors by optimizing the ability of a DMT to account
for a given illumination change by examining the sensor response vectors obtained from a set of surfaces
under two different illuminants. Finally in perfect sharpening we demonstrate that, if illumination and
surface reflectance are described by two- and three-parameter finite-dimensional models, there exists a unique
optimal sharpening transform. All three sharpening methods yield similar results. When sharpened cone
sensitivities are used as sensors, a DMT models illumination change extremely well. We present simulation
results suggesting that in general nondiagonal transforms can do only marginally better. Our sharpening
results correlate well with the psychophysical evidence of spectral sharpening in the human visual system.
Key words: spectral sharpening, color constancy, color balancing, lightness, von Kries adaptation.
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ABSTRACT We quantify the generalization of a convolutional neural network (CNN) trained to identify
cars. First, we perform a series of experiments to train the network using one image dataset - either synthetic
or from a camera - and then test on a different image dataset. We show that generalization between images

S. Bayram, H. Sencar, N. Memon and I. Avcibas, "Source camera obtained with different cameras is roughly the same as generalization between images from a camera and
identification based on CFA interpolation,” IEEE International ray-traced multispectral synthetic images. Second, we use ISETAuto, a soft prototyping tool that creates
Conference on Image Processing 2005, 2005, pp. 111-69, ray-traced multispectral simulations of camera images, to simulate sensor images with a range of pixel
doi: 10.1109/ICIP.2005.1530330. sizes, color filters, acquisition and post-acquisition processing. These experiments reveal how variations in

specific camera parameters and image processing operations impact CNN generalization. We find that (a)
pixel size impacts generalization, (b) demosaicking substantially impacts performance and generalization
for shallow (8-bit) bit-depths but not deeper ones (10-bit), and (c) the network performs well using raw (not
demosaicked) sensor data for 10-bit pixels.

ABSTRACT

In this work, we focus our interest on blind source
camera identification problem by extending our results

in the directiqn of [1]. The interpolation in the color Z. Liu, T. Lian, J. Farrell and B. A. Wandell, "Neural Network Generalization: The Impact
surface of an 1mage due to the use of a color filter array of Camera Parameters," in IEEE Access, vol. 8, pp. 10443-10454, 2020,
(CFA) forms the basis of the paper. We propose to doi: 10.1109/ACCESS.2020.2965089.

identify the source camera of an image based on traces
of the proprietary interpolation algorithm deployed by a
digital camera. For this purpose, a set of image
characteristics are defined and then used in conjunction
with a support vector machine based multi-class
classifier to determine the originating digital camera. We
also provide initial results on identifying source among

two and three digital cameras. 10

(Although metamerism difference could be used as a camera fingerprint)



How is this addressed in Spectral imaging?

E. M. Valero, J. L. Nieves, S. M. C. Nascimento, K. Amano, and D. H.

° Ca | I b rat lon (S peCt ra I recon St ru Ct ion ) Foster, “Recovering spectral data from natural scenes with an RGB digital
. camera and colored filters,” Color. Res. & Appl. 32, 352—-360 (2007).
e Equivalent to a colour transform

L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with
small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673-1683 (1986).
f= [ e(Ar(De(d)da
w

Haris Ahmad Khan, Jean-baptiste Thomas, Jon Yngve Hardeberg, Olivier

* I I | um | nat | on (S p ectra I constan Cy) Laligant, "Spectral Adaptation Transform for Multispectral Constancy” in Journal of

Imaging Science and Technology, 2018, pp 20504-1 - 20504-
° Eq uiva |ent tO Wh |te bala nce 12, https://doi.org/10.2352/J.ImagingSci.Technol.2018.62.2.020504

Haris Ahmad Khan, Jean-Baptiste Thomas, Jon Yngve Hardeberg,
_ and Olivier Laligant, "Multispectral camera as spatio-
f - r(ﬂ) C(ﬂ) dﬂv spectrophotometer under uncontrolled illumination,” Opt. Express 27,
w

1051-1070 (2019)

* File format (CIE 223:2017)

MULTISPECTRAL IMAGE FORMATS, CIE 223:2017, Division 8
ISBN: 978-3-902842-10-7

This technical report describes the basic model of multispectral imaging technology followed
by the requirements and the examples of multispectral image formats suitable for colour
imaging applications. Four example formats are introduced and compared in typical use cases:
JPEG 2000, Spectral Binary File Format, Natural Vision, and multispectral image file format
AlX. The specifications of those formats except for JPEG 2000 are provided in the Annex.



https://doi.org/10.2352/J.ImagingSci.Technol.2018.62.2.020504

Wish list for a conceptual target space

 Compact data (reduced dimension, easy to transfer)
* Practical (direct visualisation, easy to interact)

* Handling non visible parts (NIR)

e Conceptually relevant in a large sense (?)

* Generally accepted and standardised



De facto spaces: reflectance factors and
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* SRF: Compactness?

e XYZ: Loss? Quid of NIR?
* Fast and interactive spectral and colorimetric visualisation possible

Colantoni, P., Thomas, JB. (2009). A Color Management Process for Real Time Color Reconstruction of Multispectral Images. In: Salberg, AB., Hardeberg, J.Y.,
Jenssen, R. (eds) Image Analysis. SCIA 2009. Lecture Notes in Computer Science, vol 5575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

02230-2_14
Colantoni P, Thomas J-B, Hébert M, Caissard J-C and Trémeau A (2022), "Web-Based Interaction and Visualization of Spectral Reflectance Images: 13

Application to Vegetation Inspection”, SN Computer Science. Vol. 3, pp. 12.


https://commons.wikimedia.org/wiki/File:CIE_1931_XYZ_Color_Matching_Functions.svg

Spectral correlations and NIR

0 O.._. Channel 185
* Little correlation between VIS and NIR A
* High correlation between neighboring
bands
* High correlation in the NIR part g
e Until 2000 nm g

* Only on a reduce set of material (textiles)

Normalized covariance between each couple of channels over

the Hytexila dataset. Values range between 31% (black) and

100% (white). The two red lines are separated by seven 185
channels, and inside the red lines, the covariance is above 95%.

Khan, H.A.; Mihoubi, S.; Mathon, B.; Thomas, J.-B.; Hardeberg, J.Y. HyTexiLa: High
Resolution Visible and Near Infrared Hyperspectral Texture Images. Sensors 2018, 18,
2045. https://doi.org/10.3390/s18072045 14




Partial answer: Information based representations

* PCA or equivalent
* Dimensions to keep?
» Definition of an effective dimension
* Do we loose the advantage?

* Includes NIR
 No intuitive direct visualisation

Hardeberg, J.Y. On the Spectral Dimensionality of

Object Colours. In Conference on Colour in Graphics,
Imaging, and Vision; Society for Imaging Science and
Technology: Springfield, VA, USA, 2002; pp. 480-485

Berry, M.\W.; Browne, M.; Langville, A.N.; Pauca, V.P.;
Plemmons, R.J. Algorithms and applications for

* Better to use non-negative matrix factorization? proxmate nonnegaive matrx factorizaton. Compu

J. Jia, K. J. Barn, Waveletard and K. Hirakawa,

° Ba S | S fu N Ct|0 ns ( FO u rl er, wave | etS) "Fourier Spectral Filter Array for Optimal Multispectral

Imaging," in IEEE Transactions on Image Processing,
vol. 25, no. 4, pp. 1530-1543, April 2016.



Partial answer: LabPQR -> RGB-PQR-NIR

* Direct colour visualisation from the first 3 bands

e Effective dimension?

* Redundancy between Color and PQR

e Quid of NIR?

MataCow: Created by the RIT Mun

MataCow: Creatad by the RIT Munsall Color Sciante Lab

Derhak, M., Rosen, M.: Spectral colorimetry
using LabPQR: An interim connection
space. Journal of Imaging Science and
Technology 50(1), 53-63 (2006)

Fairchild, M.D., Johnson, G.M.. METACOW: A
public-domain, high-resolution, fully-digital,
noise-free, metameric, extended-dynamic-
range, spectral test target for imaging system
analysis and simulation. CIC 2004. pp. 239-245.

Thomas J-B and Hardeberg JY (2020), "How
to Look at Spectral Images? A Tentative Use
of Metameric Black for Spectral Image
Visualisation", In Colour and Visual Computing
Symposium 2020. Aachen (2688), pp. 1-11.

16



Partial answer: Landsat 8 OL|, etc.

* Fields standardised spectral imaging products, e.g. remote sensing
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Colin Prieur, Antoine Rabatel, Jean-Baptiste Thomas, Ivar Farup, Jocelyn Chanussot, Macwe learning
approaches to automatically detect glacier snow lines on multi-spectral satellite images, To appear.
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Conclusion

Main take away: Reflectance factor may not be
the best common standard space
to encode spectral images

Should we think about it?
CIE Div.8 RF01, spectral imaging -> Technical Committee?
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