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Abstract

In the context of color imaging, this thesis focuses on colorimetric characterization of displays

and multi-display systems. Starting from the conventional pointwise approach we continue to

some spatial analysis. We give some special attention to the duality between a professional and

a consumer-oriented characterization.

In the first part of this thesis we consider pointwise display color characterization. We pro-

pose, evaluate and improve several methods to control the color in displays.

We investigate deeply the PLVC (Piecewise Linear assuming Variation in Chromaticity)

model especially in comparison to the PLCC (Piecewise Linear assuming Chromaticity Con-

stancy) model. We show that this model can be highly beneficial for LCD (Liquid Crystal Dis-

play) technology. We evaluate and improve a end-user method proposed by Bala and Braun.

This method is quick and simple and does not need any measurement device other than a sim-

ple digital color camera. We confirm that this method gives significantly better results than

using default gamma settings for both LCD and DLP (Digital Light Processing) projectors.

We focus on the distribution of color patches in color space for the establishment of 3D LUT

(Look Up Table) models. We propose a new accurate display color characterization model based

on polyharmonic spline interpolation. This model shows good results and is applied in real time

for the accurate colorimetric rendering of multi-spectral images of art paintings viewed under

virtual illuminants. We propose methods to build an optimized structure that permits to invert

any display color characterization forward model. Several criteria linked with the grid itself or

with an evaluation data set are tested. Our evaluation shows that in using our methods, we can

achieve better results than with a regular equidistributed grid.

In a second part, we establish a basis for spatial color characterization via the quantitative

analysis of the color shift and its spatial variation throughout the display area. We show that

the spatial chromaticity shift is not negligible in some cases and that some features are spatially

invariant within one display of a given technology.

Keywords: Display, multi-display system, display color characterization, display spatial

color uniformity.
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Résumé

Dans le contexte de l’imagerie couleur, cette thèse se focalise sur la caractérisation col-

orimétrique des moniteurs, vidéo-projecteurs et système multi-projecteurs. A partir de

l’approche ponctuelle, nous considérons une extension pour une caractérisation spatiale.

Dans une première partie, nous considérons une approche ponctuelle. Nous proposons,

évaluons et améliorons certains modèles destinés au contrôle colorimétrique des moniteurs ou

vidéo-projecteurs.

Nous étudions le modèle PLVC (Piecewise Linear assuming Variation in Chromaticity), par-

ticulièrement en comparaison directe avec le PLCC (Piecewise Linear assuming Chromaticity

Constancy). Nous montrons son efficacit à modliser le comportement des cristaux liquides.

Nous évaluons et améliorons une méthode proposée par Bala et Braun qui est rapide et ne

nécessite pas l’usage d’un appareil de mesure autre qu’un appareil photo numérique. Nous

confirmons que cette méthode peut donner de meilleurs résultats que d’utiliser une correction

plus classique pour les vido-projecteurs LCD (Liquid Crystal Display) et DLP (Digital Light

Processing).

Nous travaillons sur la distribution des données dans les espaces colorimétriques pour

la construction de 3D LUT (Look Up Table). Nous proposons un nouveau modèle de car-

actérisation très précis considérant une interpolation/approximation basée sur les polyhar-

monic splines. Ce modèle montre de bons résultats et est utilisé pour le rendu colorimétrique

d’image multi-spectrales d’oeuvres d’arts sous différentes illuminations. Nous proposons

également de construire une structure optimisée qui permet d’inverser n’importe quel modèle

de caractérisation colorimétrique. Plusieurs critères liés à la structure de la distribution ou au

comportement du modèle sur un jeu de données d’apprentissage. Notre évaluation montre que

nous pouvons avoir de meilleur résultats en utilisant notre distribution que lors de l’utilisation

d’une grille régulière.

Dans une seconde partie, nous établissons les bases d’une caractérisation colorimétrique

spatiale à travers l’analyse quantitative de la variation spatiales des couleurs dans les vidéo-

projecteurs. Nous montrons que la variation en chromaticité n’est pas nécessairement

négligeable comparée à la variation en luminance, et que certaines spécificités sont spatialement

invariantes pour un appareil donné et une technologie donnée.

Keywords: moniteurs, vidéo-projecteurs et système multi-projecteurs, caractérisation col-

orimétrique, uniformité colorimétrique spatiale.
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Chapter 1

General Introduction

Le noir, c’est la seule couleur qui ne change pas.

Jacques Ferron

Abstract

This general introduction defines first the context of this work between physics, signal pro-

cessing, image processing and colorimetry. The two main parts of this thesis are then intro-

duced. The first concerns the point wise color characterization of displays. The second part

considers spatial issues in projectors and multi-projector systems.
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1.1 Context

The research presented in this thesis takes place in the context of color image science.

Color imaging is at the intersection of several research fields, between color science,

vision, digital image processing, and signal processing.

Before reading this document, the readers should have some prior knowledge of

colorimetry, digital color images, and display technology.

Readers with limited knowledge of display technology should read Appendix A

that is a brief overview of the field. Much information on display technology can also

be found on the web. For projectors, the book of Matthew et al. (2008) is a great source

of information. For readers with limited knowledge of colorimetry, Chapter 2 presents

a short reminder about the colorimetric tools we used in this thesis. For a better and

complete background on colorimetry, we recommend the classic book of Wyszecki and

Stiles (2000). The Digital Color Imaging Handbook (Sharma, 2003) is also a great source

of information and references.

This introduction first explains the concept of a cross-media reproduction system,

color management, color device calibration and characterization. We then propose a

general formulation of what a display is in this context. We explain the structure of this

thesis and we finish this introduction by giving the contents and key contributions of

each chapter.

1.1.1 Cross-media color reproduction

A cross-media color reproduction system can be considered to begin with the acquisi-

tion of a color scene and end up with the display of this scene by any medium. It is well

known that the color acquired or reproduced by different devices for the same input is

not the same. Thus, the use of a color management process is required to keep the color

consistent through the entire color workflow. In a nutshell, cross-media color reproduc-

tion needs the characterization of each color device, and a color rendering algorithm,

which permits to map the color gamut from one device to another.

The gamut mapping can be a global process (Morovic and Luo, 2001), or an image

content dependent process (Farup et al., 2007). The color characterization is a major

part, as all devices have to be color controlled.

The calibration process put a device in a fixed state, which will not change with

time. For a color device, it consists in setting up the device. Settings can be position,

brightness, contrast, and sometimes primaries and gamma, etc.

The characterization process can be defined as understanding and modeling the

relationship between the input and the output, in order to control a device. For a digital

color device, which means either to understand the relationship between a digital value
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Figure 1.1: Cross-media color reproduction from a camera to a display.

input and a produced color for an output color device (printer, display) or, in the case

of an input color device (camera), to understand the relationship between the color

acquired and the digital value output.

When these steps are done, the cross-media color reproduction process preserves the

color information within the color workflow such as in Figure 1.1 or Figure 1.2.

In some cases it can be useful to be able to simulate the color rendering of one device

to another, such as in Figure 1.3.

Data used to set up the characterization model may be written in an ICC profile (ICC,

2004) that is read by a color management system. It is today the common and practical

way to ensure a good color rendering.

1.1.2 Color displays

Display color characterization aims to understand the relationship between a digital

value, input to the display, and the displayed color itself.

A display can be considered as an interface or as a function between an input signal

and a displayed color, as shown in Figure 1.4.

We can consider this function and its inverse, F and F−1 that associate the signal

and the color, such as:
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Figure 1.2: Cross-media color reproduction from one display to another.

Figure 1.3: Simulating a display with another one.

F :

{

Dependent color space −→ Reference color space

Signal −→ Color=F (Signal)
(1.1)

F−1 :

{

Reference color space −→ Dependent color space

Color −→ Signal=F−1(Color)
(1.2)
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Figure 1.4: A display can be considered as a function between the input signal and the displayed

color.

Equation 1.1 is called the forward transform, meanwhile Equation 1.2 is called the

inverse transform.1 This equation does not include the spatial dimension historically.

However, in the case of multi-display systems, this dimension is included either par-

tially or fully.

More precisely, this thesis aims to improve the state of the art of pointwise display

color characterization while pointing out the difference between a professional color

characterization that has to be as accurate as possible and a consumer characterization

that aims only to preserve the intended meaning and the aesthetic of the content. More-

over it appears that when we want an accurate color characterization, or when we want

to set up a multi-display system, the spatial color drift across the display cannot be dis-

regarded. Thus this thesis also aims to improve the knowledge on the spatial behavior

of displays.

1.2 Agenda

This section details the content of this thesis. It explains the structure in two parts, and

gives a summary of the content and key contributions of each chapter.

Chapter 2 presents our general framework, and considers model quality evaluation.

It contains a reminder of the main results of colorimetry, and justifies the choices related

with the results we present afterwards.

Historically, display color characterization considers one spatial measurement loca-

tion to perform any correction. It has been shown in the litterature that it can be a correct

assumption for CRT monitors while applying a simple scaling factor (Brainard, 1989).

Point wise color characterization is treated in the first part of this document.

However, and especially for other technologies, for projectors or for multi-display

systems, the assumption of spatial uniformity can be severely challenged. The second

part of this thesis considers spatial issues for the color characterization of projectors and

multi-projector systems.

1The inverse transform is also called backward transform in some works.
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1.2.1 Part I

The first part of this thesis includes Chapters 3, 4, 5, 6 and 7.

In this part, we first review the display characterization models presented in the

bibliography, from physical to empirical models. We then present in detail our contri-

bution to this state of the art. We show that the PLVC model can be highly beneficial for

accurate color characterization of LCDs as compared with some other classical models.

We show how a end-user characterization method can become more accurate with the

help of a simple consumer camera. We present a new accurate characterization model

we helped to improve with choices, discussions and evaluation. This model is used in

a color rendering framework. We perform a study on data distribution for inverting

any color characterization model that requires too much computation to be performed

analytically in real time.

Chapter 2 presents our general framework. It introduces basic concepts of colorime-

try relevant to our work. It justifies the way we evaluated our following results, dis-

cussing the choice of the method, the metric and the statistics. It presents the common

experimental framework. It presents a duality between two types of display character-

ization methods and goals: the consumer one, which intends only to keep the meaning

and aesthetic unchanged through the color workflow, and the accurate professional one,

which aims to have a very high colorimetric fidelity through the color workflow.

Chapter 3 describes the state of the art of display color characterization. We have

tried to be exhaustive, and to explain the features, advantages and drawbacks of the

different models.

Chapter 4 considers a detailed analysis and experimental validation of the PLVC

model (see 3.2.2). This work has led to publications at Gjøvik Color Imaging Sym-

posium (Thomas, Hardeberg, Foucherot and Gouton, 2007) and in Color Research &

Application (Thomas, Hardeberg, Foucherot and Gouton, 2008).

Chapter 5 concerns mainly the independent evaluation and improvement of a char-

acterization method introduced by Bala and Braun (2006) for a simple yet accurate end-

user colorimetric characterization of projection displays. We participated in this work

through the supervision of a master thesis done by Espen Mikalsen at Gjøvik Univer-

sity College (Mikalsen, 2007). We contributed to this work considering design choices,

and in the presentation and organization of the results. This work has been presented

at GCIV’08 (Mikalsen et al., 2008).

Chapter 6 presents a part of the color workflow used in a new software (PCASpec-

tralViewer) that has been developed by Philippe Colantoni, namely the color manage-

ment process. I had the chance to work with him on this project mainly for improvement

of the method, discussions, choices, evaluation and presentation of the results as a dis-

play and color expert. We presented our first results at the MCS’09 within the SCIA’09
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conference (Colantoni and Thomas, 2009) and we are currently writing a more detailed

journal paper that covers this method and its results.

Chapter 7 focuses on distribution of patches in RGB color space to perform a linear

tetrahedral interpolation from CIELAB or CIEXYZ to RGB. The color of the RGB values

may be estimated in an independent color space using any forward model. We used the

PLVC model for testing this new approach. We worked on this project with Philippe

Colantoni who contibuted with discussion, implementation and with his pragmatism.

We used his C++ library for the implementation. Results have been presented at the

EI’08 conference (Thomas, Colantoni, Hardeberg, Foucherot and Gouton, 2008b) and

in the Journal of the Society for Information Display (Thomas, Colantoni, Hardeberg,

Foucherot and Gouton, 2008a).

1.2.2 Part II

The second part of this thesis considers the challenging issue of spatial uniformity of

displays with an emphasis on the problem faced in colorimetric uniformity in multi-

displays. It includes Chapters 8 and 9.

This part considers spatial issues within projection displays. We first review the

state of the art, introducing the problems and the advantages linked to the use of multi-

projector systems. We then reduce the problem to its color dimension, which is col-

orimetric uniformity or perceived color uniformity within these displays. The second

chapter in this part considers a colorimetric study of projectors along their spatial di-

mension. It is shown that, considering colorimetric indicators, it is not sufficient to

consider only a luminance shift while correcting for intra-projector non-uniformity. We

investigate the assumptions commonly used in display color characterization consider-

ing the spatial dimension.

Chapter 8 describes the state of the art of the methods to reach colorimetric unifor-

mity in multi-projector systems. We explain the context of a multi-display system and

present the problems and some methods used to reach spatial color uniformity. It is

difficult to claim to be exhaustive here, since many solutions are proprietary solutions

often with a dedicated hardware, however we reviewed the existing academic solutions.

Chapter 9 is an investigation and a study of the color spatial uniformity of projec-

tors. This is the result of a balanced collaboration with Arne Magnus Bakke. Jérémie

Gerhardt contributed to the second part of this work. We have presented our results

at the CCIW’09 conference (Thomas and Bakke, 2009) and at the GCIS’09 conference

(Bakke et al., 2009). We have submitted a journal paper to the Journal of Imaging Sci-

ence and Technology.

Chapter 10 pulls together many topics discussed in this thesis. We consider the

user need as a criterion to select a good color characterization model. We discuss the
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capability of standard ICC profiles and Color management modules considering the

applications of some color characterization models. We propose to build a end-user

photometric spatial correction system and finally we discuss more future works that

can be done to achieve good colorimetric accuracy within multi-projector displays.

Chapter 11 concludes this thesis, summarizing our contributions.

Appendix A presents briefly todays display technologies. Appendix B presents a

uniform sampling based on an hexagonal grid. We used it to sample color spaces in

different works. Appendix C gives the mathematical definition of the polyharmonic

spline interpolation we used. Appendix D gives more results on PLVC model. A list of

the publications related to this work is given at the end of the thesis, in Appendix E.



Chapter 2

Color, definitions and quality

Don’t think twice, it’s all right!

Bob Dylan

Abstract

This chapter provides a definition of color display device and define the colorimetric tools

we used. It explains how we considered the interaction between a device, a screen and an

ambient light as a combination that is consistent and explain our choices and processes

considering the evaluation of a color characterization model.
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2.1 Introduction

This chapter defines the colorimetric tools we used and our experimental framework.

We discuss then how to evaluate the accuracy of a color characterization model, first

considering a pointwise transform. Indeed, displays are mainly treated as spatially

invariant functions in the litterature. The spatial color uniformity quality is often eval-

uated via the appreciation of the observer, or through colorimetric measurements of a

uniform color patch at several locations. Chapter 9 considers the evaluation of spatial

uniformity and is not considered in this Chapter.

2.2 Colorimetry

This section presents the main elements of CIE colorimetry. We describe mainly the

color spaces and the standard color difference metrics we used in the thesis. We limit

the presentation to colorimetry’s tools, and we do not go through the detailed theory

neither through color appearance.

From the main elements of colorimetry, CIE defined a system of color spaces where

a 3D point is representing a color under a given set of {material, illuminant, viewing

geometry}. These CIE tristimulus values, CIEXYZ, are the cornerstone of what is pre-

sented in this section. For more information, and a complete background, we refer the

reader to Wyszecki and Stiles (2000) and CIE (2004).

2.2.1 CIE system

Colorimetry aims to specify the color of a given visual stimulus with quantitative data

based on the spectral power distribution of the stimulus. It is also concerned with the

specification of the difference between two stimuli. The trichromatic generalization states

that, over a wide range of conditions, many color stimuli can be matched by additive

mixture of three fixed primaries. Considering that linearity laws (symmetry, transitivity,

proportionality and additivity) are added to the additive mixture, we have a strong

quantitative framework.

The CIE system is based on the spectral information coming from an object (via

reflectance or transmittance) weighted by the color matching functions of a standard

observer. These three color matching functions represent the sensitivities of a standard

observer to the different wavelengths considering a given geometry, a solid angle of

viewing of 2 degrees (1931) or 10 degrees (1964). The wavelengths range considered

is from 360 nm to 830 nm, defined as the visual spectrum. These three functions are

considered as primaries. The CIE modified the real functions in order to ensure only
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positive addition of weighted spectral power to reach most colors, considering virtual

primaries X, Y, Z.

The goal of CIE colorimetry is to define some practical rules and standard for color

measurement and color difference measurement.

2.2.2 Tristimulus values

These CIE tristimulus values, the most basic values in CIE colorimetry, CIEXYZ, are

defined by:

X = k
∫

λ

Pλx̄(λ) dλ

Y = k
∫

λ

Pλȳ(λ) dλ

Z = k
∫

λ

Pλz̄(λ) dλ

(2.1)

where X , Y , Z denote the CIE tristimulus values, and x̄(λ), ȳ(λ), z̄(λ) the CIE color

matching functions. Pλ denotes the monochromatic component of wavelength λ of a

given tristimulus whose spectral radiant power distribution is {Pλdλ}. k is a normaliz-

ing factor.

From these equations, the chromaticity values can be computed, such as:

x =
X

X + Y + Z

y =
Y

X + Y + Z

(2.2)

x and y being the chromaticity coordinates, that can be useful to define a color with

normalized values.

The interaction object-color stimuli can be defined as Pλ = R(λ)L(λ), R(λ) being

the spectral reflectance of the object viewed and L(λ) the spectral characteristics of the

illumination. Equation 2.1 becomes Equation 2.3:

X = k
∫

λ

R(λ)L(λ)x̄(λ) dλ

Y = k
∫

λ

R(λ)L(λ)ȳ(λ) dλ

Z = k
∫

λ

R(λ)L(λ)z̄(λ) dλ

(2.3)

where k is usually chosen as in Equation 2.4

k =
100

∫

λ

L(λ)ȳ(λ) dλ (2.4)
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In all practical situations, to compute abolute values, the integrals are replaced by

sums, such as:

X =
λb
∑

λ=λa

R(λ)L(λ)x̄(λ)∆λ

Y =
λb
∑

λ=λa

R(λ)L(λ)ȳ(λ)∆λ

Z =
λb
∑

λ=λa

R(λ)L(λ)z̄(λ)∆λ

(2.5)

the Y quantity being expressed in cd.m−2 for analogy with photometry.

2.2.3 Pseudo-uniform color spaces and color differences

The CIE system offers practical methods to predict the perceived color difference be-

tween two colors.

CIE L∗a∗b∗ and CIE L∗u∗v∗ color spaces

These two color spaces are attempts to distribute uniformly perceived colors, linearizing

the evaluation of color differences. They mimic the logarithmic eye response. The color

information is related to the white stimulus, Xw, Yw, Zw.

CIELAB color space is defined such as:

L∗ = 116
(

Y
Yw

)
1

3

− 16 if Y
Yw

> 0.008856

L∗ = 903.3
(

Y
Yw

)

if Y
Yw

≤ 0.008856

a∗ = 500
[

f( X
Xw

)− f( Y
Yw

)
]

b∗ = 200
[

f( Y
Yw

)− f( Z
Zw

)
]

(2.6)

with f a function that associates s to f(s) defined such as Equation 2.7. L∗ is the per-

ceived lightness, a∗ and b∗ corresponding approximately to the color opposition red-

green and blue-yellow.

f(s) = s
1

3 if s > 0.008856

f(s) = 7.787s+
16

116
if s ≤ 0.008856

(2.7)
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CIELUV color space is defined such as:

L∗ = 116
(

Y
Yw

)
1

3

− 16 if Y
Yw

> 0.008856

L∗ = 903.3
(

Y
Yw

)

if Y
Yw

≤ 0.008856

u∗ = 13L∗ [u′ − u′
w]

v∗ = 13L∗ [u′ − u′
w]

(2.8)

with u′ and v′ defined such as:

u′ =
4X

X + 15Y + 3Z

v′ =
9Y

X + 15Y + 3Z

(2.9)

CIE L∗a∗b∗ and CIE L∗u∗v∗ color differences

Within these color spaces a perceived color difference can be expressed as the Euclidean

distance such as in Equation 2.10.

∆E∗
ab =

[

(∆L∗)2 + (∆a∗)2 + (∆b∗)2
]1/2

∆E∗
uv =

[

(∆L∗)2 + (∆u∗)2 + (∆v∗)2
]1/2 (2.10)

Decomposition to perceived lightness, chroma and hue

It is practical to evaluate the difference in term of Chroma, Hue or Lightness shift. Let

us to consider two color stimuli Q1 and Q2.

The lightness being defined by the formulas above, the difference in lightness be-

tween Q1 and Q2 is ∆L∗ = L∗
1 − L∗

2.

The chroma can be calculated with:

C∗
uv =

[

(u∗)2 + (v∗)2
]1/2

C∗
ab =

[

(a∗)2 + (b∗)2
]1/2 (2.11)

and the difference in chroma between Q1 and Q2 is ∆C∗
ab = C∗

ab1 − C∗
ab2, and similarly

for ∆C∗
uv.

The hue angles h are defined by Equation 2.12

huv = arctan

(

v∗

u∗

)

hab = arctan

(

b∗

a∗

) (2.12)
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expressed in degrees with the following convention:

0 < hab < 90, if a∗ > 0 and b∗ > 0

90 < hab < 180, if a∗ < 0 and b∗ > 0

180 < hab < 270, if a∗ < 0 and b∗ < 0

270 < hab < 360, if a∗ > 0 and b∗ < 0

(2.13)

and similarly for huv.

Then the quantities ∆H∗
uv and ∆H∗

ab between Q1 and Q2 can be defined using Equa-

tion 2.14. These quantities have to be computed indirectly because of the relativity of a

hue angle.

∆H∗
ab =

[

(∆E∗
ab)

2 − (∆L∗)2 − (∆C∗
ab)

2
]1/2

∆H∗
uv =

[

(∆E∗
uv)

2 − (∆L∗)2 − (∆C∗
uv)

2
]1/2 (2.14)

Other metrics

CIELAB has been shown not to be perfectly perceptually homogeneous, thus it is not re-

ally able to reach its aim of showing a Just Noticeable Difference 1 (JND) equivalent to 1

unit in the euclidean metric. The color perception can be influenced by different factors,

such as the material that shows color (uniformity, texture, reflexion), the conditions of

presentation (vision field, location and distance between the two colors to assess if they

are equally perceived or not, the background), moreover, some psychological factors

can influence the perception.

It is then possible to weight the previous model, and to introduce some parameters,

such as ∆E ′ = ∆E
kiSi

, ki being a parameter that include some of the factors defined above,

Si being a weight.

More color difference formulas have been derived from this thought and for different

purposes, such as ∆E∗
94 (Equation 2.15) that has been defined originally for textile color

differences.

∆E∗
94 =

[

(

∆L∗

kLSL

)2

+

(

∆C∗

kCSC

)2

+

(

∆H∗

kHSH

)2
]1/2

(2.15)

With SL = 1, SC = 1+0.0045C∗ and SH = 1+0.015C∗. The ki parameters are depen-

dent of the measurement conditions. kL = kC = 1 and kL = 2 for textile applications.

The three parameters are set up to 1 for default use of the metric.

Other metrics (Equations 2.16 and 2.17) are trying to increase the homogeneity of the

CIELAB color space:

1A JND is the smallest detectable difference between a starting and secondary level of a particular

sensory stimulus, in our case two color samples.
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∆E∗
CMC =

[

(

∆L∗

lSL

)2

+

(

∆C∗

cSC

)2

+

(

∆H∗

SH

)2
]1/2

∆E∗
BFD =

[

(

∆L∗

l

)2

+

(

∆C∗

cDC

)2

+

(

∆h

Dh

)2

+ w
∆C∗

DC

∆h

Dh

]1/2 (2.16)

The last metric, ∆E∗
00 (CIE, 2001; Luo et al., 2001) is supposed to be even more ho-

mogeneous (Equation 2.17), with a JND equivalent to approximately 1 unit everywhere

in the color space. However, it shows some discontinuities as shown by Sharma et al.

(2005, 2004).

∆E∗
00 =

[

(

∆L′∗

kLSL

)2

+

(

∆C ′∗

kCSC

)2

+

(

∆H ′∗

kHSH

)2

+RT
∆C ′∗

kCSC

∆H ′∗

kHSH

]1/2

(2.17)

We refer the reader to the articles or CIE reports for the definition of the terms, defining

them here would provide no benefit for the following.

This short reminder of colorimetry tools should be enough to follow the content of

the thesis. For the second part of the thesis, which considers spatial issues for projection

displays, we would like to recall that colorimetry has been defined for 2 and 10 degrees

viewing angles and for adjacent uniform color patches.

2.3 Display characterization

2.3.1 Introduction

Color characterization of a color display device is a major issue for the accurate color

rendering of a scene on a display device. We recall that it aims to define the transforma-

tion between the device digital color space, typically RGB, and a reference color space,

describing the perceived color, based on the CIE standard observer, typically CIEXYZ or

CIELAB (Widdel and Post, 1992). This transformation has two directions. The forward

transformation aims to predict the displayed color for any set of digital values input to

the device, i.e. a triplet (R,G,B). The inverse transformation provides the set of digital

values to input to the display in order to display a desired color. A calibration pro-

cess precedes the characterization. This step maintains the settings (gamma, contrast,

brightness, correlated color temperature, etc) of the display in a given state. Before we

venture deeper into the methodology applied to build a display color characterization

model, we need to set some definitions and conditions.

We consider the characterization model to be set up with some knowledge about

the display. This knowledge can come from the technology, the manufacturer and/or
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from a set of measurements. Once a model is set up, there is a need to evaluate its

performance.

This section presents our definition of a display, how we performed the experiments,

and how we evaluated the performance of the models in terms of accuracy and preci-

sion.

2.3.2 Display: definition

In this thesis, we consider a display device as the combination of the display appara-

tus itself with the ambient light and with the screen, in the case of a projection device

(Figure 2.1). Thus, if we start with the assumption that the observer is not moving, the

information we want to predict is the color that the observer will see at one location of

the screen at a given time.

Figure 2.1: Scheme that presents what we consider as a display device. A given input results

in a displayed signal that reaches the eye and becomes a color. While considering the whole

apparatus as a display, we are including implicitly the screen properties of reflectance (or trans-

mittance) and of the ambient light, since they are included in the model.

Using such a definition, we are including implicitly the spectral properties of the

screen in the resultign signal. We can either consider the whole display as a black box

and set a model only based on measurements or consider each part of it and model it

physically. The first thing we suppose is that this system remains stable over time.
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Let us detail the parts of this display configuration:

• The imaging system produces a visual signal. It is often based on three primaries

(refer to Appendix A for more details). It often includes an optical system (mostly

in projection systems), which magnifies the signal for displaying on a screen.

The lenses have to be carefully chosen and corrected for aberrations (Bass et al.,

2010a,b). Geometrical aberrations (Spherical, Coma, astigmatism, distortion) are

due to the failure of the Gaussian approximations. Chromatic aberrations are due

to the variation of the refractive index depending on the wavelength. Vignetting

effect is due to the lenses. Some diffraction effects can appear as well. Most of the

effects are corrected in order to create no disturbance to the visual system, how-

ever there are still some effects. The imaging system can contain a light source as

well. The properties of this light source and its homogeneity influence the charac-

teristics of the whole system.

• The screen can be either in reflectance (such as in some projection configurations)

or in transmittance (such as for monitors or some projection configurations). Its

spectral properties are influencing the resulting signal.

• An ambient lighting can illuminate the place and influence the resulting signal.

When the signal enters the eye, we can refer to colorimetry.

2.3.3 Experimental setup

In order to have accurate measurements, we used the CS-1000 spectroradiometer from

Minolta (Accuracy: luminance: ±2%, x: ±0.0015, y: ±0.001, Repeatability: Luminance:

±0.1%, xy: 0.0002 for illuminant A). This device is supposed to be accurate enough and

often serve as a reference.

In some experiments (Chapter 6) we used the X-Rite (Gretag Macbeth) Eye One Pro

spectrophotometer (Repeatability: x,y: 0.002 at 5000K, 80 cd/m2). We used this device

on this occasion to answer the constraints due to the application and to the model. The

drawback is that its estimation of the dark colors can be less accurate than the estimation

of brighter signals. We will see in Chapter 6 how we took that effect into account.

Considering the previous definition, in our experiments the measurement device

was placed where the observer should be placed except when using the Eye One Pro

(that needs to be attached to the screen). The image was displayed considering dis-

play standard settings and recommendations from the manufacturer (The geometry of

the whole system for projectors was basically of the same type that the one used in

(IEC:61966-3, 1999; Kwak and MacDonald, 2000), with some variations depending on
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the recommandations of www.projectorcentral.com (2009)). We considered a dark sur-

rounding (we switched off any ambient light source but the one coming from the projec-

tor/monitor or from the screen. We displayed full screen color patches. The influence

of the induced flare on the measure is then not consistent with the measured color, how-

ever, it is consistent through the whole experimental process, and consistent while we

measure color at different spatial locations.

A warming up time of at least one hour and fifteen minutes has been used before

any measurement to reach a correct temporal stability.

2.3.4 Evaluation strategy

In order to evaluate the quality of a model, we need to define a strategy. In the following,

we consider the evaluation of a model in the forward and inverse directions, the data

set, the statistics and the metric we used.

Forward model evaluation

The goal is to predict the displayed color. The process is simple. We process a digital

value with the model to obtain a result and compare it in a perceptually homogeneous

color space with the measurement of the same input. Figure 2.2 illustrates the process.

Figure 2.2: Evaluation of a forward model scheme. A digital value is sent to the model and to

the display. A value is computed and a value is measured. The difference between these values

represents the error of the model.

Inverse model evaluation

In the inverse direction, we can consider two different features to evaluate. We present

the two features and the two different ways to evaluate them.
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The first method evaluates the inverse model accuracy (Figure 2.3). In doing that,

we consider a color that we want to display, we compute the values to send to the

display, we display and measure. The difference in a perceptually homogeneous color

space between the estimation and the measure show how the model fails. However,

since the color has to be displayed after computation, it requires another estimation

data set than the one used to estimate the accuracy of the forward model (that means

three diferent data sets: one for the model establishment, one for the evaluation of the

forward model and one for the evaluation of the inverse model), and we have to be sure

that the colors are inside the display gamut (we do not want to introduce a bias due to

gamut mapping).

Figure 2.3: Evaluation of a model in the inverse direction. We want to reproduce a color given

in a reference color space. We compute the digital values to send to the display. This value is

sent to the display, and measure. The difference between the wanted value and the measured

one represents the error of the inverse model.

The second method evaluate the model inversion. It uses a data set designed in

the digital space (RGB). Then we can evaluate directly the error in RGB such as on

Figure 2.4. The first advantage is that the same data set can be used for the forward

and for the inverse directions. The second advantage is that we can use the same data

set from device to device without taking care of a gamut mapping process. In doing

that, a really bad model can be perfectly invertible. It can be considered as not relevant

since it does not consider color.

We chose this second method for our experiments except for Chapter 5 where we

used the first method in order to quantify the error perceptually. The choice of the

second method for the other cases is justified by the fact that we wanted to evaluate

the inverse model mathematically, not from a perceptual point of view. However these

spaces are related via the display, and the error in RGB reflect the error we would have
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perceived (since we consider that the display will reproduce the same color for the same

input).

Figure 2.4: Evaluation of a model inversion. We send a digital value to the display, we measure

it and obtain a color. This color is sent through the model to obtain the digital value to send to

the display to obtain it again. While computing the difference between these digital values, we

obtain the error of the model inversion.

Evaluation data set

Except in Chapter 5, we used the same data set for the evaluation all across this thesis.

In Chapter 5 only the accuracy in lightness was of importance.

We designed a random data set of 100 color patches equiprobably distributed in RGB

color space. On Figure 2.5 one can see the distribution of the data projected on RG, GB

and BR planes. On Figure 2.6, one can see the distribution of the data set in 3D in RGB

space.

We can notice that, the low and high digital values on the GB plane, the are not well

represented and that in BR plane, the high digital values along R are not well repre-

sented. That is shown in Figure 2.6: the cyan color are not very present. In hindlight, it

could have been judicious to build another data set that includes RGB values following

some regular pattern to counterbalance this effect.

Metric choice and statistical analysis

In the previous sections, we considered a metric to compare two colors and we saw that

we could have chosen between several metrics.

We chose to use the ∆E∗
ab metric.

First because it is the one that is still recommended by standards (even if it may

change soon). Moreover most of the work about display characterization are using this
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Figure 2.5: Our evaluation data set projected on RG, GB and BR planes of the RGB color space.
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Figure 2.6: Our evaluation data set in RGB color space. Note that the cyan part is less dense.
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metric. In some works, the ∆E∗
94 is used. In older work, some results are presented in

u′v′, but but most of the papers used ∆E∗
ab metric. It is then easier to compare our results

with the ones found by others.

However, since some more recent color differences have been shown to be more

perceptually homogeneous, we could have decided to use them. We did not want to

use ∆E∗
94 because the parameters are specified empirically for textile. The default ones

does not make a special sense for displays as far as we know. And by extension, we

would not chose all parameter based metrics unless the parameters have been designed

specially for the display case.

In addition, a ∆E∗
94 is always lower than a ∆E∗

ab while computing the distance be-

tween the two same colors. Considering that, we can over-estimate the errors, but it is

a smaller problem than to under-estimate them.

Since we have a large data set, we can and need to perform some statistics. The two

choices to have an estimation of the model accuracy are the median and the average.

We chose the average since it is the indicator that is used in most papers.

The maximum error is of strong importance since it represents the worst case for the

model (if we consider the evaluation data set as representative). This is as important as

the overall estimation, since it can be a criterion to select a model.

The standard deviation is an important indicator. It represents the precision (re-

peatability + reproducibility) of the model.

It is possible to push deeper the statistical analysis, considering confidence intervals

and percentile. It can be of interest, but in our opinion most of the time, the maximum

error is more interesting.

2.3.5 Results analysis

Once we have an estimation of the model failure, we would be able to say how it is good

or not. The best case is to have an error below the JND. Kang (1997) said on the page

167 of his book that the JND is of 1 ∆E∗
ab unit. Mahy et al. (1994) study assessed that

the JND is of 2.3 ∆E∗
ab units. Considering that the CIELAB color space is not perfectly

uniform, it is impossible to give a perfect threshold. Moreover, these thresholds have

been defined for simultaneous pair comparison of uniform color patches. It may not

be the best choice when comparing color imaging devices since it is seldom this case

(except maybe in soft proofing).

In the case of color imaging devices, many thresholds have been used. Abrardo

et al. (1996) proposed that between 0 and 1 the difference is out of perception, from 1 to

3 it is very good quality, from 3 to 6 it is good quality, from 6 to 10 it is sufficient, over

10 it is insufficient. Hardeberg (1999) used a different set of thresholds. To him, from

0 to 3 it is hardly perceptible, from 3 to 6 it is perceptible, but acceptable, over 6 it is not
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acceptable. Schläpfer (1993) used a more constraining set: under 0.2 it is not visible, 0.2

to 1 it is very small (JND), from 1 to 3 it is small, between 3 and 6 medium and over 6 it

is large. Different other thresholds have been used with the ∆E∗
ab metric. For printers

applications, the acceptable threshold is of 6 units (Stamm, 1981), the accepted standard

deviation was of 3.63 units. Stokes et al. (1992) found a perceptibility acceptance for

pictorial images of an average of 2.15 units. Catrysse et al. (1999) used a threshold of 3

units.

Gibson and Fairchild (2000) found acceptable a characterized display that has a pre-

diction error average of 1.98 and maximum of 5.57, while the non-acceptable has at the

best an average of 3.73 and a maximum of 7.63. It is fitting with Table 2.1, however, they

used ∆E∗
94.

In this thesis we would like to propose another set of thresholds that would be an

attempt to quantify the success of the color control depending on the purpose. This is

only a basis for our evaluation, and does not aspire to be exact. In the following, we

will distinguish between accurate professional color characterization, which purpose is

to ensure a really high quality color reproduction, and a consumer color reproduction,

which aims only at the preservation of the intended meaning.

Considering the professional reproduction, let us consider the following rule of

thumb. We want to reach a good accuracy and in our opinion we need to consider

the two indicators, the average and the maximum eror.

Let us consider the average: from 0 to 1 it is good, from 1 to 3 it is acceptable, and

over 3 it is not acceptable. If now we consider the maximum, from 0 to 3 it is good,

from 3 to 6 it is acceptable, over it is not acceptable. If we compare this scale with the

rule of thumb used by Hardeberg (1999), it makes sense since below three it is hardly

perceptible, the same if we look at Abrardo et al. (1996). If we look at the JND proposed

by Kang (1997) and Mahy et al. (1994) it seems to make sense since in both case the

good is under the JND. In this case we would prefer results to be good, and it may be

possible to discard a couple model/display if it does not satisfy this condition. In the

case of this professional reproduction, it could be better to use the maximum error to

discard a couple model/display.

Considering the consumer prediction, we propose to consider that from 0 to 3 it is

good, from 3 to 6 it is acceptable, and over 6 it is not acceptable. In this case we would

rather accept methods that shows average results up to 6, since it should not spoiled the

meaning of the reproduction. This is basically the same than he rule of thumb proposed

by Hardeberg (1999), the perceptible but acceptable being the basic idea of preserving the

intended meaning.

Table 2.1 summarizes this set of thresholds.
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Table 2.1: This table shows the set of thresholds we used to assess the quality of a color charac-

terization model depending on the purpose.

∆E∗
ab Professional Consumer

Mean ∆E∗
ab Max ∆E∗

ab Mean ∆E∗
ab

− < 1 good
good good

1 ≤ − < 3 acceptable

3 ≤ − < 6
not acceptable

acceptable acceptable

6 ≤ − not acceptable not acceptable
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Chapter 3

State of the art of display color characterization

Day after day, love turns grey

Like the skin of a dying man.

Night after night, we pretend its all right

But I have grown older and

You have grown colder and

Nothing is very much fun anymore.

Pink Floyd

Abstract

This chapter considers the state of the art of display color characterization. We focus on

a bibliography that started in the early 80’s with the development of personal computer

displays, and that is still a current research topic, mainly because of the digitalization of

cinema color flow and displays, with the generalization of home-cinema projector-based kits,

and with the fast emergence of new display technologies. We describe many models that have

been studied during the last 30 years.
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3.1 Introduction

This state of the art considers point wise display color characterization. Indeed, displays

are mainly treated as spatially invariant functions in the literature.

Color characterization of a display color device is a major issue for the accurate color

rendering of a scene on a display device. It aims to define the transformation (Equa-

tion 3.1) between the device color space, typically RGB, and a reference color space,

describing the color, based on the CIE standard observer, typically CIEXYZ or CIELAB

(Widdel and Post, 1992).

CIELAB = F (RGB) (3.1)

This transformation has two directions. The forward transformation aims to pre-

dict the displayed color for any set of digital values input to the device, i.e. a triplet

(dr, dg, db). The inverse transformation provides the set of digital values to input to the

display in order to display a desired color. Note that a calibration process precedes the

characterization. This step aims to fix the settings (gamma, contrast, brightness, corre-

lated color temperature, etc) of the display.

For some applications the color characterization model has to be as precise as pos-

sible. However, a compromise between the amount of experimental data required to

build a model and the accuracy required by the application has to be found. Indeed, for

some uses, the number of measurements has to be limited either because of the condi-

tions of use, or because of the number of transformations that have to be set up. The

latter is particularly true for projectors and for multi-display systems, where one may

have to perform an accurate characterization for each display and at several positions

of the display to compensate for spatial non-uniformity (Hardeberg et al., 2003). This

problem will be developed in the second part of the thesis.

The first section of this chapter introduces the different models. The second section

discusses the inversion of models.

3.2 Display color characterization

3.2.1 State of the art

M
any color characterization methods or models exist; we can classify them in three

groups. In a first one, we find the models, which tend to model physically the

color response of the device. They are often based on the assumption of independence

between channels and of chromaticity constancy of primaries (the chromaticity value of

a primary being independent of its intensity level). Then, a combination of the primary
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tristimulus at the full intensity weighted by the luminance response of the display rel-

ative to a digital input can be used to perform the colorimetric transform. The second

group can be called numerical models. They are based on a training data set, which

permits optimization of the parameters of a polynomial function to establish the trans-

form. The last category consists of 3D Look Up Table (LUT) based models. Some other

methods can be considered as hybrid. They can be based on a dataset and assume some

physical properties of the display, such as in the work of Blondé et al. (2009), where they

assume separation between chromaticity and intensity.

3D LUT models

The models in the 3D LUT group are based on the measurement of a defined number

of color patches, i.e. we know the transformation between the input values (i.e. RGB

input values to a display device) and output values (i.e. CIEXYZ or CIELAB values)

measured by a colorimeter or spectrometer in a small number of color space locations

(see Figure 3.1). Then this transformation is generalized to the whole space by inter-

polation. Studies assess that these methods can achieve accurate results (Bastani et al.,

2005; Stauder et al., 2007), depending on the combination of the interpolation method

used (Akima, 1970; Amidror, 2002; Bookstein, 1989; Kasson et al., 1995; Nielson et al.,

1997), the number of patches measured, their distribution (Stauder et al., 2007) (some of

the interpolation methods cited above cannot be used with a non-regular distribution)

and on the display technology. However, to be precise enough, a lot of measurements

are typically required, i.e. a 10×10×10 grid of patches measured in Bastani et al. (2005).

Note that such a model is technology independent since no assumptions are made about

the device but that the display will always have the same response at the measurement

location. Such a model needs high storage capacity and computational power to handle

the 3D data. The computational power is usually not a problem since Graphic Proces-

sor Units can perform this kind of task easily today (Colantoni and Thomas, 2009). The

high number of measurements needed is a greater challenge.

Numerical models

The numerical models suppose that the transform can be approximated by a set of equa-

tions, usually an n-order polynomial function. The parameters are retrieved using an

n-order polynomial regression process based on measurements. The number of pa-

rameters required involves a significant number of measurements, depending on the

order of the polynomial function (Green and MacDonald, 2002). The advantage of these

models is that they take into account channel inter-dependence by applying cross com-

ponents factors in the establishment of the function (Katoh et al., 2001a,b; Tamura et al.,
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Figure 3.1: 3D lookup table for a characterization process from RGB to CIELAB.

2003). More recently, an alternative method has been proposed by Wen and Wu (2006)

who removed the three-channel crosstalk from the model, considering that the inter-

channel dependence is only due to two-channel crosstalk, thus reducing the required

number of measurements. They obtained results as accurate as when considering the

three-channel crosstalk.

Physical models

Physical models are historically widely used for displays, since the CRT technology fol-

lows well the assumptions cited above (Berns, Gorzynski and Motta, 1993; Brainard,

1989; Cowan and Rowell, 1986). Such a model typically first aims to linearize the inten-

sity response of the device. This can be done by establishing a model that assumes the

response curve to follow a mathematical function, such as a gamma law for CRT (Berns,

Gorzynski and Motta, 1993; Berns, Motta and Gorzynski, 1993; Cowan, 1983; Sharma,

2003), or a S-shaped curve for LCD (Kwak et al., 2003; Kwak and MacDonald, 2000;

Yoshida and Yamamoto, 2002). Another way to linearize the intensity response curve

is to generalize measurements by interpolation along the luminance for each primary

(Post and Calhoun, 1989). The measurement of the luminance can be done using a pho-

tometer. Some approaches propose as well a visual response curve estimation, where

the 50% luminance point for each channel is determined by the user to estimate the

gamma value (Cowan, 1983). This method can be generalized to the retrieval of more

luminance levels in using half toned patches (Mikalsen et al., 2008; Neumann et al.,

2003). Recently, a method to retrieve the response curve of a projection display using an

uncalibrated camera has been proposed by Bala and Braun (2006); Bala et al. (2007) and
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extended by Mikalsen et al. (2008). Note that it has been assumed that the normalized

response curve is equivalent for all the channels, and that only the gray level response

curve can be retrieved. In the case of a doubt about this assumption, it is of use to re-

trieve the three response curves independently. Since visual luminance matching for

the blue channel is a harder task, it is of use to perform an intensity matching for the

red and green channel, and a chromaticity matching or gray balancing for the blue one

(Klassen et al., 2005). This method should not be used with projectors since they have a

large chromaticity shift with the variation of input for the pure primaries.

A model has been defined by Wyble and Rosen (2004); Wyble and Zhang (2003) for

DLP projectors using a white segment in the color wheel. In their model, the character-

istics of the luminance of the white channel is retrieved with regard to additive property

of the display, given the four-tuplet (R,G,B,W ) from an input (dr, dg, db).

The second step of these models is commonly the use of a 3 × 3 matrix contain-

ing primary tristimulus values at full intensity to build the colorimetric transform from

luminance to an additive reference color space. The primaries can be estimated by mea-

surement of the device channels at full intensity, using a colorimeter or a spectrora-

diometer, assuming their chromaticity constancy. In practice this assumption does not

hold perfectly, and the model accuracy suffers from that. The major part of the non

constancy of primaries can be corrected by applying a black offset correction (Jimenez

Del Barco et al., 1995). Some authors tried to minimize the chromaticity non-constancy

in finding the best chromaticity values of primaries (optimizing the components of the

3 × 3 matrix) (Day et al., 2004). Depending on the accuracy required, it is also possi-

ble to use generic primaries such as sRGB (Anderson et al., 1995) for some applications

(Bala and Braun, 2006; Bala et al., 2007), or data supplied by the manufacturer (Cowan,

1983). However, the use of a simple 3 × 3 matrix for the colorimetric transform leads

to inaccuracy due to the lack of channel independence and of chromaticity constancy of

primaries. An alternative approach has been derived in the masking model and modi-

fied masking model, which takes into account the cross-talk between channels (Tamura

et al., 2003). Furthermore, the lack of chromaticity constancy can be critical, particularly

for LCD technology, which has been shown to fail this assumption (Brainard et al., 2002;

Kwak and MacDonald, 2000). The Piecewise Linear assuming Variation in Chromatic-

ity (PLVC) (Farley and Gutmann, 1980) is not subject to this effect, but has not been

widely used since Post and Calhoun (1989) demonstrated that among the models they

tested in that article, the PLVC and the Piecewise Linear assuming Chromaticity Con-

stancy (PLCC) models were of equivalent accuracy for the CRT monitors they tested.

The last one requiring less computation, it has been more used than the former one.

These results have been confirmed in studies on CRT technology (Post and Calhoun,

1989, 2000), especially with a flare correction (Jimenez Del Barco et al., 1995; Thomas,

Hardeberg, Foucherot and Gouton, 2008). On DLP technology when there is a flare cor-
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rection, results can be equivalent (Thomas, Hardeberg, Foucherot and Gouton, 2008).

However, the PLVC can give better results on LCDs (Thomas, Hardeberg, Foucherot

and Gouton, 2007, 2008).

Other models exist, such as the 2-steps parametric model proposed by (Blondé et al.,

2009). This model assumes separation between chromaticity and intensity, and is shown

to be accurate, with average ∆E∗
ab’s around 1 or below for one DLP projector and a

CRT monitor. The luminance curve is retrieved, as for other physical models, but the

colorimetric transform is based on 2D interpolation in the chromaticity plane based on

a set of saturated measured colors.

3.2.2 Physical models

Display color characterization models

Historically and for practical reasons, physical models have been widely used for dis-

play color characterization. Especially the gamma based models and the PLCC model.

They are easily invertible, do not require a lot of measurements, require a little com-

puter memory, and do not require high computing power so they can be used in real

time. Moreover, the assumptions of channel independence and chromaticity constancy

are appropriate for the CRT technology. However, these assumptions (and others such

as spatial uniformity, both in luminance and in chromaticity, view angle independence,

etc.) do not fit so well with some of today’s display technologies. For instance the col-

orimetric characteristic of a part of an image in a Plasma Display is strongly dependent

of what is happening in the surrounding (Choi et al., 2007) for energy economy reasons.

In LC technology, which has become the leader for displays market, these common as-

sumptions are not valid. Making such assumptions can reduce drastically the accuracy

of the characterization. For instance, a review of problems faced in LC displays has been

done by Yoshida and Yamamoto (2002). Within projection systems, the large amount of

flare induces a critical chromaticity shift of primaries.

In the same time, computing power has become less and less of a problem. Some

models not used in practice because of their complexity can now be highly beneficial

for display color characterization. This section provides definitions, analysis and dis-

cussion about display color characterization models. We do not detail hybrid methods

or numerical methods in this section because they show less interest for modelling pur-

pose, and we do prefer to refer the reader to the papers cited above. The 3D LUT based

method are presented in-depth in the contribution section.

In 1983, Cowan (1983) wrote what is considered to be the pioneer article in the area

of physical models for display characterization. In this work, the author stated that a

power function can be used, but is not the best to fit with the luminance response curve
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of a CRT device. Nevertheless, the well known ”gamma” model that considers a power

function to approximate the luminance response curve of a CRT display is still currently

widely used.

Whichever shape the model takes, the principle remains the same. First, it estimates

the luminance response of the device for each channel, using a set of functions mono-

tonically increasing such as Equation 3.2. Note that the results of these functions can

also be estimated with any interpolation method, since the problem of monotonicity

that can arise during the inversion process is taken into account. This step is followed

by a colorimetric transform.

Response curve retrieval

We review here two types of models. The models of the first type are based on functions,

the second type is the PLCC model. This model is based on linear interpolation of the

luminance response curve and its accuracy has been demonstrated by Post and Calhoun

(1989) who found it the best among the models they tested (except in front of the PLVC

model for chromatic accuracy).

For function based model, the function used is the power function for CRT devices,

which is still the most used even if it has been shown that it does not fit well LC tech-

nology (Fairchild and Wyble, 1998). It has been shown that for other technologies, there

is no reason to try to fit the device response with a gamma curve, especially for LCD

technology that shows a S-shape response curve in most cases (Figure 4.1) and a S-curve

model can be defined (Kwak et al., 2003; Kwak and MacDonald, 2000; Yoshida and Ya-

mamoto, 2002). However, the gamma function is still often used, mainly because it

is easy to estimate the response curve with a few number of measurements, or using

estimations with a visual matching pattern.

The response in luminance for a set of digital values input to the device can be ex-

pressed as follows:

YR = fr(Dr)

YG = fg(Dg)

YB = fb(Db),

(3.2)

where fr, fg and fb are functions that give the YR, YG and YB contribution in luminance

of each primary independently for a digital input Dr, Dg, Db. Note that for CRT devices,

after normalization of the luminance and digital value, the function can be the same for

each channel. This assumption is not valid for LCD technology (Sharma, 2002), and is

only a rough approximation for DLP based projection systems, as seen for instance in

the work of Seime and Hardeberg (2003).

For a CRT, for the channel h ∈ {r, g, b}, this function can be expressed as :

YH = (ahdh + bh)
γh , (3.3)
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where H ∈ {R,G,B} is the equivalent luminance from a channel h ∈ {r, g, b} for a

normalized digital input dh, with dh = Dh

2n−1
. Dh is the digital value input to a channel

h and n is the number of bits used to encode the information for this channel. ah is

the gain and bh is the internal offset for this channel. These parameters are estimated

empirically using a regression process.

This model is called Gain-Offset-Gamma (GOG) (Berns, 1996; CIE, 1996; Katoh et al.,

2001b). If we make the assumption that there is no internal offset and no gain, a = 1 and

b = 0, it becomes the simple ”gamma” model.

Note that for luminance transforms, polynomials can be fitted better in the loga-

rithmic domain or to cube root function than in the linear domain because the eye

response to signal intensity is logarithmic (Weber’s law). For gamma based mod-

els, it has been shown that a second order function with two parameters such as

Log(YH) = bh × Log(dh) + ch × (Log(dh))
2 1 gives better results(Cowan, 1983) and that

two gamma curves should be combined for a better accuracy in low luminance(Arslan

et al., 2003).

For a LCD, it has been shown by Kwak et al. (2003); Kwak and MacDonald (2000)

that a S-shape curve based on 4 coefficients per channel can fit well the intensity re-

sponse of the display.

YH = Ah × gh(dh) = Ah ×
dαh

h

dβh

h + Ch

, (3.4)

with the same notation as above, and with Ah, αh, βh and Ch parameters obtained using

the least-squares method. This model is called S-curve I.

The model S-curve II considers the interaction between channels. It has been shown

in (Kwak et al., 2003; Kwak and MacDonald, 2000; Yoshida and Yamamoto, 2002) that

the gradient of the original S-curve function fits the importance of the interaction be-

tween channels. Then this component can be included in the model in order to take this

effect into account.

YR = Arr × gYRYR
(dr) + Arg × g′YRYG

(dg) + Arb × g′YRYB
(db),

YG = Agr × g′YGYR
(dr) + Agg × gYGYG

(dg) + Agb × g′YGYB
(db),

YB = Abr × g′YBYR
(dr) + Abg × g′YBYG

(dg) + Abb × gYBYB
(db),

(3.5)

where g(d) and its first-order derivative g′(d) are g(d) = dα

dβ+C
and g′(d) =

(α−β)xα+β−1+αCxα−1

(xβ+C)2
.

To ensure the monotonicity of the functions for the S-curve models I and II, some

constraints on the parameters have to be applied. We let the reader to refer to the dis-

cussion in the original article (Kwak et al., 2003) for that matter.

1Note that Post and Calhoun (1989) added a term to this equation, which became Log(YH) = a+ bh ×

Log(dh) + ch(Log(dh))
2.
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For the PLCC model, the function f is approximated by a piecewise linear inter-

polation between the measurements. The approximation is valid for a large enough

amount of measurements (16 measurements per channel in Post and Calhoun (1989)).

This model is particularly useful when no information is available about the shape of

the display luminance response curve.

Colorimetric transform

A colorimetric transform is then performed from the (YR, YG, YB) ”linearized” lumi-

nance to the XYZ color tristimulus.





X

Y

Z



 =





Xr,max Xg,max Xb,max

Yr,max Yg,max Yb,max

Zr,max Zg,max Zb,max



×





YR

YG

YB



 (3.6)

where the matrix components are the tristimulus colorimetric values of each primary,

measured at their maximum intensity.

Using such a matrix for the colorimetric transform supposes perfect additivity and

chromaticity constancy of primaries. These assumptions have been shown to be accept-

able for CRT technology (Brainard, 1989; Cowan and Rowell, 1986).

The channel inter-dependence observed in CRT technology is mainly due to an in-

sufficient power supply and an inaccuracy of the electron beams, which meet inaccu-

rately the phosphors (Katoh et al., 2001a). In LC technology, it comes from the over-

lapping of the spectral distribution of primaries (the color filters), and from the inter-

ferences between the capacities of two neighboring sub pixels (Seime and Hardeberg,

2003; Yoshida and Yamamoto, 2002). In DLP-DMD projection devices, there is still some

overlapping between primaries and inaccuracy at the level of the DMD mirrors.

Considering the assumption of chromaticity constancy, it appears that when there is

a flare (Katoh et al., 2001a), either a black offset (internal flare) or an ambient flare (ex-

ternal flare), added to the signal, the assumption of chromaticity constancy is not valid

anymore. Indeed, the flare is added to the output signal and the lower the luminance

level of the primaries, the more the flare is a significant fraction of the resulting stimu-

lus. This leads to a hue shift toward the black offset chromaticity. Often the flare has

a ”gray” (nearly achromatic) chromaticity, thus the chromaticities of the primaries shift

to a ”gray” chromaticity (Figure 3.2, left part). Note that the flare ”gray” chromaticity

does not necessarily correspond to the achromatic point of the device (Figure 3.2). In

fact, in the tested LCD devices (Figure 3.2, a, b, e, f), we can notice the same effect as

in the work of Marcu et al. (2001): the black level chromaticity is bluish because of the

poor filtering power of the blue filter in the low wavelength.
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Figure 3.2: Chromaticity tracking of primaries with variation of intensity. The left part of the

figure shows it without black correction. On the right, one can see the result with a black cor-

rection performed. All devices tested in our PLVC model study are shown, a-PLCD1, b-PLCD2,

c-PDLP, d-MCRT, e-MLCD1, f-MLCD2. See the correspondence list in next chapter, table 4.1.
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Figure 3.2: Chromaticity tracking of primaries with variation of intensity. The left part of the

figure shows it without black correction. On the right, one can see the result with a black cor-

rection performed. All devices tested in our PLVC model study are shown, a-PLCD1, b-PLCD2,

c-PDLP, d-MCRT, e-MLCD1, f-MLCD2. See the correspondence list in next chapter, table 4.1.
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The flare can be taken all at once as the measured light for an input (dr,k, dg,k, db,k) =

(0, 0, 0) to the device. Then it includes ambient and internal flare.

The ambient flare comes from any light source reflecting on the display screen. If the

viewing conditions do not change it remains constant, can be measured and taken into

account, or can be simply removed in setting up a dark environment (note that for a

projection device, there is always an amount of light that lights the room, coming from

the bulb through the ventilation hole).

The internal flare, which is the major part of chromaticity inconstancy at least in CRT

technology (Katoh et al., 2001a), is coming from the black level. In CRT technology, it

has been shown that in setting the brightness to a high level, the black level increases to

a non-negligible value (Katoh et al., 2001a). In LC technology, the panel let an amount

of light passing through due to a leakage of the crystal to stop all the light. In DLP

technology, an amount of light can be not absorbed by the ”black absorption box”, and

is focused on the screen via the lens.

On Figure 3.2, one can see the chromaticity shift to the flare chromaticity with the

decreasing of the input level. We have performed these measurements in a dark room,

then the ambient flare is minimized, and only the black level remains. After black level

subtraction, the chromaticity is more constant (Figure 3.2), and a new model can be set

up in taking that into account (Hardeberg et al., 2003; Jimenez Del Barco et al., 1995;

Katoh et al., 2001a,b).

The gamma models reviewed above have been extended in adding an offset term.

Then the GOG can become a Gain-Offset-Gamma-Offset (GOGO) model (IEC:61966-3,

1999; Katoh et al., 2001a,b).

The previous equation 3.2 becomes:

YH = (ahdh + bh)
γh + c, (3.7)

where c is a term containing all the different flares in presence. If we consider the in-

ternal offset bh as null, the model becomes Gain-Gamma-Offset (GGO) (IEC:61966-3,

1999).

A similar approach can be used for the PLCC model. When the black correction

(Jimenez Del Barco et al., 1995) is performed, we name it PLCC* in the following. The

colorimetric transform used then is the Equation 3.8 that permits to take the flare into

account during the colorimetric transformation. For the S-curve models, the black offset

is taken into account in the matrix formulation in the original papers.

If we consider that mathematically, the linear transform from the linearized RGB to

CIEXYZ needs to associate the origin of RGB to the origin of CIEXYZ in order to respect

the vectorial space property of additivity and homogeneity. Thus the original transform

of the origin of RGB to CIEXYZ needs to be tranlated of [−Xk − Yk − Zk]. However, in
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doing that we modify the physical reality and we need to translate the result of the

transformation of [XkYkZk]. We can formulate these transforms such as in Equation 3.8.





X

Y

Z



 =





Xr,max −Xk Xg,max −Xk Xb,max −Xk Xk

Yr,max − Yk Yg,max − Yk Yb,max − Yk Yk

Zr,max − Zk Zg,max − Zk Zb,max − Zk Zk



×











YR

YG

YB

1











(3.8)

The Ak’s, A ∈ {X, Y, Z}, come from a black level estimation.

Such a correction permits to achieve better results. However, on the right part of Fig-

ure 3.2, one can see that even with the black subtraction, the primary chomaticities do

not remain perfectly constant. On Figure 3.2, right-a, it remains a critical shift especially

for the green channel.

Several explanations are involved. First, there is a technology contribution. For LC

technology, the transmittance of the cells of the panel changes within the input volt-

age (Brainard et al., 2002; Yeh and Gu, 1999). This leads to a chromaticity shift when

changing the input digital value. For different LC displays, we notice a different shift in

chromaticity; this is due to the combination back-light/LC with the color filters. Since

the filters transmittances are optimized taking into account the transmittance shift of

the LC cells, the display can achieve good chromaticity constancy. For CRT, there are

less problems due to the same phosphors properties, as well for DLP as the light and

the filters remain the same.

However, even with the best device, there is still a small amount of non-constancy.

This leads to a discussion about the accuracy of the measured black offset. Indeed, the

measurement devices are less accurate in the low luminance. Berns et al. (2003) pro-

posed a way to estimate the best black offset value. A way to overcome the problems

linked with remaining inaccuracy for LCD devices has been presented by Day et al.

(2004). It consists in the replacement of the full intensity measurement of primary chro-

maticitiescolorimetric values by the optimum values in the colorimetric transformation

matrix. It appears that the chromaticity shift is a major issue for LCD. Sharma (2002)

stated that for LCD devices the assumption of chromaticity constancy was weaker than

the channel inter-dependence.

More models that linearize the transform exist. in this section we presented the ones

that appeared to us as the more interesting, or the more known.

Piecewise Linear model assuming Variation in Chromaticity

Defining the Piecewise Linear model assuming Variation in Chromaticity (PLVC) in this

section has many motivations. First, it is the first display color characterization model

introduced in the literature as far as we know. Secondly, it is an hybrid method, consid-
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ering that it is based on data measurement and assumes a small amount of hypothesis

on the behavior of the display. Finally there is a section in next chapter devoted to the

study of this model.

According to Post and Calhoun (1989), the first persons who have introduced the

PLVC were Farley and Gutmann (1980) in 1980. Note that it preceded the well known

article from Cowan (1983). Further studies have been performed afterward on CRT

(Jimenez Del Barco et al., 1995; Post and Calhoun, 1989, 2000), and recently on more re-

cent technologies (Thomas, Hardeberg, Foucherot and Gouton, 2007, 2008). This model

does not consider the channel inter-dependence, but does model the chromaticity shift

of the primaries. In this section, we recall the principles of this model, and some features

that characterize it.

Knowing the tristimulus values of X , Y , and Z for each primary as a function of

the digital input, assuming additivity, the resulting color tristimulus values can be ex-

pressed as the sum of tristimulus values for each component (i.e. primary) at the given

input level. Note that in order not to add several times the black level, it is removed

from all measurements used to define the model. Then, it is added to the result, to re-

turn to a correct standard observer color space (Jimenez Del Barco et al., 1995; Post and

Calhoun, 2000). The model is summarized and generalized in Equation (3.9) for N pri-

maries, and illustrated in Equation (3.10) for a three primaries RGB device, following an

equivalent formulation as the one given by Jimenez Del Barco et al. (1995).

For an N primary device, we consider the digital input to the ith primary, di(mi),

with i an integer ∈ [0, N ], and mi an integer limited by the resolution of the device (i.e.

mi ∈ [0, 255] for a channel coded on 8 bits). Then, a color XY Z(..., di(mi), ...) can be

expressed by :

X(..., di(mi), ...) =
∑i=N−1

i=0,j=mi
[X(di(j))−Xk] +Xk

Y (..., di(mi), ...) =
∑i=N−1

i=0,j=mi
[Y (di(j))− Yk] + Yk

Z(..., di(mi), ...) =
∑i=N−1

i=0,j=mi
[Z(di(j))− Zk] + Zk

(3.9)

with Xk, Yk, Zk the color tristimulus coming out from a (0, ..., 0) input.

We illustrate this for a three primaries RGB device, with each channel coded on 8

bits. The digital input are dr(i), dg(j), db(l), with i, j, l integers ∈ [0, 255]. In this case, a

XY Z(dr(i), dg(j), db(l)) can be expressed by :

X(dr(i), dg(j), db(l)) = [X(dr(i))−Xk] + [X(dg(j))−Xk] + [X(db(l))−Xk] +Xk

Y (dr(i), dg(j), db(l)) = [Y (dr(i))− Yk] + [Y (dg(j))− Yk] + [Y (db(l))− Yk] + Yk

Z(dr(i), dg(j), db(l)) = [Z(dr(i))− Zk] + [Z(dg(j))− Zk] + [Z(db(l))− Zk] + Zk

(3.10)

If the considered device is a RGB primaries device, thus the transformation between

digital RGB values and RGB device’s primaries is as direct as possible. The Ak, A ∈
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{X, Y, Z} are obtained by accurate measurement of the black level. The [A(di(j)) −

Ak], are obtained by one dimensional linear interpolation with the measurement of a

ramp along each primary. Note that any 1-D interpolation method can be used. In the

literature, the piecewise linear interpolation is mostly used.

Studies of this model have shown good results, especially on dark and mid-

luminance colors. When the colors reach higher luminance, the additivity assumption

is less true for CRT technology. Then the accuracy decreases (depending on the de-

vice properties). More precisely, Post and Calhoun (1989, 2000) stated that chromaticity

error is lower for the PLVC than for the PLCC in low luminance. This is due to the set-

ting of primaries colorimetric values at maximum intensity in the PLCC. Both models

show inaccuracy for high luminance colors due to channel inter-dependence. Jimenez

Del Barco et al. (1995) found that for CRT technology, the higher level of brightness

in the settings leads to a non-negligible amount of light for a (0,0,0) input. This light

should not be added three times, and they proposed a correction for that 2. They found

that the PLVC model was more accurate in medium to high luminance colors. Inac-

curacy is more important in low luminance, due to inaccuracy of measurements, and

in high luminance, due to channel dependencies. Thomas, Hardeberg, Foucherot and

Gouton (2008) demonstrated that this model is more accurate than usual linear models

(PLCC, GOGO) for LCD technology, since it takes into account the chromaticity shift of

primaries that is a key features for characterizing this type of display. More results for

this model are presented in the next chapter.

3.3 Model inversion

3.3.1 State of the art

The inversion of a display color characterization model is of major importance for color

reproduction since it provides the set of digital values to input to the device in order to

display a desired color.

Among the models or methods used to achieve color characterization, we can dis-

tinguish two categories. The first one contains models that are practically invertible (ei-

ther analytically, or in using simple 1D LUT)(Berns, Gorzynski and Motta, 1993; Berns,

Motta and Gorzynski, 1993; Cowan and Rowell, 1986; Jimenez Del Barco et al., 1995;

Katoh et al., 2001a,b; Post and Calhoun, 1989), such as the PLCC, the black corrected

PLCC*, the GOG or GOGO models. The second category contains the models or meth-

ods, which are not practically invertible directly. and that show difficulties to be applied.

2Equation 3.9 and Equation 3.10 are based on the equation proposed by Jimenez Del Barco et al. (1995),

and take that into account.
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Models of this second category require other methods to be inverted in practice. We can

list some typical problems and methods used to invert these models:

• A condition has to be verified, such as in the masking model (Tamura et al., 2003).

• A new matrix might have to be defined by regression in numerical models (Green

and MacDonald, 2002; Katoh et al., 2001a,b; Wen and Wu, 2006).

• A full optimization process has to be set up for each color, such as in S-curve model

II (Kwak et al., 2003; Kwak and MacDonald, 2000) in the modified masking model,

(Tamura et al., 2003) or in the PLVC model (Jimenez Del Barco et al., 1995; Post and

Calhoun, 1989; Thomas, Colantoni, Hardeberg, Foucherot and Gouton, 2008a).

• The optimization process can appear only for one step of the inversion process, as

in the PLVC (Post and Calhoun, 1989) or in the S-curve I (Kwak et al., 2003; Kwak

and MacDonald, 2000) models.

• Empirical methods based on 3-D LUT (lookup table) can be inverted directly (Bas-

tani et al., 2005), using the same geometrical structure. In order to have a better

accuracy, however, it is common to build another geometrical structure to yield

the inverse model. For instance, it is possible to build a draft model to define a

new set of color patches to be measured (Stauder et al., 2007).

The computational complexity required to invert these models makes them seldom

used in practice, except the full 3-D LUT, which major drawback is that it requires a lot of

measurements. However, these models do have the possibility to take into account more

precisely the device color-reproduction features, such as interaction between channels

or chromaticity inconstancy of the primaries. Thus, they are often more accurate than

the models of the first category.

3.3.2 Practical inversion

The models that are invertible easily (Berns, Gorzynski and Motta, 1993; Berns, Motta

and Gorzynski, 1993; Cowan and Rowell, 1986; Jimenez Del Barco et al., 1995; Katoh

et al., 2001a,b; Post and Calhoun, 1989), such as the PLCC, the black corrected PLCC*, the

GOG or GOGO models, are easily inverted since they are based on linear algebra and

on simple functions. For these models it is sufficient to invert the matrix of Equation 3.6.

Then we have:





YR

YG

YB



 =





Xr,max Xg,max Xb,max

Yr,max Yg,max Yb,max

Zr,max Zg,max Zb,max





−1

×





X

Y

Z



 (3.11)



3.3. Model inversion 43

Once the linearized {YR, YG, YB} have been retrieved, the intensity response curve

function is inverted as well to retrieve the {dr, dg, db} digital values. This task is easy for

a gamma based model or for an interpolation based one. However, for some models

such as the S-curve I, an optimization process can be required (note that this response

curve can be used to create a 1D LUT).

3.3.3 Indirect inversion

When the inversion becomes more difficult, it is of use to set an optimization process

using the combination of the forward transform and the color difference (often the eu-

clidean distance) in a perceptually uniform color space, such as CIELAB, as cost func-

tion. This generally leads to better results than usual linear models, depending on the

forward model, but is computationally expensive, and can not be implemented in real

time. It is then of use to set a 3-D LUT based on the forward model. Note that it does

not mean that an optimization process is useless, since it can help to design a good LUT.

Such a model is defined by the number and the distribution of the color patches used

in the LUT, and by the interpolation method used to generalize the model to the entire

space. In this subsection, we review some basic tools and methods. We distinguish

works on displays from more general works, which have been performed in this way

either in a general purpose or especially for printers. We present in detail the tetrahedral

structure that is often used as a basis in this case.

3-D LUT inverse models in displays are often based on the measurement of a defined

number of color patches, i.e., we know the transformation between CIELAB and RGB in

a small number of color-space locations. Then, this transformation is generalized to the

entire color space by interpolation. Previous studies assess that these methods achieve

good results for display devices (Bastani et al., 2005; Stauder et al., 2007), depending on

the combination of the interpolation method used (Akima, 1970; Amidror, 2002; Book-

stein, 1989; Kasson et al., 1995; Nielson et al., 1997), the number of patches measured,

and on their distribution (Stauder et al., 2007) (some of the interpolation methods cited

above cannot be used with a non-regular distribution). However, to be precise enough,

a lot of measurements are typically required, e.g., a 10×10×10 grid of patches measured

in Bastani et al. (2005) paper. Note that such a model is technology independent since

no assumption is made about the device, except that the display is spatially and tempo-

raly uniform. Such a model needs high storage capacity and computational power to

handle the 3-D data. The computational power is usually not a problem since graphic

processor units can perform this type of task easily today. The high number of mea-

surements needed is a greater challenge. The problem of measurement is even more

restrictive for printers and many works have been carried out in using a 3-D LUT for

the color characterization of these devices. Moreover, since printer devices are highly
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non-linear, their colorimetric models are complex. So it has been customary in the last

decade to use a 3-D complex LUT for the forward model, created by using an analytical

forward model, both to reduce the amount of measurements and to perform the color

space transform in a reasonable time. The first work we know about creating a LUT

based on the forward model is a patent from Stokes (1997). In this work, the LUT is

built to replace the analytical model in the forward direction. It is based on a regular

grid designed in the printer CMY color space, and the same LUT is used in the inverse

direction, simply in switching the domain and co-domain. Note that in displays, the

forward model is usually computationally simple and that we need only to use a 3-D

LUT for the inverse model. The uniform mapping of the CMY space leads to a non-

uniform mapping in CIELAB space for the inverse direction, and it is common now to

re-sample this space to create a new LUT. To do that, a new grid is usually designed in

CIELAB and is inverted after gamut mapping of the points located outside the gamut of

the printer. Several algorithms can be used to re-distribute the data (Chan et al., 1997;

Dianat et al., 2006; Groff et al., 2000) and to fill the grid (Balasubramanian and Maltz,

1996; Shepard, 1968; Viassolo et al., 2003). Returning to displays, let us call source space

the reference color-space (typically CIELAB or alternatively CIEXYZ), the domain from

where we want to move, and destination space, the RGB color space, the co-domain,

where we want to move to. If we want to build a grid, we then have two classical ap-

proaches to distribute the patches in the source space, using the forward model. One

can use directly a regular distribution in RGB and transform it to CIELAB using the for-

ward model; this approach is the same as used by (Stokes, 1997) for printers, and leads

to a non-uniform mapping of the CIELAB space, which can lead to a lack of homogene-

ity of the inverse model depending on the interpolation method used (See Figure 3.3).

An other approach can be to distribute the patches regularly in CIELAB, following a

given pattern, such as an hexagonal structure (Stauder et al., 2007) or any of the meth-

ods used in printers (Chan et al., 1997; Dianat et al., 2006; Groff et al., 2000). Then, an

optimization process using the forward model can be performed for each point to find

the corresponding RGB values. The main idea of the method and the notation used in

this document are the following:

• One can define a regular 3-D grid in the destination color space (RGB).

• This grid defines cubic voxels. Each one can be split into five tetrahedra (See

Figure 3.4).

• This tetrahedral shape is preserved within the transform to the source space (either

CIEXYZ or CIELAB).

• Thus, the model can be generalized to the entire space, using tetrahedral interpo-

lation (Kasson et al., 1995). It is considered in this case that the color space has a
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linear behavior within the tetrahedron (e.g. the tetrahedron is small enough).

Figure 3.3: The transform between RGB and CIELAB is not linear. Thus while using a linear

interpolation based on data regularly distributed in RGB, the accuracy is not the same every-

where in the colorspace. This figure shows a plot of regularly distributed data in a linear space

(blue dot) and the resulting distribution after a cubic root transform (that mimic CIELAB trans-

form)(red dots).

The most used way to define such a grid is to take directly a linear distribution of

points on each digital dr, dg, and db axis as seeds and to fill up the rest of the destination

space. A tetrahedral structure is then built with these points. The built structure is used

to retrieve any RGB value needed to display a specific color inside the devices gamut.

The more points are used to build the grid, the more the tetrahedra will be small and the

interpolation accurate. In this work, we characterize such a grid by Nrgb = Nr+Ng+Nb,

where Nr (resp. Nb, Ng) is the number of steps along channel R (resp. G, B). Each

vertex is defined by Vi,j,k = (Ri, Gj, Bk), where Ri = di, Gj = dj , Bk = dk, and di, dj , dk
∈ [0, 1] are the possible normalized digital values, for a linear distribution. i ∈ [0, Nr−1],

j ∈ [0, Ng −1], and k ∈ [0, Nb−1] are the indexes (integers) of the seeds of the grid along

each primary.

Once this grid has been built, we define the tetrahedral structure for the interpola-

tion following Kasson et al. (1995). Then we use the forward model to transform the

structure into CIELAB color space. An inverse model has been built. According to the

non-linearity of the CIELAB transform, the size of the tetrahedra is not anymore the

same as it was in RGB. In the following section, a modification of this framework is

proposed that makes this grid more homogeneous in the source color space where we

perform the interpolation; this should lead to a better accuracy, following Groff et al.

(2000).



46 3. State of the art of display color characterization

Figure 3.4: The two ways to split a cubic voxel in 5 tetrahedra. These two methods are combined

alternatively when splitting the cubic grid to guarantee that no coplanar segments are crossing.

Let us consider the PLVC model inversion as example. This model inversion is not as

straightforward as the matrix based models previously defined. For a three primaries

display, according to Post and Calhoun (1989), it can be performed defining all sub-

spaces defined by the matrices of each combinations of measured data (the intercepts

have to be subtracted, and once all the contributions are known, they have to be added).

One can perform an optimization process for each color (Jimenez Del Barco et al., 1995),
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or define a grid in RGB, such as described above, which will allow us to perform the

inversion using 3D interpolation. Note that Post and Calhoun have proposed to define

a full LUT considering all colors. They said themselves that it is inefficient. Defin-

ing a reduced regular grid in RGB leads to the building of an irregular grid in CIELAB

due to the non-linear transform. This irregular grid could lead to inaccuracy or a lack

of homogeneity in interpolation, especially if it is linear. Some studies addressed this

problem (Thomas, Colantoni, Hardeberg, Foucherot and Gouton, 2008a,b). They built

an optimized Look Up Table, based on a customized RGB grid. Details are presented in

chapter 7.





Chapter 4

Analysis and experimental validation of the
PLVC model

Il faut toujours se réserver le droit de rire le lendemain de ses

idées de la veille.

Napoléon Bonaparte

Abstract

This chapter considers the analysis and experimental validation of the PLVC model, and its

comparison with other physical models. It is shown through a detailed analysis that this

model can be highly beneficial for today display technologies, especially LCD.
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4.1 Introduction

The PLVC model is studied with attention. It is shown that this model can be highly

beneficial for today display technologies, especially LCD. The idea to study further this

model came from the study of recent display characterization literature. It appears that

the PLVC model is not well known. It has been studied only for CRT technology (as far

as we know, and excluding our recent paper) and as the chromaticity shift of primaries

is not critical for this technology, it was not necessary to use it (Post and Calhoun, 1989,

2000), especially after flare correction (Jimenez Del Barco et al., 1995). For today’s dis-

play technologies such as LCD or DLP, we found no study involving the PLVC model.

A preliminary work we have done (Thomas, Hardeberg, Foucherot and Gouton,

2007) has suggested that this model can give better results than some classical matrix

based methods in color prediction on liquid crystal technology, for the same amount of

measurements. A more complete study has been published in Color research & appli-

cation (Thomas, Hardeberg, Foucherot and Gouton, 2008).

We study the PLVC model through this chapter, providing detailed results and anal-

ysis on several display technologies, and we show that it could be beneficial to use this

model particularly for LC technology. In the following, we show how this model could

yield a better compromise between the accuracy, the assumptions made and its com-

putational complexity. This study is sustained by experimental results obtained for six

display devices listed in Table 4.1. The device set contains two LCD and one DLP pro-

jectors, one CRT and two LCD monitors. We compare the precision of the PLVC model

with that of the PLCC, the GOGO and the black corrected PLCC* with the same amount

of measurements.

In general the PLVC gives better results than the other methods tested for the same

amount of measurements except for the technologies with low chromaticity shift of pri-

maries (CRT and DLP after black correction), for which the results are similar. Fol-

lowing the definition of the model, the improvement depends significantly on how the

chromaticity of primaries is shifting.

4.2 Experimental setup

We measured 18 color patches for each primary (each 15 digital values from 0 to 255)

to build the models, thus including 3 measurements of the black level, which were

averaged to limit the low luminance measurement inaccuracy. 100 random patches

equiprobably distributed in RGB color space were measured for the evaluation. We used

the spectroradiometer CS-1000 from Minolta (Accuracy: luminance: ±2%, x: ±0.0015,

y: ±0.001, Repeatability: Luminance: ±0.1%, xy: 0.0002 for illuminant A). The devices
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Table 4.1: References of the tested devices.

Related in the text as: Device reference:

PLCD1 Panasonic PT-AX100E

PLCD2 3M-X50

PDLP ProjectionDesign Action One

MCRT Philips 107S monitor

MLCD1 Acer AL1721 monitor

MLCD2 DELL 1905FP monitor

were warmed up for at least one hour before any measurement, and the random patches

were measured just after the ramp patches to limit the influence of the display non-

repeatability. Experiments were performed in a dark room. We used the 2 degrees CIE

observer and the white point of the display for any color space transform.

Considering the black level estimation, we did not use the method presented in the

work of Berns et al. (2003) as we considered that our measurement device (a spectro-

radiometer Minolta CS-1000) was precise enough, especially for projectors and LCD

monitors, which show a consequent amount of black level. However we have averaged

3 measurements of the black level and increased the acquisition time of the spectrora-

diometer, to be sure to have a good estimation of it.

4.3 Global results

A comparison of models is provided in Table 4.3 for the tested models (PLCC, PLCC*,

GOGO and PLVC) and each display. We provide the ∆E∗
ab error in average (mean),

maximum (max), its standard deviation (std. dev.) and the 95 percentile (95 ptl) between

the measured and the predicted color for our random test data set. We give also the

average ∆L∗, ∆C∗
ab and ∆H∗

ab errors 1. The values ∆E∗
ab, ∆L∗, ∆C∗

ab and ∆H∗
ab have been

computed following the CIE 015.2004 colorimetry, technical report (CIE, 2004).

We can notice that the PLCC without black correction does not perform well when

there is a major chromaticity shift of primaries. Results can be considered not acceptable

for most applications. Major errors in average and impressive maximum error occurs

1Please note that when we say that any of ∆L∗, ∆C∗

ab or ∆H∗

ab is better, we evaluate a systematic error.

These indicators are signed. A 0 average only shows that the error is distributed perfectly around the 0

error, and not that there is no error.
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Table 4.2: Results for tested displays. Errors and statistics for 100 random colors equiprobably

distributed in RGB. We applied the PLCC, PLCC with black correction (PLCC*), GOGO and

PLVC models. We computed ∆E∗
ab, ∆L∗, ∆C∗

ab and ∆H∗
ab following (CIE, 2004) between the

estimated and the measured colors.

Displays ∆E∗
ab ∆E∗

ab ∆E∗
ab ∆E∗

ab ∆L∗ ∆C∗
ab ∆H∗

ab

VS models mean max std. 95 ptl mean mean mean

VS indicators dev.

PLCC 6.42 19.06 4.28 18.01 -0.51 -5.27 -0.56

PLCD1 PLCC* 3.93 8.28 2.15 7.27 -0.86 -2.45 -0.47

GOGO 3.96 14.61 2.62 9.26 -0.39 0.20 -0.44

PLVC 1.41 3.56 0.63 2.58 -0.86 -0.64 -0.09

PLCC 15.19 55.62 14.94 46.42 1.20 -7.63 -1.08

PLCD2 PLCC* 1.78 2.96 0.51 2.55 0.25 -0.30 -0.29

GOGO 2.86 11.41 2.30 8.67 0.32 -0.44 -0.28

PLVC 0.54 1.64 0.28 1.13 0.25 -0.03 -0.05

PLCC 1.81 8.87 1.80 7.15 0.81 -0.78 -0.41

PDLP PLCC* 0.99 2.17 0.34 1.62 0.61 0.11 -0.14

GOGO 5.42 21.17 3.75 12.75 -1.13 1.35 0.07

PLVC 0.85 2.02 0.33 1.38 0.61 0.21 -0.11

PLCC 0.92 1.91 0.39 1.62 0.52 -0.27 -0.03

MCRT PLCC* 0.88 1.87 0.40 1.59 0.51 -0.20 -0.02

GOGO 1.41 4.45 0.91 3.31 0.06 -0.95 -0.05

PLVC 0.94 2.06 0.42 1.77 0.51 -0.12 -0.11

PLCC 7.26 23.90 5.80 21.12 0.53 -5.32 -0.13

MLCD1 PLCC* 1.81 4.10 0.86 3.06 -0.95 -0.70 0.46

GOGO 4.22 24.45 3.28 8.80 -0.56 0.70 0.17

PLVC 1.50 3.32 0.64 2.67 -0.95 -0.57 0.52

PLCC 4.66 12.08 2.30 9.45 -0.58 -1.44 0.46

MLCD2 PLCC* 4.88 9.36 2.16 7.76 -0.84 0.41 0.43

GOGO 6.89 45.54 6.09 16.38 -1.39 1.01 -0.29

PLVC 2.04 4.55 0.91 3.78 -0.84 1.03 0.81
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Figure 4.1: Response curve in X, Y and Z for display PLCD1 in function of the digital input for

respectively the red(a), green(b) and blue(c) channel.

for these devices (Figure 3.2, a, b, e, f). One can see that the ∆C∗
ab is the main weakness.

However, for the MCRT display it can be judged acceptable with an average error of

∆E∗
ab = 0.92 as the primary chromaticities do not shift with the lightness (Figure 3.2, d).

For the display PDLP, it could be judged satisfactory with an average error of ∆E∗
ab =

1.81 as the chromaticities are remaining quite constant except for really low luminance

(Figure 3.2, c and Figure 4.2).

Applying a black correction, we reduce drastically the error for almost all devices

except MLCD2, even if also for this device the error in chroma is better distributed.

On the right part of Figure 3.2, one can see that the major part of chromaticity incon-

stancy has been removed. For most applications such a model can be used, we found

averaged error from 0.88 to 4.88 ∆E∗
ab units for our set of displays. The major improve-

ment is in chroma. We can notice that this increases the systematic error in lightness

for devices PLCD1, MLCD1 and MLCD2, while it is decreasing in PLCD2. For displays

PDLP and MCRT, it remains more or less the same (the error in lightness decreases not

significantly, a bit more for PDLP).

The GOGO model gives possibly acceptable results for some displays especially for

MCRT, but for others it seriously fails, especially for MLCD1, MLCD2 and PDLP with

average errors from around 4 to around 7 ∆E∗
ab units. These displays are showing a

really different response curve in luminance from a gamma shape (Figure 4.2).

The PLVC model yields significantly improved model precision, compared with the
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Figure 4.2: Response curve in X, Y and Z for display PDLP in function of the digital input for

respectively the red(a), green(b) and blue(c) channel.

discussed models, for most of the tested displays. Especially for the two LCD projectors

and the monitor MLCD2 where the averaged accuracy is more than doubled (Table 4.3).

One can see in Figure 3.2 that for PLCD1 the chromaticity shift is still significant after

black correction. This is not so obvious for the other ones. For MCRT we reduced the

systematic error in chroma, but increased it in hue. For PDLP, the improvement com-

pared with the PLCC* is not major but exists, probably due to the shift in chromaticity

on the red channel (see Figure 3.2). Display MLCD1 shows only a small improvement

comparing with the PLCC*.

4.4 Detailed analysis

The PLCC* and the PLVC give the best results among the tested models, and in the

following, we have compared these two models in more detail. Obviously the ∆L∗ are

the same for these two models, as both use the same response curve along Y .

If we look at the histogram of the error distribution on Figure 4.3 and at the standard

deviation in Table 4.3, we notice that using the PLVC model reduces the spreading of

the error (except for the display MCRT where it remains the same).

The following deals with the results in deeper details concerning the location of er-

rors in the device gamut. For this purpose, we used visualization of errors in CIELAB.

We present here the projection in a∗b∗ and L∗a∗ planes (respectively Figure 4.4 and Fig-
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Figure 4.3: Comparison of the model prediction error distribution in ∆E∗
ab between PLCC∗

(left) and PLVC (right). The errors are shown on the abscissa, the ordinate shows the number of

test samples that is estimated with this error.

ure 4.5 for the display PLCD1) and the projection in L ∗ a∗ plane for MCRT (Figure 4.6)

and MLCD2 (Figure 4.7), to illustrate our analysis and because they can be considered

representative of the general results found, under some restrictions. The full set of vi-

sualizations for all displays is in appendix D.

One can see on the a∗b∗ plane in Figure 4.4 that the main improvement obtained with

the PLVC model follows roughly the direction of the line from (−a∗,+b∗) to (+a∗,−b∗).

This effect can be seen more or less strong on every tested LCD devices especially in the

bluish area. That means that a correction in chroma has been performed for the bluish

area, and mainly in hue for the reddish and cyan area. A small similar effect can be seen
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Figure 4.4: PLCD1: visualization of errors for the testing data set projected on the a ∗ b∗ plane.

in the not saturated blue of PDLP. Nothing is noticeable for MCRT in a ∗ b∗ plane, as the

chromaticity of primaries is constant.

About the error location in a ∗ b∗ plane of the PLVC model, it is difficult to find a

systematic type of error as they are really small in the a∗b∗ plane. Examining Figure 4.4,

one could say that the remaining error is localized in the red area. However, nothing

similar has been noticed for the other displays, and it is not representative.

For the display PLCD2, no noticeable error remains in a ∗ b∗ plane. For PDLP we

can notice some errors in the purple and in the desaturated greenish/yellowish area.

For MCRT, some errors remain in the half plane defined by positive b∗ values. For

MLCD1, they are located in the bluish to reddish area (and a little bit in the yellow).

For MLCD2, an amount of error remains everywhere. The location of errors appears

to be different for different displays, and to conclude we can say that the results in

chroma/hue depend on the display.

If we now look at the luminance factor, in display PLCD1 (see Figure 4.5), PDLP,

MLCD1 and MCRT we can notice the same thing as in the previous studies: from low
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Figure 4.5: PLCD1: visualization of errors for the testing data set projected on the a ∗ L∗ plane.

to medium luminance, the accuracy is good. The results are worse when the luminance

is high. PLCD2 shows really small luminance shift. MLCD2 shows a stronger lumi-

nance shift in the medium level (Figure 4.7). Note that for PDLP and MCRT displays,

the measured luminance is lower than the estimated one when there is a difference (Fig-

ure 4.6), while the opposite occurs for the other devices.

These differences in behavior could be explained by the inter-dependence between

channels. MLCD2 luminance shift follows the shape of the derivative of an S-shape

curve, as shown by Yoshida and Yamamoto (Yoshida and Yamamoto, 2002). The LCD

projectors tested were 3-LCD ones, therefore the interaction between channels due to

coupling capacitive should not appear, at least for uniform color patches, since they

are physically independent. The over-estimation of the luminance in MCRT is probably

due to a lack of power supply when the maximum intensity is required. For pure colors,

we did not notice any non-monotonicity in the response curve, but the gray response

curve is below the sum of the pure color response curve. The same remark can be done

for PDLP, but we can observe the saturation of the response curves at the higher input

values (see Figure 4.2).

In summary, the error in luminance is strongly dependent on the interaction be-
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Figure 4.6: MCRT: visualization of errors for the testing data set projected on the a ∗ L∗ plane.

tween channels, which is indeed the weakness of the PLVC model. This seems to be not

critical for the display tested, as we achieve good results in using the PLVC or PLCC

models. Looking at the a ∗ b∗ plane, the PLVC model increases significantly the accu-

racy in chroma and hue for LCD technology.

4.5 Conclusion and further work

In this section, we presented results on the PLVC display color characterization model.

We achieved the same conclusion on CRT technology as the previous published studies

of this model, and we extended this conclusion to the DLP tested projector: the PLCC is

performing well, as long as a black correction is carried out, with equivalent results. For

our DLP projector, the averaged ∆E∗
ab is of 0.99 using the PLCC* against 0.85 using the

PLVC. For our CRT monitor, the averaged error is of 0.88 using the PLCC* against 0.94

using the PLVC. Furthermore we have shown, through our experiments, the efficiency

of the PLVC model for LCD technology. On three out of six of the tested displays we

reduced significantly the error by using PLVC instead of PLCC*. On these devices, we
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Figure 4.7: MLCD2: visualization of errors for the testing data set projected on the a ∗L∗ plane.

obtained average ∆E∗
ab of 3.93, 1.78 and 4.88 with the PLCC* model, and 1.41, 0.54 and

2.04 with the PLVC model.

Looking at these results, and comparing with the thresholds we defined, we can say

that:

• None of these models show an accuracy that can be used for a professional accu-

rate characterization independently of the technology. However, the PLCC*, the

PLVC and possibly the GOGO for CRT could be used for accurate characterization.

• The PLCC won’t be accurate enough for a consumer characterization in any dis-

play that shows a consequent black level, and by extension in the presence of an

ambient light.

• the GOGO model will be possibly used for a professional for a CRT monitor.

• the PLCC* gives a good compromise for a consumer characterization. For a pro-

fessional us however, when it is on LCD technology, the result is not guaranteed

to be accurate enough.



60 4. Analysis and experimental validation of the PLVC model

• The PLVC surely gives results good enough for a consumer use, however, the

professional use is strongly dependent of the device.

Considering any of these model, a consumer or professional use is possible only when

an acceptable accuracy is reached. That means there is a need to test them on a display

before to decide to use them.

A straightforward further experiment of this work could be to evaluate results on

multi-primary displays using Equation 3.9. Indeed, in order to increase the size of

the display’s gamut, one could use N primaries. Several systems have been defined

for this purpose; see for example the work of Ajito et al (Ajito et al., 2000). The prob-

lem is that one needs to isolate each channel to measure their response curves. As we

usually do not know the transformation used by the manufacturer, this can be a tough

task. A solution has been proposed for 4 primaries DLP (R,G,B and white segments)

by Wyble and Rosen (2004); Wyble and Zhang (2003). In their model, the characteristics

of the luminance of the white channel is retrieved with regard to additive property of

the display, given the four-tuplet (R,G,B,W ) from an input (dr, dg, db). An idea could

be to retrieve as well the X and Z components of the white channel using the same

method. We would be able then to apply the PLVC model. For more primaries, this can

be less obvious. In such cases, major problems can arise to perform the model inver-

sion, which becomes far more difficult than the problems addressed in previous studies

(Jimenez Del Barco et al., 1995; Post and Calhoun, 1989; Thomas, Colantoni, Hardeberg,

Foucherot and Gouton, 2008a,b), as it is a projection from a 3-dimensional space into

a N-dimensional one. However one could use some work that has been done in this

direction (Ajito et al., 2001).



Chapter 5

Camera-based end-user approach

It’s easier to resist at the beginning than at the end.

Leonardo Da Vinci

Abstract

This chapter considers a camera-based, end-user method. An approach to retrieve the re-

sponse curve of a projector using a simple consumer camera is evaluated and updated. It

is confirmed that this approach gives better results than others and equivalent end-user ap-

proaches.
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5.1 Introduction

Nowadays, in common use of projectors, there is a lack of color accuracy that often

leads to a loss of visual appeal in the presented material, and also in many cases to a

loss of intended meaning. The major cause is that the model set up requires an expen-

sive and/or not easy to move measurement device. We describe and evaluate here a

method that only requires a end-user consumer camera to retrieve the response curve

of a projector.

This work concerns mainly the independent evaluation and improvement of a

method introduceded by Bala and Braun (2006); Bala et al. (2007) for an accurate, end-

user, colorimetric characterization of projection displays. We refer the reader to the

original paper for more explanations about the method.

We first recall the original method, showing the advantages and drawbacks. We then

present our set-up and experimental results.

5.2 Context and methodology

The Bala method introduced in (Bala and Braun, 2006; Bala et al., 2007) aims to achieve a

good calibration for projection displays using no equipment other than an uncalibrated

consumer digital camera that anyone could have at home. This removes the need for

any radiometric or colorimetric measurements in the calibration process. It can be as-

sumed that the system primaries are sRGB (Anderson et al., 1995). Similarly, data pro-

vided by the manufacurer may be used if available. This method is to put together with

the other visual calibration methods.

Their proposal is to calibrate the camera relatively to the display, using the following

information:

• The 50% luminance point of the projector (Bala and Braun, 2006; Bala et al., 2007;

Sharma, 2003), estimated visually using a matching pattern.

• The maximum normalized luminance considered at 1 and the true black at 0.

• The black level of the projector considered at 2% of the maximum luminance (Bala

and Braun, 2006; Bala et al., 2007) (for a dim environment).

This information is used to estimate the camera response curve, using spline inter-

polation. Based on this estimation, the camera can replace a more sophisticated photo-

metric measurement device and can be used to estimate the projector’s tone response

curve, by taking a picture of a pattern displayed on the screen. the flow is summerized
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Figure 5.1: Summary of the flow proposed by Bala and Braun. First, the mid-grey level is

evaluated by the user. A pattern is generated, and captured by a camera. The mid-grey level,

projector’s black level, projector’s full intensity and real black are used to evaluate the camera

response curve. The pattern is used to retrieve the projector’s response curve, considering the

camera as a relative photometer. Image from (Mikalsen, 2007)

in Figure 5.1. We invite the reader to read (Bala and Braun, 2006; Bala et al., 2007) in

order to get all details.

In this section, we want to identify strengths and weaknesses of the approach. More-

over, we propose to enhance the original method as follows:

• The original method assumes that the normalized gray level response curve is the

same as the normalized curves for each primary. We propose to separate the esti-

mations of the three primary color channels response curves through duplication

of the calibration procedure per channel.

• The original method uses only one patch at 50% luminance for visual luminance

matching. We propose to increase the number of visually determined luminance

levels from one to three by adding targets for 25% and 75% luminance to the orig-

inal 50% level, obtained by a halftoning like process, similarly to the full visual

calibration proposed in (Neumann et al., 2003).
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5.3 Experimental setup and results

The Bala method and its proposed enhancements were implemented and tested with

two different digital cameras: the Nikon D200 DSLR and the Fujifilm Finepix S7000

compact type camera, and two different projectors with different technologies: a Pana-

sonic AX-PT100E LCD and a Projectiondesign Action one DLP. All experiments were

done with default hardware settings and no gamma correction performed by image

source computer.

Throughout the experimentation with the Bala method (Mikalsen, 2007; Mikalsen

et al., 2008) it became apparent that the method can be accurate enough for some appli-

cations, but performances are largely dependent on three main factors:

• The estimation of the camera’s response curve is based on four points. Two of

these are the absolute black point and the projector’s black point which are close

together. The proximity of these points strongly influences the shape of the inter-

polation function. We have concluded that we need to have an accurate estimation

of the projector’s black level when using this method (see Figure 5.2). We propose

no solution yet for an estimation of this parameter without an accurate measure-

ment device. This is a major weakness in the approach as it moves away from the

initial chain of thought on replacing expensive color and luminance measurement

equipment with the digital camera. We do not put aside the fact that for other

interpolation methods it could work well with a generic black level. However, we

wonder how increasing the number of visual patterns (in low luminance), while

simply removing the projector black point to estimate the camera response curve,

can lead to better results.

• Secondly, the observer’s precision in the visual matching task will determine a

known data for the estimation of the camera response curve. This will have sig-

nificant influence on the estimation of camera tone response. This is the weak-

ness of every visual calibration method. Note that the visual estimation of the

50% luminance for the blue channel is a harder task for the human visual system

compared to the higher wavelengths of red and green. Furthermore, a ”gray bal-

ancing” (Klassen et al., 2005) method can not be used as the projectors are used to

show a large chromaticity shift with the variation of input for the pure primaries.

• The third factor is the camera’s capability to differentiate between projected lu-

minances in the calibration pattern. If it lacks accuracy when recreating on-screen

luminance differences it will not give the information needed to estimate projector

tone response. When testing the method, it appeared that the FujiFilm camera had

severe problems with capturing suitable images for this method. The captured
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images seemed to be either saturated in brighter areas or the darker patches were

indistinguishable from each other, and the resulting estimated curves were not

representative. Major efforts were put into experimentation with camera settings

without achieving better images. As a consequence, the camera was not found

suitable to be used with this method; hence no further results from this camera

will be reported. This problem might be avoid in using simple HDR techniques,

but the method would suffer of a loss of its simplicity.

Figure 5.2: Camera response estimation using different black levels. Giving a wrong black point

makes the estimation to vary strongly for the luminance below the 50% of the projector.

Although such critical factors were identified, the method shows good results,

mostly less than 3 ∆L∗ units were found for our evaluation data set (Table 5.1). These

results are presented for a dark environment. The ∆L∗ is computed from the measured

response curve and the estimated one, for a full ramp (256 values) of gray level patches

or for each independent channel. Note that Bala et al worked in dim environment. In

such a case, it is possible that the estimation of 2% luminance for the black level is bet-

ter. To be fair in our comparison, and to present comparable results, all the methods

presented used the same level of black, which is the black level of the projector mea-

sured with a spectroradiometer Minolta CS-1000. The ∆L∗ has been computed for two

luminances L1 and L2 as ∆L∗ =
√

(L1 − L2)2.

Figure 5.3 shows the estimated tone reproduction curve for the Projectiondesign

DLP projector using the original method. Here an average ∆L∗ luminance difference
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Table 5.1: Average ∆L∗ between the real projector response curve and the estimated one (the

256 possible values were measured and estimated), depending on the method used.

Method Projector ∆L∗ ∆L∗ ∆L∗ ∆L∗
RGB

Red Green Blue average ∆L∗

Original LCD 3.47 - - - -

3 matched LCD 2.14 - - - -

luminance

Original DLP 1.64 - - - -

3 matched DLP 0.59 - - - -

luminance

Separate Channel match LCD - 1.83 3.03 2.51 2.46

w/ 1 lum. match

Separate Channel match LCD - 1.48 2.30 1.92 1.90

w/ 3 lum. match

Separate Channel match DLP - 1.90 1.05 2.96 1.97

w/ 1 lum. match

Separate Channel match DLP - 1.89 0.96 2.01 1.62

w/ 3 lum. match

of 1.64 from the projectors measured response was achieved. Figure 5.4 shows results

when using the extended method with three visually matched luminance levels instead

of one. This shows an even closer match to the measured response with an averaged

∆L∗ difference of only 0.59. With the LCD projection device, we obtained 3.47 ∆L∗ for

the original method to 1.90 using both improvements (calibration of each primary, with

3 visual patches). Figures 5.5 and 5.6 are showing the estimated tone response curve

for the LCD for respectively the original and the extended method using three visually

matched luminance levels. One can notice the same thing that for the previous display:

we reduced the average error to 2.14.

It appears that the independent estimation of the blue channel response curve for

the both projectors shows a ∆L∗ of 2.52 and 2.96 for one luminance match and of 1.92

and 2.01 for three luminance matches. It is supposed to be the worst case as the visual

system is better to distinguish luminance changing in long wavelengths than in short

ones. Using three luminance matching points, we improve the estimation of the blue

channel response curve while, for the red channel, this does not change the result very

much. Doing this for the DLP projector green channel, we do not improve the estimation
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Figure 5.3: Normalized luminance gray level response curve estimation for the original method

(plain line) versus the measured one (dashed line) for the DLP projector, function of the input

digital value.

Figure 5.4: Normalized luminance gray level response curve estimation for the three luminance

match method (plain line) versus the measured one (dashed line) for the DLP projector, function

of the input digital value.

quality. However, the LCD projector shows a large error of matching for this channel,

and using three points is beneficial for its estimation. Note that this error in matching

luminance for the green channel, over the error on the blue one, is surprising. It is

possible that the bad match in luminance is induced by a strong chromaticity shift on
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Figure 5.5: Normalized luminance gray level response curve estimation for the original method

(plain line) versus the measured one (dashed line) for the LCD projector, function of the input

digital value.

Figure 5.6: Normalized luminance gray level response curve estimation for the three luminance

match method (plain line) versus the measured one (dashed line) for the LCD projector, function

of the input digital value.

the green channel.

When using an inverse characterization model, in the case of color reproduction, the

results of the forward model are confirmed. Table 5.2 shows numeric results for the

inverse test with our two projectors. This table also shows results obtained when using



5.4. Conclusion and further work 69

the standard PC gamma correction of 2.2. We used a 16 grayscale set of patches. Here

we can see that the widely used default gamma correction does not give satisfactory

results when comparing to the proposed methods. Figures 5.7 and 5.8 show plots of

corrected output respectively according to a standard 2.2 gamma correction and to the

enhanced Bala method. It is obvious that for this display the 2.2 gamma correction does

not work efficiently. However, the Bala’s method achieves a good result compared with

a 2.2 gamma.

Table 5.2: ∆L∗ for different methods for an inverse model test built up on a set of 16 grayscale

luminance patches.

Method Device Mean

∆L∗
Max

∆L∗
std.

dev.

Original (Bala) DLP 2.30 6.21 2.00

3 matched luminance DLP 0.60 1.39 0.50

(using half toned

patches)

Separate Channel DLP 0.90 2.77 0.82

match w/ 1 lum. match

Separate Channel DLP 0.87 1.78 0.65

match w/ 3 lum. match

Gamma 2.2 DLP 10.53 25.68 9.52

Original (Bala) LCD 4.13 9.14 3.02

3 matched luminance LCD 3.35 5.70 1.82

(using half toned

patches)

Separate Channel LCD 3.11 6.21 2.10

match w/ 1 lum. match

Separate Channel LCD 3.04 5.68 1.85

match w/ 3 lum. match

Gamma 2.2 LCD 4.32 9.31 3.03

5.4 Conclusion and further work

In this section, we have verified that the model proposed by Bala yields significantly

better color reproduction than using default gamma settings for both the LCD and DLP

projectors. It is a quick and simple approach, which does not require any accurate mea-
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Figure 5.7: ”Linearized” values using a 2.2 gamma inverse model. The dashed line is the ideal

line.

Figure 5.8: ”Linearized” values using an enhanced Bala’s inverse model. The dashed line is the

ideal line.

surement device. The proposed extensions add little complexity yet provide a good im-

provement of the results. We would prefer to add more matching patterns rather than

to calibrate each channel independently, at least as long as the normalized response

curves are similar by channel, -which is not obvious for LCD-, in order to keep a good

time/accuracy gain.

This method aims only to provide a consumer characterization. And it manages to

do that. If we look at Bala et al results, none of the other similar methods are able to
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provide the wanted result. Looking at our results, it is possible to use the original Bala’s

method to characterize DLP projectors. It can be necessary to augment the method with

an independent evaluation of each primaries response for LCDs.

We still have to find a solution to perform a better estimation of the projector black

level in order to permit the model to give its best. Some approaches could be tried, such

as using other type of interpolation method less dependent on this point, using more

visual matching point in low luminance and removing the black offset point, or finding

a visual method to evaluate the percentage of flare.

Moreover, it would be possible to extend this method to spatial non-uniformity cor-

rection. That is discussed in Chapter 10.





Chapter 6

Accurate polyharmonic splines method

You can go elsewhere when you’re someone else.

Bob Dylan

Abstract

This chapter proposes a polyharmonic splines 3D interpolation display color characteriza-

tion model. The novelty introduced concerns the distribution of patches to measure, and

the degree of freedom on the kernel and smoothing factor choice for the interpolation. This

distribution increases noticeably the accuracy of the model. The inverse model is based on a

tetrahedral interpolation, using a grid designed in RGB. We illustrate the use of this model

in a practical case, which consists in real time color rendering of multi-spectral images under

virtual illuminants.
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6.1 Introduction

An accurate and original display color characterization model based on harmonic

splines is explained in detail and evaluated. This method gives accurate results on most

existing technologies. The original model is based on a patent or series of patents regis-

tered by Thomson (Colantoni et al., 2005; Stauder et al., 2006, 2007). The model we de-

scribe here uses the same principles and interpolation method -polyharmonic splines-

that they do, but we used an iterative system to have a better distributed interpola-

tion data set than the one used in the patents. Moreover, a larger degree of freedom

(choice of kernel for the interpolation function, destination color space) is used in the

model set up, and only the best combination is selected. This characterization method

is used in a color rendering software that the Centre de Recherche et de Restoration des

musées de France (C2RMF) (French Museum Research and Restoration Center) uses for

art painting analysis. The entire application has been developed by Philippe Colantoni.

As constraints, we wanted the display color characterization model to be as accurate as

possible on any type of display and we wanted the color correction to be in real time

(no pre-processing). Moreover, we wanted the model establishment to be short enough

to be used in practice (not to exceed the time of a coffee break).

The model we present here is based on the generalization of measurements at some

positions in the color space. It is an empirical method, which does not consider any

assumptions based on display technology. The forward direction (RGB to CIELAB), is

based on polyharmonic splines interpolation, a subset of Radial Basis Functions (RBF),

on an optimal set of measured patches. The backward model (CIELAB to RGB) is based

on tetrahedral interpolation. An overview of this model is shown in Figure 6.1.

Figure 6.1: Overview of the polyharmonic splines display color characterization model.
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First we present the details of the accurate display color characterization method and

its evaluation. Then we describe its application on multispectral images of art paintings

and its GPU implementation for real time rendering.

6.2 Forward model

Traditionally a characterization model (or forward model) is based on an interpolation

or an approximation method. We found that RBF interpolation was the best model for

our purpose.

6.2.1 Polyharmonic spline

Polyharmonic splines are a subset of RBF that can be used for interpolate or to approxi-

mate (Carr et al., 2001) arbitrarily distributed data.

In color imaging, beside of this method and its previous version, we only know the

use of Thin Plate Splines (TPS) for printers colorimetric characterization (Sharma and

Shaw, 2006). TPS are a subset of polyharmonic splines (bi-harmonic splines). Sharma

and Shaw (2006) recalled the mathematical framework and presented some applications

and results for printers characterization. They shown that using TPS, they achieved a

better result than in using local polynomial regression. They shown that in using a

smoothing factor, error in measurement impact can be avoided at the expense of the

computational cost that optimize this parameter (see Figure 6.2). However, they did not

study data distribution influence (but they said that the data distribution can improve

the accuracy in their conclusion) neither the use of other kernels for interpolation.

Figure 6.2: Influence of increasing the smoothing factor on 1D TPS (bi-harmonic kernel). On the

left, it is an interpolation (no smoothing factor). On the middle and on the right, the smoothing

factor has been increased, it is an approximation. Figure from Sharma and Shaw (2006) presen-

tation at EUSIPCO.

The definition we used of the 3D polyharmonic splines interpolation/approximation

is given in Appendix C.
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In our work we used a set of 4 real functions as possible kernels, the biharmonic

(φ(x) = x), triharmonic (φ(x) = x3), thin-plate spline 1 (φ(x) = x2log(x)) and thin-plate

spline 2 (φ(x) = x2log(x2)), with x the distance from the origin. The use of a given

basis function depends on the display device, which is characterized, and gives some

freedom to the model.

6.2.2 Color space target

Our forward model uses CIELAB as default target (CIELAB is a target well adapted for

the gamut clipping that we use). This does not imply that we have to use this space

as target for the RBF interpolation. In fact we considered two choices. We can use

either CIELAB, which seems to be the most logical target, or CIEXYZ associated with

a CIEXYZ to CIELAB color transformation. The use of different color spaces as target

gives us another degree of freedom.

6.2.3 Smoothing factor choice

Once the kernel and the color space target are fixed, the smoothing factor, included in

the RBF interpolation model used here (Appendix C), is the only parameter that can be

used to change the properties of the transformation. With a zero value, the model is a

pure interpolation. With a different smoothing factor, the model becomes an approxi-

mation. This is an important feature because it helps us to deal with the measurement

problems due to the display temporal stability and to the repeatability of the measure-

ment device.

6.3 Optimized learning data set

In order to increase the reliability of the model, we introduce a new way to determine

the learning data set for the polyharmonic splines interpolation (e.g. the set of color

patches measured on the screen). We found that our interpolation model was most

efficient when the learning data set used to initialize the interpolation was regularly

distributed in our destination color space (CIELAB). This new method is based on a reg-

ular 3D sampling of CIELAB color space combined with a forward - inverse refinement

process after the selection of each patch. This algorithm allows us to find the optimal

set of RGB colors to measure.

This technique needs to select incrementally the RGB color patches that will be inte-

grated into the learning database. For this reason it has been integrated into a custom

software tool able to drive a spectrophotometer. This software also measures a set of
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100 random test patches equiprobably distributed in RGB used in order to determine

the accuracy of the model.

6.3.1 Iterative selection of patches

In the work of Stauder et al. (2007), the selection of the patches, in order to build the

forward model, is based on an iterative process that considers the whole model. The

algorithm presented in the patent considers one iteration by default. First, the original

set of patches is measured, and a temporary inverse model is built up. Using this tem-

porary model, the actual forward model is based on measured patches well distributed

in the destination space. Well distributed means that the patches are as equidistant as

possible in the destination color space, i.e. CIELAB in the patent. The distribution we

used in our algorithm is the same that is used in the patent. It is based on a 3D hexag-

onal grid in CIELAB that is described in the following. Stauder et al. (2007) stated that

as many iteration as wanted can be used at the expense of a new measurement series at

each iteration.

The approach we used in our model is different. We consider that the cost of mea-

surement time does not fit with the reality of an application. 1 We then do not want

to measure more than a second data set. However, the establishment and evaluation of

a model is fast even on CPU. Our forward model is then based on a refinement of the

model after each measurement, starting from the more bright point, ending with the

darker. Between each measurement, a new model is set-up, and the RGB value (posi-

tion) of the patches that have not been measured yet is re-evaluated, using a new and

more accurate temporary model at each iteration. At the end, the forward model is as

precise as possible considering a given number of patches. The choice to describe the

grid from higher to lower luminance is defended by the fact that the measurement de-

vice is more accurate in higher luminance. Following this choice, we build up a more

homogeneous model, since the lower accuracy of the measurement device is compen-

sated by a better estimation of the patch to measure. This way of distribution constraints

the use of this model to displays since there is a need to re-evaluate the next patch value

to measure after each measurement. For instance, it would be too much time and money

consuming to build such a model for a printer, even more for a camera.

1The number of measurements for accurate display color characterization is a major problem (such as

for printers) that is debated in the last articles in the literature, such as (Blondé et al., 2009) or (Thomas,

Colantoni, Hardeberg, Foucherot and Gouton, 2008a,b).
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6.4 Inverse model using tetrahedral interpolation

The forward model defines the relationship between the device “color space” and the

CIE system of color measurement. We present in this section the inversion of this trans-

form. Our problem is to find the corresponding RGB values (for a display device pre-

viously characterized), of CIELAB values computed by the GPU from the multispectral

image and the chosen illuminant.

This inverse model could use the same interpolation methods previously presented

but we used a new and more accurate method (Colantoni et al., 2005). This new method

uses the fact that, if our forward model is very accurate, then it is associated with an

optimal patch database (see 6.3 ). Basically, we use a hybrid method; a tetrahedral

interpolation associated with an over-sampling of the RGB cube (see Figure 6.3). We

have chosen the tetrahedral interpolation method because of its geometrical aspect (this

method is associated with our gamut clipping algorithm).

Figure 6.3: Tetrahedral structure in CIELAB and the correponding structure in RGB.

We build the initial tetrahedral structure using an uniform over sampling of the RGB

cube (n×n×n samples). This over sampling process uses the forward model to compute

the corresponding structure in the CIELAB color space. Once this structure is built, we

can compute, for an unknown CLab color, the associated CRGB color in two steps: First,

the tetrahedron that encloses the point CLab to be interpolated should be found (the

scattered point set is tetrahedrized); and then, an interpolation scheme is used within

each tetrahedron. More precisely, the color value C of the point is interpolated from the

color values Ci of the tetrahedron vertices. A linear interpolation within a tetrahedron

can be performed as follows:
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C =
3

∑

i=0

wiCi

The weights can be calculated by wi =
Vi

V
with V the volume of the tetrahedron and Vi

the volume of the sub-tetrahedron according to:

Vi =
1

6
(Pi − P )[(Pi+1 − P )(Pi+2 − P )]; i = 0, ..., 3

where Pi are the vertices of the tetrahedron and the indices are taken modulo 4.

The over-sampling used is not based on the same number of points for each axis of

RGB such as in explained in Chapter 7. It is computed according to the shape of the

display device gamut in the CIELAB color space. Note that this concept differs from

the work of Stauder et al (Stauder et al., 2007) that uses a regular grid in RGB, such as

presented by Stokes (1997). We found that an equivalent to 36× 36× 36 samples (46656

points) was a good choice. Using such a tight structure linearizes locally our model,

which becomes perfectly compatible with the use of a tetrahedral interpolation. The

selection of the number of patches along each axis is done using a brute force approach,

such as used in (Thomas, Colantoni, Hardeberg, Foucherot and Gouton, 2008a).

6.5 Results

We want to find the best inverse model, which allows us to determine with a maximum

of accuracy the RGB values for a computed CIEXYZ. In order to complete this task

we must define an accuracy criterion. We chose to multiply the average ∆E76 by the

standard deviation (STD) of ∆E76 of the set of 100 patches evaluated with a forward

model. This criterion makes sense because the inverse model is built up on the forward

model.

6.5.1 Measurement considerations

Before we expose our results we should talk about color measurement. Two main fac-

tors will influence these measurements:

• The stability of the display device: a display device is linked to a power supply

and a light source (for LCD, video projector, etc) or an electron gun (for Cathode

Ray Tube, SED, FED, etc) or plasma cells. We cannot expect these elements to

be perfectly stable (especially with non professional equipments). The result is a

color rendering unstability.
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Table 6.1: Global repeatability measurement

display device ∆E Mean Mean(∆E STD) ∆E Max

SB2070 - CRT Mitsubishi 0.234267 0.159998 1.55088

HP2408w - LCD Hewlett-Packard 1.93712 1.35595 10.8971

Table 6.2: Repeatability between two consecutive measurements

display device ∆E ∆E Max

SB2070 - CRT Mitsubishi 0.102522 0.547393

HP2408w - LCD Hewlett-Packard 0.183674 0.664864

• The measurement device gives values with a tolerance. In the case of a colorimeter

this tolerance depends on different factors: the technology used; the brightness of

the color, etc.

We need to know the combined influence of these two factors. In order to quan-

tify it, we made the following experiment for each display device tested: we send and

measure 64 color patches (4 × 4 × 4 uniformaly sampled patches) 30 times (20 minutes

measurement).

We computed for each color patch the ∆E mean, max and the standard deviation.

Table 6.1 exposes the mean of these values for the 64 patches during all the measure-

ments. Table 6.2 exposes the result (∆E mean and max) between two consecutives

measurements (25th and 26th measurements)

Whatever the model used during the calibration process, it will integrate this mea-

surement error. We can also be confronted to relatively unstable display, even on a short

period of time (with the HP2408w LDC display). This kind of display cannot provide

reliable colors.

6.5.2 Optimal model

The selection of the optimal parameters can be done using a brute force method. We

compute for each kernel (ie. biharmonic, triharmonic, thin-plate spline 1, thin-plate

spline 2), each color space target (CIELAB, CIEXYZ) and several smoothing factors (0,

1e-005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1) the values of this criterion and we

select the minimum.

For example the following Tables 6.3 and 6.4 show the report obtained for a SB2070

Mitsubishi DiamondPro with a triharmonic kernel for CIELAB (Table 6.3) and CIEXYZ

(Table 6.4) as color space target (using a learning data set of 216 patches):
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Table 6.3: Part of the report obtained in order to evaluate the best model parameters. The

presented results are considering CIELAB as target color space, and a triharmonic kernel for a

CRT monitor SB2070 Mitsubishi DiamondPro.

smoothing factor 0 0.0001 0.001 0.01 0.1

∆E Mean 0.379 0.393 0.376 0.386 0.739

∆E STD 0.226 0.218 0.201 0.224 0.502

∆E Max 1.374 1.327 1.132 1.363 2.671

∆E 95% 0.882 0.848 0.856 0.828 1.769

∆RGB Mean 0.00396 0.00459 0.00438 0.00421 0.00826

∆RGB STD 0.00252 0.00323 0.00316 0.00296 0.00728

∆RGB Max 0.01567 0.02071 0.01768 0.01554 0.05859

∆RGB 95% 0.00886 0.01167 0.01162 0.01051 0.01975
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Figure 6.4: Influence of the smoothing factor choice on different indicators based on Table 6.3.

On Figures 6.4 and 6.5 we can see the influence of the smoothing factor choice on

different indicators. We can notice that when the smoothing factor is superior to 0 there

is a minimum where the model shows the best results.

According to our criterion, the best kernel is the triharmonic with a smoothing factor

of 0.01 and CIEXYZ as target.
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Table 6.4: Part of the report obtained in order to evaluate the best model parameters. The

presented results are considering CIEXYZ as target color space, and a triharmonic kernel for a

CRT monitor SB2070 Mitsubishi DiamondPro.

smoothing factor 0 0.0001 0.001 0.01 0.1

∆E Mean 0.495 0.639 0.539 0.332 0.616

∆E STD 0.293 0.424 0.360 0.179 0.691

∆E Max 1.991 2.931 2.548 1.075 4.537

∆E 95% 1.000 1.427 1.383 0.7021 1.751

∆RGB Mean 0.00674 0.00905 0.00720 0.00332 0.00552

∆RGB STD 0.00542 0.00740 0.00553 0.00220 0.00610

∆RGB Max 0.02984 0.03954 0.03141 0.01438 0.04036

∆RGB 95% 0.01545 0.02081 0.01642 0.00597 0.01907
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Figure 6.5: Influence of the smoothing factor choice on different indicators based on Table 6.4.

The measurement process took about 5 minutes and the optimization process took

2 minutes (with a 4 cores processor). We reached our goal, which was to provide an

optimal model in a reasonable time.

Our different experiments showed that a 216 patches learning set was a good com-

promise (equivalent to a 6 × 6 × 6 sampling of the RGB cube). A smaller data set gives
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Table 6.5: Accuracy of the model established with 216 patches in forward and inverse directions

for a LCD Wide Gamut display (HP2408w). The distribution of the patches improves the model

accuracy.

Forward model Inverse model

∆E Mean ∆E Max ∆RGB Mean ∆RGB Max

Optimized 1.057 4.985 0.01504 0.1257

Uniform 1.313 9.017 0.01730 0.1168

Table 6.6: Accuracy of the model established with 216 patches in forward and inverse directions

for a CRT display (Mitsubishi SB2070). The distribution of the patches improves the model

accuracy.

Forward model Inverse model

∆E Mean ∆E Max ∆RGB Mean ∆RGB Max

Optimized 0.332 1.075 0.00311 0.01267

Uniform 0.435 1.613 0.00446 0.01332

us a degraded accuracy, a bigger gives us similar results because we are facing the mea-

surement problems introduced previously.

6.5.3 Optimized learning data set

Table 6.5 and Table 6.6 show the results obtained with our model for two displays of dif-

ferent technologies. These tables show how the optimized learning data set can produce

better results with the same number of patches. The improvement is not significant for

a end user applications, but for specific ones it may be critical.

6.5.4 Results for different displays

Table 6.7 presents different results obtained for 3 other displays (2 LCD and 1 CRT).

Considering the thresholds presented in Chapter 2, we can see here that our model

gives very accurate results on a wide range of displays.
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Table 6.7: Accuracy of the model established with 216 patches in forward and inverse directions

for three other displays. The model performs well on all monitors.

Forward model Inverse model

∆E Mean ∆E Max ∆RGB Mean ∆RGB Max

EIZO CG301W (LCD) 0.783 1.906 0.00573 0.01385

Sensy 24KAL (LCD) 0.956 2.734 0.01308 0.06051

DiamondPlus 230 (CRT) 0.458 2.151 0.00909 0.06380

6.6 Application to multispectral images of art paintings

6.6.1 Project background

The CRISATEL European Project (Ribés et al., 2005) opened the possibility to the C2RMF

of acquiring multispectral images through a convenient framework. They are now able

to scan in one shot a much larger surface than before (resolution of 12000× 20000) in 13

different bands of wavelengths from ultraviolet to near infrared, covering all the visible

spectrum. The multispectral analysis of paintings, via a very complex image process-

ing pipeline, allows them to investigate a painting in ways that were totally unknown

until now (Colantoni et al., 2007). Manipulating these images is not easy considering

the amount of data (about 4GB by image). One can either use a pre-computation pro-

cess, which will produce even bigger files, or compute everything on the fly. The sec-

ond method is complex to implement because it requires an optimized (cache friendly)

representation of data and a large amount of computations. This second point is not

anymore a problem if we use parallel processors like graphic processor units (GPU) for

the computation. For the data, a traditional multi-resolution tiled representation of an

uncorrelated version of the original multispectral image is used. The computational

capabilities of GPU have been used for other applications such as numerical compu-

tations and simulations (www.gpgpu.org, 2009). The work of Colantoni et al. (2003)

demonstrated that a graphic card can be suitable for color image processing and multi-

spectral image processing.

This application aims to produce an accurate color rendering of multispectral images

of paintings on a display, considering a given illuminant. The workflow is summarized

in Figure 6.6.
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Figure 6.6: Color rendering workflow for two different illuminants. The last images show the

clipped colors in red. The display used can render this painting inside gamut for a D65 illu-

minant. However half of the colors present in the image are outside the display’s gamut if we

consider a A illuminant.

6.6.2 Input color data

The CRISATEL project produces 13 planes multispectral images, which correspond to

the following wavelengths: 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 900 and

1000nm. Only the 10 first planes interact with the visible part of the light. Considering

this, we can estimate the corresponding CIEXYZ tri-stimulus values for each pixel of

the source image using Equation 6.1:











X =
∑λ=760

λ=400 x(λ)R(λ)L(λ)

Y =
∑λ=760

λ=400 y(λ)R(λ)L(λ)

Z =
∑λ=760

λ=400 z(λ)R(λ)L(λ)

(6.1)
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where R(λ) is the reflectance spectrum and L(λ) is the light spectrum (the illuminant).

Using a GPU implementation of this formula we can compute in real-time the

CIEXYZ and the corresponding CIELAB values for each pixel of the original multispec-

tral image with a virtual illuminant provided by the user (CIE standard or custom illu-

minants).

If we want to provide a correct color representation of these computed CIEXYZ val-

ues, we must apply a color management process, based on the color characterization of

the display device used, in our color flow. We then have to find the RGB values to input

to the display in order to produce the same color stimuli than the retrieved CIEXYZ

values represent; or at least the closest color stimuli according to the display limits.

6.6.3 Gamut mapping

A gamut mapping2 (GM) pre-processing step is applied to the CIEXYZ values com-

puted from the multispectral image ( cf section 6.6.2), such as XY Z ′ = GM(XY Z) or

LAB′ = GM(XY Z). The choice of the GM algorithm depends on the purpose.

For instance, in our application, to ensure an accurate colorimetric rendering, con-

sidering CIELAB color space, and low computational requirements, we use a geomet-

rical gamut clipping method. This method is based on the pre-computed tetrahedral

structure (generated in our inverse model) and more especially on the surface of this

geometrical structure (see figure 6.3).

The clipped color is defined by the intersection of the gamut boundaries and the

segment between a target point and the input color. The target point used here is an

achromatic CIELAB color with a luminance of 50. A different gamut mapping algorithm

could be used depending on the purpose, but the choice is reduced here considering the

need of real time rendering.

6.6.4 GPU-based implementation

This color management method is based on a conversion process that will compute for

CIEXYZ values the corresponding RGB values.

It is possible to implement the presented algorithm with a specific GPU language,

like CUDA, but the software will only works with CUDA compatible GPU (nVIDIAT M

G80, G90 and GT200). The goal was to have a working application on a large number

of GPU (AMD and nVIDIAT M GPUs), for this reason we chose to implement a classical

method using a 3D lookup table.

2The aim of gamut mapping is to ensure a good correspondence of overall color appearance between

the original and the reproduction by compensating for the mismatch in the size, shape and location

between the original and reproduction gamuts.
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During an initialization process we build a three dimensional RGBA floating point

texture, which covers the CIELAB color space. The alpha channel of the RGBA values

saves the distance between the initial CIELAB value and CIELAB value obtained after

the gamut mapping process. If this value is 0, the CIELAB color is in the gamut of

the display, otherwise, this color is out gamut and we are displaying the closest color

according to our gamut mapping process. This allows us to access and/or display in

real time the color errors due to the screen inability to display every visible colors.

Finally the complete color pipeline includes: a reflectance to CIEXYZ conversion

(considering an illuminant given by the user) then a CIEXYZ to CIELAB conversion

(using the white of the screen as reference) and our color management process based on

the 3D lookup table associated with a tri-linear interpolation process.

6.7 Conclusion and further work

We proposed a new color display characterization model that consists in an optimal

combination of measured samples and interpolation settings. We presented a part of

a large multispectral application used at the C2RMF. It has been shown that it is pos-

sible to implement an accurate color management process even for a real time color

reconstruction. We showed a color management process based only on colorimetric

consideration. The next step is to introduce a color appearance model in the color flow.

The use of such color appearance model, built up on our accurate color management

process, would allows the C2RMF to do color accurate virtual exhibitions of painting.

This method aims to provide a professional accurate color characterization. We can

see that it does that on all tested displays. This method is fully automatic and could

be used for consumer characterization as well. However, it requires a large number of

measurements and a color framework based on GPU to be performed in real time.





Chapter 7

Geometrical model inversion

Je vais apprendre demain à me tenir sur les mains

J’irai pas très vite bien sûr mais je n’userai plus de chaussures.

Je verrai le monde de bas en haut c’est peut-être plus rigolo.

Je n’y perdrai rien par surcroı̂t:

Il est pas drôle à l’endroit.

Jean Boyer

Abstract

This chapter proposes a method for the inversion of characterization models using 3D LUTs.

We focus on patches distribution in RGB to perform a linear tetrahedral interpolation from

CIELAB or alternatively CIEXYZ to RGB. We used the PLVC model as forward model to

create this LUT and to present quantitative results.
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7.1 Introduction

A method to distribute patches in a reference color space for geometrical model inver-

sion is proposed and evaluated. It is shown that the relative accuracy gain may be not

negligible. The motivation and background of this work can be found in Chapter 3.3.3.

The results given in this section are based on the PLVC model that is used as testing

model. However any forward model can be used. In the former section, we designed

an inverse model based on a grid in RGB that leads non-uniform interpolation error, be-

cause of the non-linearity of the transform from RGB to CIELAB. The goal of this section

is to present a new method to distribute patches in the destination space, i.e. RGB for

yielding the inverse function of a characterization model.

7.2 Method proposed

Beginning with a regular grid in the destination space, our goal is to transform this

regular cubic structure into a rectangular one, in order to make it more uniform or better

in the source space. We propose to approximate an homogeneous grid in the source

space using only a few number of parameters. Note that this approach resembles, but

differs from the existing methods in the way that we do not modify the grid in the source

space but directly and firstly in the destination space. This leads to some differences:

• First, no gamut mapping is required to map the points that rise up outside the

gamut during the creation of a grid in the source space.

• Secondly, the grid is taken in its globality and we will not reach a perfect uni-

formity in the source space, only a rough approximation of it, depending on the

function we use. We suppose that it should be enough to increase the accuracy.

• Thirdly, the order between data is preserved, which leads to an easier indexation

of the tetrahedra.

In order to build a more uniform grid in the source color space, we propose to as-

sume that:

• The number of steps has not necessarily to be the same along each primaries in

the destination space, then Nr 6= Ng 6= Nb.

• The steps have not to be regularly spaced along a primary in the destination space,

but they can be defined such as Ri = fr(di), Gj = fg(dj), Bk = fb(dk), considering

f ∈ {fr, fg, fb}, a monotonically increasing function from R to R :
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f :

{

[0, 1] −→ [0, 1]

d −→ f(d)
(7.1)

.

f could be any simple function, either a power function with one constant param-

eter or an S-shaped curve function with one to three constant parameters. Let us

say that this function has M parameters, then the number of parameters used to

set-up the distribution of the grid points is P = 3×M .

We make the hypothesis that if we can find the good function f, and the good number

of steps, different for each primaries, the structure defined by the 3-D grid will become

more homogeneous in the source space and will allow us to have a better inversion

map. By extension, we assess that if we can build a better grid in the source space, the

inversion will become better. The purpose of the next section is to define what a better

grid is.

7.2.1 Estimation of the grid quality

A better grid can be defined in various ways. The straightforward way to assume that

a grid is better is to assume that it is more regular in the source space, then some geo-

metrical indicators should be used as cost functions to estimate the function f . It could

also be a structure well designed for a given application, then an evaluation data set

could be required. For a given number of steps along each channel, we have P values to

optimize. The optimization process enables us to re-distribute the steps in the destina-

tion space, so we adapt the tetrahedral structure in the source space. We propose below

three criteria as cost functions. One is directly linked with the geometrical structure of

the grid. Others are linked to the result of the inverse model for an evaluation set of

patches.

Criterion defined by the geometrical properties of the structure:

The first type of cost functions we consider contains the functions directly characterizing

the geometry of the grid. We chose to use an indicator that aims to ensure the tetrahedra

to have the same shape. The one we have used is the variance of the length of the

tetrahedron’s edges of the geometrical structure in the source space. If we minimize this

function, the tetrahedron of the grid will have more or less the same shape. It is also

possible to aim at the maximization of the volume of the tetrahedra, or the surface of

each face. In this case, we need to use two combined indicators: the maximization of the

volume/surface and the minimization of their variance. We decided that minimizing

the standard deviation of edges length was more simple for the same result. Using this
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Figure 7.1: The gamut generated with the PLVC forward model does not correspond exactly

with the device gamut. Then some colors inside the true device gamut have to be mapped inside

the geometrical structure to be transformed into RGB values. On these figures, one can see that

some measured colors defined by some RGB values does not belong to the gamut defined by the

forward model.

criterion, we want to reduce the heterogeneity of the interpolation error throughout the

space, and so to minimize the error of the model. We call this criterion Edges in the

following.

Criteria linked with an evaluation data set:

The cost functions of the second type affect the structure indirectly. We used an evalu-

ation data set and tried to minimize either the maximum error or the average error of

the model for this data set. The evaluation data were 100 measured patches equiprob-

ably distributed in the destination space. We call the two criteria Mean and Max in the

following.

A remark has to be done first about the choice of the evaluation data set. As the

data are distributed in the destination space, they are not well distributed in the source

space. That means that, depending on the indicator, these data are not the best to try

to homogenize the grid in the source space. If the goal is to homogenize the grid in the

source space, then the data set has to be equiprobably distributed in this space. How-

ever, minimizing the feature for an evaluation data set optimizes the grid for instance

for a special type of images or for a sequence of a movie for one given device.

A second important thing to notice here is that even if the color of the training (or

evaluation) data set belongs to the gamut of the device, since they are defined in RGB,

it is not obvious that it belongs to the gamut defined by the forward model (see Fig-

ure 7.1). Indeed, due to some forward models failure, some colors could be out of the

grid; thus, a gamut mapping process is required. For instance, if the forward model
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Figure 7.2: Tetrahedral structure based on a regular grid, Nrgb = 15 and α = 1.23, β = 1.27, γ =

1 obtained for the criterion Mean in RGB (left) and its transform in CIELAB (right).

does not take into account interaction between channels, some colors could have more

(or less) luminance than the forward model can predict and then be outside of the grid.

In one of our study (Thomas, Colantoni, Hardeberg, Foucherot and Gouton, 2008b), we

noticed that the optimization algorithm was trying to refine the grid around these col-

ors. For some displays, a critical maximum error was coming from the mapping of a

color from the evaluation data set. This effect appears especially for the Max criterion.

Since the model and the features seem not to be directly related with a derivable

function, we chose a numerical optimization method. We used the globalized Nelder-

Mead simplex downhill algorithm (Gill et al., 1982). This fits well with our problem, and

we can use it easily with P variables to optimize. Let us notice that criterion = G(p) is

the function to minimize, with p a vector of dimension P . To give an example: Let us

consider Nrgb = 15, Nr = Ng = Nb = 5. In minimizing the aforementioned functions,

we can retrieve the best parameters α, β, γ of a power function, respectively, for each

channel R, G, B, which will allow to define our definitive structure (p = [α, β, γ]). In

Figure 7.2, the cost function Mean has been used, and the results obtained are a mean

error of 4.13% and a maximum error of 18.83% in RGB, for a testing data set of 100

patches, while the original regular grid with the same number of patches gives a mean

error of 4.50% and a maximum error of 20.79%.

7.2.2 Distribution of the grid seed

In this section, we first discuss the functions we used to modify the distribution of the

grid seeds along the R, G, and B axis, with an equal number of data for each axis. We

then discuss the number of points that should be used along each axis, considering that

these numbers could be different. We separated these steps in two different algorithms

to see the influence of each of these. Both are then combined in a practical case in
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Section 7.3.3.

Static changing of the grid morphology:

To redistribute the grid seeds along each channel, we used either a simple power func-

tion or an S-shaped curve. For both cases, we have fixed the condition Nr = Ng = Nb, in

order to limit the number of parameters and for modeling purpose. Let us investigate

on the criteria used to find the function parameters and on the value of Nrgb.

• Power function: the grid seeds are expressed as Ri = dαi , Gj = dβj , Bk = dγk. As

our digital values are normalized, the power function follows the requirements

defined in Equation 7.1. There are three parameters to optimize.

• S-shaped curve function: the grid seeds are expressed as:

if di < 0.5, Ri =
(2di)

α

2
, else Ri = 1−

[2(1− di)]
α

2
,

if dj < 0.5, Gj =
(2dj)

β

2
, else Gj = 1−

[2(1− dj)]
β

2
,

if dk < 0.5, Bk =
(2dk)

γ

2
, else Bk = 1−

[2(1− dk)]
γ

2
,

(7.2)

such that the curve stays inside [0, 1]. There are as well three parameters to opti-

mize. Note that we chose a simple expression for the sigmoid, in order to have

only one parameter for each channel to optimize. This reduces the freedom of the

function, but makes the method easier to explain and understand.

Let us illustrate the method. Using a power function, the grid is defined by Nrgb

and by the optimization of α, β, γ values. Figure 7.2 illustrates this construction for

Nrgb = 15, i.e. Nr = Ng = Nb = 5. Using the criterion Mean , we found α = 1.23,

β = 1.27, γ = 1.

Spreading of the grid seeds:

An equal number of steps along each R, G, and B channel is not sufficient a priori to

reach the homogeneity in CIELAB, even if they are not distributed linearly. Thus, we

propose a second way to build the geometrical structure, which consists in distributing

the steps along each channel in the best way whithout the condition Nr = Ng = Nb. We

used a brute force approach for this task. Given a number of points, we tried the possi-

bilities sequentially such as Nrgb = Nr +Ng +Nb and we selected the best combination,

considering the chosen cost function. To study the effect independently of the previous

proposition, we distributed in a first time the steps regularly along each channel.
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7.3 Results

We have defined two ways to build a geometrical structure considering a given crite-

rion. One is based on the static changing of the morphology of the grid in the destina-

tion space. The other focuses on the number of steps along each axis in the destination

space. In this section, we present the results obtained for each method developed to

study the influence of both distributions. We study these methods relatively to the total

number of steps used to build the grid. We then present a practical case where the two

methods are combined to build the best geometrical structure considering the distribu-

tion of the points in the destination space for a given number of points and for a given

criterion. In order to analyze the results, we have chosen the PLVC as forward model

that assumes independence between channels, but takes into account the chromaticity

shift of primaries. In this work, the [A(di(j)) ∈ Ak], were obtained using Akima spline

interpolation (Akima, 1970) with the measurement of a ramp along each primary. Note

that any 1-D interpolation can be used. Practically, we used a bounding box centered

on the color we wanted to display to determine the tetrahedron it belongs to. Then a

linear tetrahedral interpolation is performed (Kasson et al., 1995), such as in the previ-

ous section. In the case of a point out of the grid, i.e., out of gamut, we performed a

simple clipping toward the 50% luminance. Since our data set is defined in RGB, the

gamut clipping happens only when the forward model fails. We show and discuss re-

sults obtained for the inversion of the PLVC model. We tested the algorithms on three

displays, a tri-LCD projector 3M-X50 (PLCD), a CRT monitor Philips 107s (MCRT), and

a LCD monitor DELL 1905FP (MLCD). The measurements of the color patches were

taken using the spectroradiometer CS-1000 from Minolta.

7.3.1 Static changing of the grid morphology

This part discusses results of the first method proposed in Section 7.2.2. We consider

an equal number of steps along each primary, and we distribute them using a function,

which parameters were found using an optimization process. In Figure 7.3, one can see

the evolution of the accuracy of the model in function of the number of steps used. All

combinations between the functions and the criteria used are presented. The reference

is the regular grid.

In general, it is hard to say that one criterion combined with one type of function

performs much better than the other possibilities. The criterion Edges does not seem to

give really good results neither in average nor in maximum error except for the CRT

display when it is combined with the S-shaped curve. It is possible that this is the result

of the testing data set, which was equiprobably spreaded in RGB. For PLCD (Figure 7.3,

a), criteria based on a training data set gives equal or better results than the regular grid,
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a

Figure 7.3: Results obtained with the geometrical model in function of the total number of steps

used. The three cost-function Mean, Max, and Edges and the two functions proposed were used

on the three displays: (a) PLCD, (b) MLCD, and (c) MCRT. The mean error in percentage in RGB

is shown on the upper part of each figure, the maximum error is shown on the bottom. One can

see that the sigmoid function with the Mean criterion performs generally better than the others

for both the maximum and the mean error.

generally following the cost function used. However, one can see that the combination

of the criterion Max and a power function gives a good compromise in both the average

and maximum error for this display. This combination performs better than a regular

grid. The difference is major for a reduced grid; for instance, with Nrgb = 30, the regular

grid gives an average error of about 1.5%, the Edges criterion an error of 2% to over 3%
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b

Figure 7.3: Results obtained with the geometrical model in function of the total number of steps

used. The three cost-function Mean, Max, and Edges and the two functions proposed were used

on the three displays: (a) PLCD, (b) MLCD, and (c) MCRT. The mean error in percentage in RGB

is shown on the upper part of each figure, the maximum error is shown on the bottom. One can

see that the sigmoid function with the Mean criterion performs generally better than the others

for both the maximum and the mean error.

depending on the function used, while all the other methods with the Mean and the

Max criteria give an average error of 1-1.5%. If we look at the maximum error for the

same Nrgb, the regular grid gives an error over 6.5%, the refinement of the grid using the

training data set gives an error of 3-4%. That means that we reduced the maximum error

by a factor of two for this case. The criterion Edges gives a maximum error higher than
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c

Figure 7.3: Results obtained with the geometrical model in function of the total number of steps

used. The three cost-function Mean, Max, and Edges and the two functions proposed were used

on the three displays: (a) PLCD, (b) MLCD, and (c) MCRT. The mean error in percentage in RGB

is shown on the upper part of each figure, the maximum error is shown on the bottom. One can

see that the sigmoid function with the Mean criterion performs generally better than the others

for both the maximum and the mean error.

the error of the regular grid. For MLCD (Figure 7.3, b), we notice the fast convergence

of the maximum error for all methods (the regular grid included). This is possibly due

to the gamut mapping due to the failure of the forward model. For this device and

Nrgb = 30, we notice that the sigmoid used gives better results than the regular grid

(from around 3-2.6%) whatever the Max or Mean criterion we used. MCRT (Figure 7.3,
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c) shows that, on this device, the regular grid gives better results than the others and

that Edges criterion seems to perform well on it, combined with a S-curve. However, if

we look at the results for Nrgb = 45, the sigmoid combined with the criteria based on the

training data set gives better results, reducing the error from 3% to 2.4 and 2.5%. When

the number of points increases, all methods seem to converge. All are going towards

the same accuracy. Note that the Edges criterion combined with a power-shaped curve

converge more slowly than the other for PLCD. Looking at these data, we can not say in

general: this criterion and this function is the best combination for any display. In particular,

for a given amount of steps, a difference appears, but nothing that can be generalized.

The algorithm can fall into local minima for the Mean and more often for the Max

criterion, depending on the seeds given for the optimization. However, the Edges cri-

terion is very stable despite a not so good general result. The fall into local minima

explains the shape of the curves that are not, in many cases, monotonically decreasing

with increasing Nrgb.

7.3.2 Spreading of the grid seeds

This subsection discusses results obtained with the second method proposed in Sec-

tion 7.2.2. Considering the total number of steps, we distributed them along each chan-

nel such that the cost function is minimized. However we do not discard this criterion,

because it can be valuable for other displays or other evaluation data sets.

Looking at Figure 7.4, it appears that the Mean criterion performs slightly better than

the Max, since the convergence of the maximum error is fast.

However, for PLCD (Figure 7.4,a), the average error remains quite similar for the

three methods used and, a better compromise provided by the Mean criterion, the Max

criterion permits a slight reduction in the maximum error (from twice to once if we

look at a grid of Nrgb = 60, comparing it with the regular grid). For MLCD and MCRT

(Figure 7.4, b and c), the maximum error converges fast, and the Max criterion seems to

be weak. Looking at the results for the Mean criterion, one can say that it follows the

regular grid for MLCD. However, it decreases the average error for a midsized grid of

Nrgb = 45 with MCRT from 3.2 to 2.7%.

7.3.3 A practical case

In this section, we propose to evaluate a practical case, combining both approaches

previously defined. We fixed a number of steps Nrgb = 90 that appears to us to be a good

compromise between the size of the structure and the optimization facilities: smaller, it

is a loss of accuracy for nothing, bigger, there will be no interest in optimizing it; then a

regular grid should be enough compared with the cost of the optimization. We retrieve
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a

Figure 7.4: Results obtained with the geometrical model in function of the number of steps used

for the three displays: (a) PLCD, (b) MLCD, and (c) MCRT tested. The two cost functions Mean

and Max were used to find the best number of steps along each channel. The mean error in

percentage in RGB is shown on the upper part of the figure, the maximum error is shown on the

bottom.

the best function to define each axis of the destination space, considering the different

criteria. We have chosen to select the best one with regard to the mean error estimation,

but it is also possible to consider that the maximum error is more important, depending

on the application. We keep both the power and the sigmoid functions. We then look

for the best spreading of steps along channels, still with regard to the mean error of the

model. The result gives us the optimized geometrical structure for this given number of
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b

Figure 7.4: Results obtained with the geometrical model in function of the number of steps used

for the three displays: (a) PLCD, (b) MLCD, and (c) MCRT tested. The two cost functions Mean

and Max were used to find the best number of steps along each channel. The mean error in

percentage in RGB is shown on the upper part of the figure, the maximum error is shown on the

bottom.

points and for the display considered. We compare it with the regular grid, which is still

our reference. Results of the inverse model estimation are presented in Table 7.1. This

table shows that simply using the same amount of steps for each channel and a power

or a sigmoid function to distribute them could be pretty efficient and could be the best

solution for some displays, such as the MLCD where it is the best grid.

In this case, we reduce the error by 0.28%, which is relatively a gain of accuracy of
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c

Figure 7.4: Results obtained with the geometrical model in function of the number of steps used

for the three displays: (a) PLCD, (b) MLCD, and (c) MCRT tested. The two cost functions Mean

and Max were used to find the best number of steps along each channel. The mean error in

percentage in RGB is shown on the upper part of the figure, the maximum error is shown on the

bottom.

almost 10%. Some accuracy can be won in spreading the steps after having applied the

function, such as for the PLCD and MCRT. For the first one, we go from 0.69% with a

regular grid to 0.66% using a power to 0.59% in spreading the steps, which is a relative

improvement of around 15.5%. Note that for this display, before spreading, the best

function to step the points is the sigmoid with an error of 0.64%, but after spreading the

best result is given by the power function. In other words, the best function should not
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Table 7.1: A practical case, given Nrgb = 90, considering the criterion Mean and the different

functions, we find the best grid for minimizing the average error for the three displays studied.

% Error Regular Gamma Sigmoid Linear Gamma Sigmoid

in RGB Grid +Spreading +Spreading +Spreading

Nrgb = 90 Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

PLCD 0.69 2.76 0.66 2.76 0.64 1.53 0.66 2.06 0.59 1.22 0.62 1.44

MLCD 2.91 11.40 2.87 11.40 2.63 11.14 2.81 11.41 2.86 11.41 2.63 11.14

MCRT 2.58 13.03 2.54 13.07 2.59 13.07 2.53 13.07 2.50 13.00 2.57 13.15

be chosen at the first step of the algorithm. For MCRT, we go from 2.58 to 2.54 using

a power-shaped function to 2.50 in spreading the steps, showing a relative gain of 3%.

The same analysis can be performed for the maximum error. In our data, the smaller

maximum error found is when we use the same method, but it is not obvious that this

will happen all the time. For instance, looking at MCRT with a sigmoid function and a

spreading, the errors Mean and Maximum are 2.57 and 13.15, albeit the results for the

linear distribution are 2.58 and 13.05. To summarize, with the displays we studied, we

found a better LUT than the regular one in all the cases with a different gain in accuracy.

We do not put aside that the regular grid can be the best one for a given display. In

Table 7.2, we show the spreading of the steps along each axis.

Table 7.2: Spreading of the grid seeds along each channel for the practical case studied.

Seeds Linear Gamma Sigmoid

distribution +Spreading +Spreading +Spreading

Nrgb = 90 Nr Ng Nb Nr Ng Nb Nr Ng Nb

PLCD 24 34 33 19 47 24 19 43 28

MLCD 49 21 20 40 31 19 30 30 30

MCRT 39 21 30 36 32 22 34 37 19

For the PLCD, it seems that the green channel requires a more accurate discretiza-

tion than the two others, but looking at the other displays, this can not be generalized.

It appears that in using a linear distribution or a power shaped one, the spreading takes

quite the same shape, with different strengths. While in using a sigmoid, the spreading

is totally different. Note that for the MLCD, the best spreading scheme is the equibal-
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anced one. In general, it seems that no spreading scheme can be recommended a priori.

To conclude with the obtained results, no a priori function or spreading scheme can be

recommended. It has to be device dependent. Furthermore, it seems that it is not tech-

nology dependent, since the two LCDs show different behavior (but one is a projector,

the other a monitor, so no hasty judgement should be taken). It appears that the best of

the grids defined with our methods should be selected with a test, and actually this is

what we do to assess their quality.

7.4 Conclusion and further work

We proposed some methods to build an optimized geometrical structure in order to in-

vert any display color-characterization forward model. We used several criteria linked

with the grid itself or with an evaluation data set. We focused on how to distribute the

steps on the destination space axis in order to have the better grid in the source space,

both in using a power or a sigmoid function and in spreading the steps in a non-uniform

way along the axis. We studied a practical case, considering a forward model, a number

of steps, and a feature to optimize for three displays. The results obtained with the pro-

posed methods in the practical case are all better than the regular grid, and the relative

gain in accuracy is not negligible, from 3% in the worst case to up to 15.5% in the best

case.

This method first aims to increase the accuracy of the model inversion. It is firstly

defined for a professional use. Depending on the criterion used, it may be of use for a

consumer characterization. Indeed, if the criterion is not based on a training data set,

the number of measurement or evaluation can remain low. However if it is based on a

training data set, then the number of measurement can be a problem for some consumer

methods.

Some further work could be done concerning the criteria used, especially for the

ones related to the grid features, and on the training data set. Moreover, since the func-

tion used to distribute the steps on the axis could have more parameters, we are thinking

about the function of higher order (monotonically increasing) or simply a more-complex

S-shaped curve (such as in Equation 3.4). We also do believe that this method to build

and select the optimized structure to invert the colorimetric model can be applied to

any output color device, such as printers, perhaps with other functions.



Part II

Spatial issues for projection systems





Chapter 8

State of the art of color uniformity in
multi-display systems

Ce que je cherche avant tout, c’est la grandeur : ce qui est

grand est toujours beau.

Napoléon Bonaparte

Abstract

This chapter considers a bibliography that rose up at the end of the 90’s. It considers the

problem of achieving a large format display with high resolution and accurate color render-

ing, using multiple smaller display units. Much effort has been carried out to deal with

geometric alignment but only a few works deal with colorimetric accuracy. We focus on the

problem of spatial color uniformity and we explain existing models and methods, analyzing

their strengths and weaknesses.
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8.1 Introduction

This chapter introduces the high resolution, large scale display problematic. Why do

we need such a display in an affordable solution? What are the features, advantages

and drawbacks of the existing solutions? We describe many works that have been done

on display color spatial uniformity. Some of these works consider one display, most of

them consider the more general case of multi-display systems.

Napoléon Bonaparte said that he was looking for what is big, because what is big is al-

ways beautiful. In an intuitive way, we can then understand the interest of the idea of

multi-display systems. This kind of display is potentially as large, as high resolution as

one wants. In another word, a multi-display is as big as the user wants it to be. This

intuitive way is confirmed by a user need: “I want to have a big display for design-

ing a new car, where we could see it in real size.” “I want to play a virtual game in

real immersion.” “I need to train my soldiers in a simulated virtual environment.” “I

would like to look at this flow of particles in real time with a high resolution, which will

help me to understand.” “My company wants to increase the developer productivity,

providing them with several displays or with a large scale one.”, etc.

The oldest multi-projector system that we have ever seen is at Mahaugen Museum

in Lillehammer, Norway. This system is still working now and can be considered as

archaique. It is displaying pictures one by one in an auditorium, summarizing Norwe-

gian history. This system is made up of a 3×3 matrix of analog slide projection systems.

These displays are combined 3 by 3 to display an image based on a row of three projec-

tors. During the time the first image is explained by a voice, the next row is preparing

the next image to be displayed.

Multi-displays systems have evolved fast with the need and applications are rang-

ing from design, to scientific visualization, through entertainment and flight simula-

tion. Three main applications are usually considered in the literature: immersive reality

(originally for military applications and flight simulation), scientific visualization and

collaborative working environment (Raskar et al., 1998; Santos et al., 2007; Wallace et al.,

2005). Although the main problem was originally geometrical registration, the next is-

sue, to make the user feel like there is only one single display, is color spatial uniformity.

That will guarantee the seamlessness of the display. Of course, color is not The solution,

and if the goal is to immerse the user inside a virtual real world, many considerations

have to follow, such as sound, smell, touch, etc.

Lantz (2007) made the distinction between small, medium and large scale displays.

He is stating that the last category has been developed with regard to commercial inter-

est and is mostly invested in proprietary technology. That has reduced the accessibility

to research community. However, it seems that now, companies and researchers are

meeting with the expansion of this kind of display, for the evolution from flat screens
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to spherical, for the need of immersion, and with the increasing capabilities of standard

computer hardware and software (graphic cards, computer clusters, etc). There is a

need of a convenient and accurate way to deal with the technical challenges of such a

display.

For many applications with this kind of display, immersion is aimed. Immersion can

happen when the projection surface covers a significant part of the viewing field. Some

effects can break this, such as bezel effect, which is due to the physical border of tiled

monitors on a displayed image. Many other applications are broken by the bezel effect,

especially applications that requires cognition.

How to have a large seamless image and without bezel effect? One can use a small

screen just in front of his eyes, using a head mounted screen. This is a valid solution,

but it is single user, which does not fit with a collaborative environment. One can use

a single projector, with a wide angle lens, which will create a wide image, but a low

resolution is resulting. Aiming at one projector with a better resolution would typically

increase the cost of the system significantly. At the end, tiling projectors seems to be the

best way, independently of the application, considering the relatively low price and the

size and resolution that are limited only by the number of projectors used. However,

that leads to many technical problems to solve.

The following list shows some examples of commercial devices and of academic

projects related to the use of multi-projector systems.

Example of prices and features The projection display market evolves really fast, the

price goes down as fast as the technology evolves. The list below shows how the price

went down in a short time, and how it is cheaper to use several projectors to get high

resolution than just one:

• In 1997, the Lawrence Livermore projector wall was built using 15 projectors DLV-

1280 Electrohome each with a resolution of 1280 × 1024, a contrast of 100:1 with

1000 ANSI Lumen. The price of one projector was $29000.

• In 2009, the model Optoma HD80 has a better resolution 1920× 1080 resolution, a

better contrast of 10000:1, 1200 ANSI Lumen. This model costs only $2500.

• To compare with a high resolution model of the same year, the Sony 4K has a high

resolution of 4096×2160, a good contrast of 2500:1, 11000 ANSI Lumen. However,

its weight is 120KG, and its cost is $150000.

• If the former projector (equivalent resolution) was built with 9 (3 × 3) projectors

Optoma HD80, its cost would be $22500.
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• If the former projector (equivalent resolution) was built with twelve (4×3) projec-

tors Sony VPL-AW 15, 1280× 720 resolution, 12000:1 contrast, 1300 ANSI Lumen,

$ 1300 each, it would be $15600.

The resolution cost can be reduced a lot. The given prices have to be augmented

considering a computer cluster and some graphics hardware. But the total cost will

remain significantly lower than the $150000 of the Sony 4K. The brightness and contrast

of such a system would be less than the individual brightness and contrast of each

projector used, because of photometric adjustment. However, we cannot say a priori if

such a system would be better than the Sony 4K with regard to these features.

Example of projects Many projects have been running or are running to face the tech-

nical issues of using several tiled projectors. Many companies and researchers are work-

ing on that. According to Lantz (Lantz, 2007),there was about 275 large scale display

theaters worldwide in 2007. This number has already increased.

For instance (this list of examples is not exhaustive):

• Cave, University of Calgary, sun Microsystems (4 flat projection wall), for immer-

sive reality, 2D and 3D visualization.

• Scalable display wall at Princeton University (24 projectors), for research purpose

on seamless imaging, parallel rendering, camera-based tracking and so on.

• Large walls at University of California Irvine and San Diego (70 projectors).

• Pixelflex, University of North Carolina at Chapel Hill (8 projectors) and Sandia

National Laboratories/California (6 projectors).

• LightTwist project, University of Montreal, for artistic purposes. They aim at keep-

ing the simplest arrangement as possible, using just one camera for geometrical

alignment and photometric adjustment (fish eye lens or catadioptric) -work as

long as one camera can see most of the surface-.

A couple of books deals exclusively with the technological problems of multi-

display systems (Bimber and Raskar, 2005; Majumder and Brown, 2007).

Technical problems include:

• Color uniformity; we will consider this problem on next section.
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• Geometry registration and alignment. At the beginning, the camera were typically

supposed to be calibrated or the walls had to be marked to establish the transform

between the screen, the projectors and the camera(s). Now, the most recent re-

searches consist in using uncalibrated cameras to correct for the geometry. See for

example (Chen and Johnson, 2001; Chen et al., 2002; Draréni et al., 2009; Hereld

et al., 2003).

• Screen properties. In order to reach a better contrast ratio for the whole system,

it can be of use to limit the number of inter-reflections in using low reflectivity or

gray screens (Rudd et al., 2008; Skolnick and Callahan, 1994).

• Scalability. Adding or removing easily one or several projector(s) is a technical

challenge (Bhasker et al., 2006; Chen and Johnson, 2001; Chen et al., 2002).

• But also: Parallel rendering (The capabilities of GPGPU helped a lot to design real

time rendering applications), synchronization and so on.

Much work have been carried out and are still going on considering all the techni-

cal challenges linked with multi-displays. In the following, we will only consider the

spatial uniformity of an image considering accurate color rendering, with emphasis on

spatial uniformity or perceived spatial uniformity. We present as well the contrast eval-

uation problem within displays that are using a curved concave screen.

8.2 Color in multi-display systems

The color characterization of a large scale display or a multi-display system is a more

general case of point-wise display color characterization that includes the spatial dimen-

sion. Indeed, compared to point-wise color characterization, simplifications are seldom

valid, mainly because of the configuration or because of the high number of displays.

This section reviews the attempts that have been made to achieve spatial color uni-

formity in multi-display systems. Many approaches and their combinations have been

investigated in the literature for solving this problem. Most of them consider objective

uniformity. We introduce one work that considers perceived spatial uniformity.

We first describe and classify the problems, considering intra-display differences,

inter-display differences, and overlapping areas of multi-projector systems. We then

expose many solutions that can be found in the literature.

8.2.1 Classification of problems

In a multi-projector system, we can distinguish between different effects that break the

spatial uniformity of the display. These effects can be classified in:
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Figure 8.1: Example of a multi-projector system with no correction except geometry. We can

see distinctly the three kind of non-uniformity, inter-projector, intra-projector and overlapping

area. From Majumder and Gopi (2005).

• Intra-projector differences, which considers non-uniformity within a single pro-

jector.

• Inter-projector differences, which considers differences between two projectors.

• Moreover, in some cases, some areas can result of the overlapping between 2 to N ,

through 4 projectors.

Figure 8.1 shows a multi-projection display with no colorimetric or intensity correction.

Intra-projector

Looking at many studies that consider one projector (Kwak and MacDonald, 2000; Ma-

jumder and Stevens, 2004; Seime and Hardeberg, 2003; Thomas and Bakke, 2009), we

can observe that the color is not uniform spatially within one projector. Although we

demonstrated in (Thomas and Bakke, 2009) (more details in next chapter) that the chro-

maticity non-uniformity should not be neglected in some cases, in the literature of the

past decade, it has been mainly considered that the intensity was the main cause of spa-

tial color non-uniformity within one projector. This non-uniformity is mainly coming

from the fact that the imaging device is decoupled from the screen itself. There is then

either a lens effect, or the geometrical arrangement between the projector and the screen

that influences this parameter.

Different solutions have been proposed in order to have a photometric uniformity.

Many solutions consider the use of a camera to set up a luminance attenuation map,

based either on a mathematical model (Majumder and Stevens, 2002, 2005) or on a LUT
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(Pagani and Stricker, 2006, 2007), to correct for the uniformity. Using an objective lu-

minance correction from the maximum black offset and the minimum of the maximum

intensity reduces the dynamic range drastically.

Inter-projector

If one projector is color uniform, what can we say of the difference between projectors?

The literature shows two different approaches for that1:

• A luminance attenuation map, considering that all displays from the same model

and manufacturer show a similar gamut.

• A common gamut has to be found, which is the intersection of all projectors’s

gamuts involved in the image, such as in the work of Bern and Eppstein (2003) or

Pagani and Stricker (2006, 2007).

Overlapping

When two or more projectors are covering the same surface of the screen, their inten-

sities are summed up at these locations. In this case, there is a need to attenuate the

contribution of each projector.

Furthermore, some fixed parameters influence the color rendering, such as screen

properties, ambient light, etc.

8.2.2 Solutions: A skeletal lamping

This section performs a skeletal lamping 2 of multi-projection systems color uniformity

solutions in the sense that it aims to list and explain many solutions that appear in

academic bibliography. This title comes from the fact that these solutions are mainly

based on the combination of several solutions to smaller problems. These subsolutions

are combined in a skeleton to build a given correction method. Many of the existing

1Different optical systems can lead to different projector behavior, such as the modulation transfer

function. This non-uniformity is more related to the resolution uniformity than to the color itself, so we

do not consider it as a critical factor for the color problem.
2Skeletal Lamping is the title of the ninth studio album by Athens, Georgia-based band “of Montreal”.

Kevin Barnes (band leader) said about the title: “This record is my attempt to bring all of my puzzling, contra-

dicting, disturbing, humorous, ..., fantasies, ruminations and observations to the surface, so that I can better dissect

and understand their reason for being in my head. Hence the title, Skeletal Lamping. Lamping is the name of a

hunting technique where hunters go into the forest at night, flood an area in light, then shoot or capture the animals

as they panic and run from their hiding places.”. That reminds us the state of the art of multi-display systems.

Most solutions are considering a series of small corrections that are combined to form the skeleton of a

complete method.
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solutions are implemented in proprietary hardwares, and it is difficult to expose here

all the methods they use.

Manual manipulation of controls

As said in the title, this method consists in modifying manually the projectors settings,

such as contrast, intensity, white balance, keystone correction and so on. This method

would not give good results since it ignores most of the problems defined above. How-

ever, it can be a good pre-processing, in order to optimize the capabilities of the final

system.

Same bulb solution

Some authors consider that the inter-projector non-uniformities are only due to the dif-

ferences in the bulbs used. Pailthorpe et al. (2001) proposed to use the same bulb for

all projectors. This method is supposed to permit to have a common intensity shape

for each projector across the whole system. However, this solution does not deal with

the problem of intra-projector differences or of overlapping areas. In addition, nothing

guarantee the bulb to age following exactly the same scheme.

Common gamut matching method

This method has been studied by Stone (2002, 2001) and Wallace et al. (2003) in 3D,

but as well by Pagani and Stricker (2006, 2007). This method aims at finding the com-

mon gamut between all projectors used in the system. Taken as it is, it neglects intra-

projector non-uniformities, and the overlapping area. One of the main drawbacks is

the requirement of an accurate color measurement device, and the amount of measure-

ments required of each projector to accurately determine the gamut volume. Once this

information is acquired, there is a need of computing the common volume. This task

can be hard if there is a complex gamut boundary descriptor. Bern and Eppstein (2003)

proposes an algorithm in O(n3) that considers parallelipipedic gamuts in CIEXYZ. An

approximation of the common gamut can be computed in O(n), such as in (Pagani and

Stricker, 2006, 2007). If one considers that chromaticity does not vary a lot between

two projectors of the same manufacturer and same model, it is possible to map only

the luminance to the common range (Majumder, 2005; Majumder and Stevens, 2002,

2004, 2005). Note that most of the approximations made to simplify the common gamut

finding are considering more the luminance than the color itself.

The resulting common gamut can typically be found to be too small, so it could

be useful to use more than three primaries by display, in coupling two projectors with
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Figure 8.2: Example of how to reach intensity spatial uniformity. This scheme details the steps

considering each problem. Note that the dynamic range is really reduced at the end of the

process. Note as well that in Majumder et al studies, they considered no black level. We added

it in this scheme to show a more complete diagram. The uniformity is then less good in dark

colors. However, in their papers Majumder et al stated that, considering the high frequency of

an image, there is almost no visible artifact. They do not provide quantitative values.

different primaries (Yamaguchi et al., 2004), or in using a 6-color wheel in DLP. To in-

crease the luminance, it could be interesting to use a DLP projector with a fourth white

segment in the color wheel (See Appendix A).

Intensity manipulation

These methods aim to provide the display system with a uniform spatial intensity. Any

of the intra-projector, inter-projector or overlapping areas can be corrected.

In the work of Majumder and Stevens (2002, 2004), an intensity matching method

is developed. This is an objective correction, which considers all three cases explained

above. This method is illustrated in Figure 8.2. Note that Majumder et al did not con-

sider any projector black offset (at the inverse of the Figure 8.2), no chromaticity varia-

tion along projectors, and the same normalized response curve for each channel along

the multi-projector system.

The main drawbacks of such a method are:

• The minimum of luminance is kept in the available range. That reduces severely

the dynamic range, and the image contrast suffers from that.

• Not taking the black offset into account leads to non-uniformity in dark colors, but

also to inaccuracy in color rendering. Indeed, as explained in Part I of the thesis,

there is a strong need to evaluate the black level when aiming at an accurate color

rendering.

• The response of a channel is spatially invariant -after scaling- in the system. How-

ever, Bakke et al. (2009) demonstrated that this assumption can be valid for the

DLP projectors, but only a rough approximation for the LCDs. This hypothesis
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has to be verified before to use it. The misuses of this approximation can lead to

so-called color blotches, as noticed by Majumder and Gopi (2005).

• This method considers the same chromaticity throughout the system. However,

it is only valid in inter-projectors, considering the same brand, same model, and

approximately the same time of use. Thomas and Bakke (2009) found that there

was a gamut mismatch of only 2.75% between two projectors of the same brand,

same model. However, this assumption seems to be not valid for intra-projector

considerations, such as demonstrated in (Thomas and Bakke, 2009).

Edge blending

The edge blending aims to smoothen the overlapping areas between projectors. Just

this method applied on a system typically considers all other differences as negligible.

There are three methods proposed in the literature:

• Optical mask (Chen and Johnson, 2001): This method modifies the signal (optical

or analog) near the border to create a virtual mask for the fusion of images

• Aperture mask (Li et al., 2000): This uses physical masks on the path of the light

next to the border of the images.

• Software blending (Raskar et al., 1998): Uses a function to attenuate the luminance

at the border. This function can be either linear or a cosine.

The two first solutions limit the accuracy of the blending. The second is limited by

the accuracy of the geometrical registration.

Hybrid method

Pagani and Stricker (2006, 2007) presented an hybrid method. The method consists in

first considering the luminance non-uniformity of each display using a LUT established

with a camera. Then a common gamut is found, considering a common white, a com-

mon black offset, and the chromaticities of three primaries for a given number of lumi-

nances. The correction is done applying a gamut compression from the image gamut

to the common multi-projector system gamut (going to xyY CIE color space) consider-

ing that the image has been acquired with a virtual camera showing the same common

range of distinguishable colors as the common gamut shows. Then the color characteri-

zation forward transform of each projector (a 3*4 matrix method that considers the black

offset) is applied to get the correct triplet to send to each projector. This method gives

good results (they presented a ∆E∗
ab color difference between two projector primaries

to the common gamut primaries from 0.26 to 1.22, 0.1 and 0.74 for the projectors whites
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and of 2.09 and 1.21 for blacks), however it “cuts” a large portion of the gamut (original

∆E∗
ab color differences between native primaries and common primaries are major, from

3.48 to 62.12, with an average of 25.6 -black and white included-). This effect should be

less impressive while using projectors of same brands, same ages and same settings al-

though they do not precise the model of the two projectors they used. In addition, this

model considers that the intra-projector difference is only due to a luminance shift.

Spatial color characterization

Hardeberg et al. (2003) proposed a spatial color characterization for one projector, using

a colorimetric camera augmented with a spectroradiometer. Their idea was to sample

the display, and to build up a color characterization model for each surface element.

The display they tested was showing a ∆E∗
ab variation of 5.27 in average and of 24.5

as a maximum between 2 locations across the display for primaries images. After their

correction, it was showing an average of 2.59 and a maximum of 7.68 ∆E∗
ab units. This

method takes into account the intra-projector shift in chromaticity, and the black level.

However, this method requires an expensive equipment.

Perceived uniformity, intensity smoothing method

If the dynamic range is too much reduced for a given application, and if there is no need

of accurate color rendering in colorimetric terms, then it can be considered enough to

have a perceived uniformity. Majumder (2005); Majumder and Stevens (2005) proposed

a solution based on the fact that the difference between two areas of an image showing

the same intensity does not necessarily have to be zero. If it respects the limits of the

human visual system, it can be enough to optimize the content, considering that no

difference should be seen, whatever a measurement device measures. In this case, more

of the range of each display can be used depending on the content of the image. Their

approach is based on the brightness contrast sensitivity function.

Figure 8.3: The threshold contrast sensitivity function of the human eye. On the left the data

from the plot in the left have been replotted to show sensitivity to absolute brightness differences

(image from Valois and Valois (1990)).

Contrast threshold function defines the minimum contrast required to detect a sinu-

soidal waveform of a particular mean and spatial frequency. Contrast sensitivity func-

tion (CSF) is a reciprocal of the contrast threshold function (Figure 8.3). the threshold

CSF is plotted against absolute brightness differences (Figure 8.3). This shows that at

very high spatial frequencies, sensitivity to absolute brightness differences roughly con-

verge to the same curve, but for most of the frequency spectrum, the sensitivity to ab-
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solute brightness differences increases as intensity decreases (this can also be described

by the Weber Law).

8.3 Contrast problem in multi-projection systems

Aside of the color uniformity problem of a simple case, things start to be more com-

plicated when the screen is convex curved and when therefore some inter-reflections

happen. That happens when the light from the projector is reflected several times at

different locations of the screen before reaching the observer. A common solution is to

reduce the reflectivity of the screens (Rudd et al., 2008; Skolnick and Callahan, 1994) to

reduce this effect.

However, since there is less light that is reflected and since the black level is usu-

ally increased because of overlapping areas, the contrast is severly reduced with this

approach. Contrast is usually specified as the ratio between maximum (white) light

output and minimum (black) light output.

The color can also be changed with inter-reflection. We do not know any prior re-

search that considers specifically this problem. But before attempting to reach this level,

it seems that there is a need in the industry to agree upon methods to evaluate contrast

of display systems. In this section, we would like to address this problem.

There are a numerous ways to measure contrast within a display system:

• Sequential (dynamic), single projector contrast. This measurement assumes only

a single projector, and measures the difference in luminance between a full white

image, and a full black image. Projector manufacturers often use this measure-

ment for marketing purposes. The contrast measure is typically increased by using

iris functions, lamp dimming etc. to maximize white and minimize black. Typical

contrast ratios claimed range from 1000:1 up to more than 10000:1.

• Checkerboard (static), single projector contrast. ANSI specifies a technique where

a checkerboard pattern is projected on a flat screen, and the difference between

black squares and white squares is measured. Typical contrast ratios claimed by

manufacturers range from 100:1 to 500:1.

• System-level, multi-projector contrast. All projectors in a multi-projector system

are turned on, each displaying a checkerboard test pattern. The difference between

black squares and white squares is measured. In practical systems, contrast ratios

observed range from 5:1 to 10:1 for large spherical dome systems, up to more than

100:1 for flat screen or near flat screen systems.
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The huge difference in measured values from the second point to the third one is

mainly due to inter-reflections between different parts of the screen.

Many companies that design multi-projector systems, large scale displays, immer-

sive virtual reality systems, etc., have a software to help them to design their product.

They need to include in this model a trustable measure of contrast. It appears that con-

trast evaluation is a great challenge for companies, considering that they have to select

the best combination of screen reflectivity, intensity, and so on to be sure that the cus-

tomer will achieve the desired contrast. If they do not have a model reasonably accurate,

they have to over-estimate the quality of the material needed. The result is an over-cost

for them.





Chapter 9

Spatial non-uniformity evaluation, quantitative
approach

All colors are the friends of their neighbors and the lovers of

their opposites.

Marc Chagall

Abstract

In this chapter, we investigate and study the color spatial uniformity of projectors. A com-

mon assumption in previous works is to consider that only the luminance is varying along

the spatial dimensions. We show that the chromaticity plays a significant role in the spa-

tial color shift, and should not be disregarded, depending on the application. We base our

conclusions on the measurements obtained from three projectors. First, two methods are

used to analyze the spatial properties of the projectors, a conventional approach, and a new

one that considers 3D gamut differences. The results show that the color gamut difference

between two spatial coordinates within the same display can be larger than the difference ob-

served between two projectors. In a second part, we focus on the evaluation of assumptions

commonly made in projector color characterization. We investigate if these assumptions are

still valid along the spatial dimensions. Features studied include normalized response curve,

chromaticity constancy of primaries, and channel independence. Some features seem to vary

noticeably spatially, such as the normalized response curve. Some others appear to be quite

invariant, such as the channel independence.
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9.1 Introduction

This chapter presents a study of color spatial non-uniformity within a projection display.

In many studies only a photometric correction is used within one projector, and it is

shown as being an issue in some works, such as in (Majumder and Gopi, 2005).

Color spatial uniformity for projection displays has been studied (Kwak and Mac-

Donald, 2000; Seime and Hardeberg, 2003). However, it is often considered that only

the luminance is of importance, and in most applications only this aspect is corrected

for. The chromaticity shift is often considered as negligible. Moreover, the analysis of

the color shift along the spatial dimensions is mainly supported by either incomplete or

qualitative results.

This work presents a quantitative analysis of projector spatial non-uniformity. We

based our study on two aspects.

We first define our experiment. We then analyze our measurements. A conventional

2D approach is used, which considers the analysis of a projected full intensity patch.

Then, we use a global comparison of the gamuts at different spatial locations to evaluate

the color non-uniformity. The second part focuses on the evaluation of assumptions

commonly made in projector color characterization. We investigate if these assumptions

are still valid along the spatial dimension.

9.1.1 Background and motivation

A projection system displaying an image on a screen shows some color spatial non-

uniformities. These non-uniformities can come from the system properties, such as

lens alignment, but also simply from the position of the projection system relatively

to the screen. Since the early analyses of CRT displays, it has been widely considered

that only the luminance was changing along the spatial dimensions (Brainard, 1989;

Brainard et al., 2002). This is still the assumption made by many researchers when

modeling newer displays, and they maintain that the chromaticity shift is negligible

compared with the change of luminance. In this work, we demonstrate that the chro-

maticity shift can not be disregarded, especially for some modern projection system

applications, such as tiled projection systems, and for color research and experiments

linked with the human visual system.

Despite of the studies or tentative works that have started to examine the color shift

along the spatial dimensions (IEC:61966-6, 1998; Kwak and MacDonald, 2000; Seime

and Hardeberg, 2003), it is still common to consider that the color varies only in lumi-

nance along the spatial dimensions of a display. Many proposed correction algorithms

only use a luminance attenuation map , such as in (Brainard, 1989) for CRT monitors,

and in (Majumder and Stevens, 2002) for projectors or multi-projector system correc-
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tions.

In all their study of multi-projector systems, Majumder et al. assessed that the spatial

chromaticity shift is negligible compared to the luminance shift. However, looking at

the figures presented in (Majumder and Stevens, 2004), the gamut shows a severe shift,

which at first seems to be comparable to the difference observed from one display to a

completely different one.

While Majumder et al. looked at the projector gamuts in chromaticity diagrams,

Bakke et al. (2006) recently proposed a method for computing the difference between

two gamuts in a 3-D color space. They suggested that a method using discretized repre-

sentations of the gamuts can be used to compute the relative gamut mismatch between

two gamut boundaries. First, a binary voxel structure is created for each gamut. The

value of each grid position is determined using the following method. If the position

is within the gamut, the value is set to one, otherwise it is set to zero. Determining the

differences between two gamuts can then be simplified to counting the voxels where

the values of the two gamut representations are different, and multiplying this count

with the volume of the cube represented by a single discretized position. The resulting

number can be divided by the volume of the reference gamut, giving the relative gamut

mismatch.

Beside of this aspect and to complete our study of color non-uniformity, we are in-

terested in the behavior of some of the characteristics involved in color characterization

models related with the spatial dimensions. Many works have been done in order to

characterize the color of projection displays (i.e. model the relationship between the

displayed color and a given input). These models make different assumptions about

the devices in order to establish the most simple and as fast as possible model. They

are usually based on preexisting knowledge about the technologies utilized in the dis-

plays, or determined by empirically investigating the output of the devices. These as-

sumptions are mainly: spatial color uniformity (or only a luminance shift), temporal

stability, chromaticity constancy of primaries, independence between channels, gamma

or s-shape intensity response curve, etc.

Problems arise when a model is used without verifying whether these assumptions

are true for a specific display device. Many of these assumptions have been shown to

be reasonably correct for a CRT monitors (Berns, Gorzynski and Motta, 1993; Brainard,

1989; Cowan and Rowell, 1986; Sharma, 2002). Some studies have investigated LCD

monitors (Sharma, 2002; Yoshida and Yamamoto, 2002), and a few studies have per-

formed verification of these hypothesis on projectors (Bastani et al., 2005; Kwak et al.,

2003; Kwak and MacDonald, 2000; Seime and Hardeberg, 2002, 2003). With the excep-

tion of Bastani et al. (2005), these studies investigate mostly projector features as defined

by the IEC draft (IEC:61966-6, 1998). Here, we extend previous works by analyzing the

characteristics of several projection displays along the spatial dimensions. We focus on
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Figure 9.1: Locations of the measurements on the screen. The circled intersections are the ones

used for the reduced number of measurements.

checking the validity of the most common assumptions.

9.2 Experimental setup

We performed our investigation on three displays, two LCD projectors of the same

model and manufacturer (Sony VPL-AW 15), and one DLP projector (Projection De-

sign Action One). They are named LCD1, LCD2 and DLP in the following. All the

displays were used with the default settings. In order to have accurate measurements,

we used the CS-1000 spectroradiometer from Minolta (Accuracy: luminance: ±2%, x:

±0.0015, y: ±0.001, Repeatability: Luminance: ±0.1%, xy: 0.0002 for illuminant A). The

measurements were done in a dark surrounding, so that no light is involved except that

from the display. A warming up time of at least one hour and fifteen minutes has been

used before any measurement to reach a correct temporal stability. The geometry of the

whole system was basically of the same type that the one used in (Kwak and MacDon-

ald, 2000).

In our first experiment, we used the same kind of approach as the one described in

the IEC draft (IEC:61966-6, 1998) and in the work of Kwak and MacDonald (2000). We

measured only a full intensity white image (RGB=[255,255,255]) at 5× 5 locations regu-

larly distributed over the display area (Figure 9.1), having positioned the measurement

device in front of the screen at the observer’s position.

In addition to this approach, we were interested in looking at the differences in the

gamut volume of the projectors, and at some features of the projectors along the spatial

dimensions. We chose to limit the measurement process to 9 spatial positions among

the set of 25, because of the time needed to complete the measurements (Figure 9.1).

At these positions, we measured each ramp of primaries and grey, as well as the entire

RGB cube surface with a sampling of 5×5, considering that the surface of the RGB cube

is also the gamut boundary in an independent color space.
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Bakke et al. (2006) showed that the gamut boundary descriptor algorithm (modified

convex hull) suggested by Balasubramanian and Dalal (1997) performs well on most

data sets when the preprocessing step is applied with the γ parameter equal to 0.2. We

have therefore utilized this method to find our gamut boundaries. In order to perform

the gamut evaluation, we used the ICC3D framework (Farup et al., 2002).

A part of our evaluation is performed in the CIELAB color space. We encountered

a challenging issue in using this space, since it is based on pointwise colorimetry and

since we are looking at a spatial display. In the past studies we know, the luminance

was supposed to be at its highest value in the center of the display and the observer

was supposed to look at the center first. The measurement of a white patch at the center

was used as the reference white. This follows the recommendation of the IEC draft

(IEC:61966-6, 1998). However, considering the position of the display or the alignment

of the lens, the highest luminance point can be severely shifted from the center. That can

happen for instance when the projector is made to be used in an office and to project the

image on a wall for presentation, such as the DLP projector we tested. We decided to

use the brightest point of the white image displayed as reference white. This choice has

some advantages in our case. If we consider the geometry of the system and the lens

alignment, choosing the reference white at the brightest point is more in accordance

with the physical properties of the device. Since we base our experiment on colorimetry,

and we do not attempt to take more human factors into consideration, we have chosen

to use this as our reference white.

In the following, we refer to the measurement of the brightest white of a projector

as the global reference white , while the local reference white is the white measured at each

location.

9.2.1 Temporal stability

In order to ensure that our measurements at different locations were significant com-

pared with the normal drift of the equipment, we performed a temporal stability check

of the projectors we used. We started by performing an evaluation close to the one pro-

posed in the IEC draft (IEC:61966-6, 1998). We measured a white full screen patch (full

intensity) at regular intervals of 12 minutes, for about 700 minutes (11h40min). The Y,

x and y coordinates are plotted for projectors DLP and LCD2 in Figure 9.2. LCD1 is

considered to show the same behavior than LCD2. We used another range for x and y

than the one proposed in the IEC draft since we could not see any information while

plotting between 0.25 and 0.35 chromaticity diagram unit.

It appears that the LCD projector is really stable after one hour warming up, and

before approximately 7 hours of use. The DLP projector however vary in intensity from

106 to 118 cd.m−2 in a regular way. The chromaticity values are following the same
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Figure 9.2: Visualizations of the temporal shift for the DLP and one of the LCD tested projectors.

The ordinate boundaries of these graphs correspond to the 20% error around the mean for Y and

the 1% around the mean for x and y. One can notice that the DLP is less stable than the LCD.

However, both devices appear to be stable enough to be used in normal applications. We can

notice that for the LCD projector, there is an optimal time between the warming up time and a

overheat time.

Table 9.1: Temporal stability estimation

DLP LCD2

R G B W All R G B W All

∆E∗
ab Mean 1.29 1.21 0.78 1.17 1.11 0.60 0.33 0.58 0.22 0.43

∆E∗
ab Max 2.79 2.73 1.64 2.41 2.79 4.74 1.32 1.83 0.64 4.74

∆E∗
ab STD DEV 0.72 0.66 0.37 0.56 X 0.86 0.25 0.46 0.11 X

pattern.

To complete this evaluation, and to have a better idea of the global temporal stability

in normal use, we measured the primaries and the graylevel at full intensity every 12

minutes for the same time, and computed the difference with the average in CIELAB for

each color after one hour warming up. Results are presented in Table 9.1.
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These results confirm what is shown by the graphs. The LCD is really stable in

average (0.22 to 0.60 ∆E∗
ab units, depending on the primary), and the DLP is slightly less

stable in average, but show a maximum shift below 3 ∆E∗
ab units around the average

in almost 12 hours, that is good. However, there is a large maximum shift of the red

channel for the LCD of 4.74 ∆E∗
ab units, that appears at about 8 hours and 10 minutes

after switching on.

In overall, the stability of these devices is good (all are showing less than 1% varia-

tion in x and y chromaticity direction, less than 5% in luminance) for normal use, and

they should be stable enough for our experiment.

9.3 Analysis of the spatial non-uniformity

In this section we present and discuss the results we obtained, first with the conven-

tional evaluation, secondly with the 3D gamut comparison approach.

9.3.1 Conventional evaluation

By displaying the white patch and measuring the projected color at each position, we

get an overview of the global behavior of the display. In Figure 9.3, we can see the

lightness shift along the spatial dimensions in the left part of the figure.

This visualization is based on the measurements at 25 locations. The white surround

comes from the fact that we have no information on this part of the displayed area, while

we can interpolate the data inside this rectangle. We can see that the brightest point is

not necessarily in the center of the screen. The color shift is illustrated in the right part

of this figure. We can see the same effect as the one described in (Kwak and MacDonald,

2000), a shift in the color around the center of the lens displayed on the screen (i.e., the

brightest point). The LCDs projectors show a shift from green/cyan to blue/red as a

general behavior from the top left corner to the bottom right. The DLP shows a shift

to the blue from the top to the bottom. The causes of this shift can be found in the

literature (Matthew et al., 2008), and are probably mainly due to lens alignment and

chromatic abberation.

The results of the quantitative analysis are presented in Tables 9.2 and 9.3. The first

shows the ∆L∗ and ∆C∗ relative to the brightest point. The second shows the ∆E∗
ab.

The largest ∆E∗
ab observed are 11.64, 10.17 and 21.71 for LCD1, LCD2 and DLP re-

spectively. The differences are definitively over the just noticeable difference from a

colorimetric point of view.

For the LCDs, we noticed a maximum lightness shift of 11.27 ∆E∗
ab units in the bot-

tom left corner for LCD1, and of 9.66 units in the bottom right corner for LCD2. The
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Figure 9.3: Visualization of the color shift throughout the display. On the left, we show a visu-

alization of the lightness shift. The maximum lightness is 100 (white), the minimum (black) is

around 79. On the right, hue and chroma shift are plotted relatively to their spatial position. The

position of the circles (red) is the reference, the crosses (blue) indicate the measured value. The

angle of the segment represents the hue shift, and the norm the chroma shift in the (a∗,b∗) plane.

The reference on the right shows a difference of 10 units.
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Table 9.2: Relative shift in lightness and chroma at 25 locations for the three tested displays.

Shift in lightness Shift in Chroma

LCD1

∆L∗ 1 2 3 4 5 ∆C∗ 1 2 3 4 5

1 -8.92 -4.85 -1.61 -1.60 -5.55 1 5.09 2.46 2.29 1.99 2.49

2 -7.66 -3.72 -0.37 -0.36 -5.55 2 4.68 1.78 1.36 1.81 1.97

3 -6.42 -4.09 0.00 -0.58 -3.74 3 3.53 0.87 0.00 1.65 1.56

4 -9.29 -4.77 -1.29 -1.91 -2.81 4 2.37 0.40 1.39 1.80 2.31

5 -11.27 -7.02 -3.78 -4.64 -5.84 5 3.16 3.41 4.73 3.77 1.91

LCD2

∆L∗ 1 2 3 4 5 ∆C∗ 1 2 3 4 5

1 -6.49 -3.43 -1.14 -1.53 -6.09 1 4.13 3.09 1.26 1.63 2.03

2 -6.63 -2.93 0.00 -0.90 -5.96 2 3.17 2.68 0.00 0.92 1.38

3 -6.90 -2.85 -0.11 -2.00 -4.78 3 1.67 0.24 1.97 0.66 1.35

4 -5.71 -4.68 -1.94 -3.79 -5.89 4 1.60 2.32 4.44 2.77 0.78

5 -7.59 -6.75 -4.82 -6.09 -9.66 5 3.18 6.03 5.25 4.18 2.76

DLP

∆L∗ 1 2 3 4 5 ∆C∗ 1 2 3 4 5

1 -20.88 -16.72 -13.84 -14.40 -18.14 1 5.97 5.37 5.47 5.47 5.92

2 -20.90 -14.79 -11.49 -11.83 -16.80 2 5.68 4.85 4.65 4.44 5.40

3 -19.39 -11.46 -6.63 -9.29 -15.60 3 4.94 3.62 2.81 3.56 4.81

4 -18.06 -8.61 -1.68 -4.87 -12.63 4 3.53 1.70 0.92 2.41 4.09

5 -17.77 -7.62 0.00 -1.21 -11.58 5 3.01 0.31 0.00 2.18 3.85

corresponding chroma shifts are respectively of 3.16 and 2.76. The maximum chroma

shifts for these displays are 5.09 in the upper left corner for LCD1 and 6.03 at the bottom

left for LCD2, with associated lightness shifts of 8.92 and 6.75. The DLP projector shows

a maximum lightness shift of 20.90 units in the upper left part of the displayed area, and

5.68 units in chroma at the same position. The maximum chroma shift is of 5.97 units in

the upper left corner for 20.88 units in lightness.

In some locations we can clearly see that the lightness variation is smaller than or

equivalent to the chromaticity shift, such as below the center for LCD2, which shows a

∆L∗ of 1.94 and a ∆C∗ of 4.44 compared to the reference location. When we consider



130 9. Spatial non-uniformity evaluation, quantitative approach

Table 9.3: Relative shift in CIELAB unit at 25 locations for the three tested displays.

Shift in CIELAB unit

LCD1

∆E∗
ab 1 2 3 4 5

1 9.26 5.24 2.80 2.93 7.53

2 7.89 4.14 1.41 1.81 7.26

3 6.61 4.41 0.00 1.05 5.14

4 9.57 5.10 1.89 1.95 3.68

5 11.64 7.97 6.05 5.75 6.64

LCD2

∆E∗
ab 1 2 3 4 5

1 6.80 3.80 1.70 3.45 7.36

2 6.77 3.07 0.00 2.82 6.75

3 7.03 2.92 1.97 2.02 5.07

4 5.76 5.44 4.84 4.44 6.11

5 8.07 7.94 7.13 8.57 10.17

DLP

∆E∗
ab 1 2 3 4 5

1 21.71 17.60 14.88 15.36 19.09

2 21.58 15.45 12.40 12.78 17.73

3 19.97 12.00 7.20 9.97 16.36

4 18.52 8.94 1.92 5.16 13.11

5 18.18 7.92 0.00 1.25 11.97

the hue shift, which is shown in Figure 9.3 on the right, the chromaticity difference

from a spatial coordinate to another can easily be larger than the lightness shift, and the

hypothesis, which considers the color shift as negligible, can be disputed.

9.3.2 3D gamut evaluation

The reference gamut for each projector was constructed from the measurement data

of the position with the highest luminance value. Table 9.4 contains the percentage of

gamut mismatch for each position compared with this reference.

As we can see, the gamut at some locations can be as much as 52% smaller than
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Table 9.4: Relative gamut mismatch for each position compared with the gamut of the position

with the highest luminance. The gamuts are calculated using the global white point as well as

the local white point for each of the 9 selected locations.

Gamut mismatch, global white point Gamut mismatch, local white point

LCD1

% 1 3 5 % 1 3 5

1 27.23 4.90 17.08 1 9.57 3.30 5.72

3 23.92 0.00 16.15 3 7.49 0.00 5.53

5 32.66 9.48 13.50 5 7.90 2.07 4.09

LCD2

% 1 3 5 % 1 3 5

1 24.84 5.83 19.75 1 9.42 2.48 4.46

3 20.18 0.00 18.79 3 6.00 0.00 2.40

5 29.75 11.01 20.82 5 5.98 1.98 2.48

DLP

% 1 3 5 % 1 3 5

1 52.36 38.02 41.06 1 8.51 6.86 6.91

3 47.73 18.29 36.28 3 7.96 3.92 6.38

5 43.22 0.00 26.93 5 6.62 0.00 4.87

the reference, which is illustrated in Figures 9.4a and 9.4c. The luminance shift is re-

sponsible for a large part of this difference. Compensating for the luminance shift by

using the local white point for calculating CIELAB values still leaves a significant max-

imum gamut mismatch of 8.51%, 9.42% and 9.57% for the three projectors. Figures 9.4b

and 9.4d show the gamuts computed using the local white point.

This mismatch in relative volume is comparable to the error introduced when using a

strictly convex hull to represent the gamut of an arbitrarily chosen device, and is greater

than many inter-device gamut differences. In our experiment, the gamut mismatch

between the two LCD projectors (at the reference position) is 2.75%, giving an intra-

device difference 3.43 times larger than the inter-device difference.

The DLP shows large differences in gamut depending on the spatial location, sim-

ilar to what we showed in our analysis of lightness. Compared with the two LCDs, a

larger part of the differences can be explained by the luminance shift. The remaining

gamut mismatch volume mainly consists of the volume that is contained within the ref-
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LCD1, global white point LCD1, local white point

DLP, global white point DLP, local white point

Figure 9.4: The gamut boundaries for two of the projectors at the position with the highest

luminance (wireframe) compared with the gamut of the top left corner (solid and wireframe).

CIELAB measurement values were computed relatively to the global white point for and , while

9.4 and 9.4 utilizes the white point of each location.

erence and is not a part of the gamut of the other spatial locations, which is illustrated

in Figure 9.5. This means that there are effects in addition to the luminance shift, which

contribute to the reduction of the gamuts.

9.3.3 Discussion

Based on our analysis of these results, there appears to be sufficient evidences to claim

that the chromaticity shift has to be taken into account in some cases. Some applica-

tions might not be affected, while some might suffer seriously from this fact. It appears
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LCD1 DLP

Figure 9.5: While using the white point of each location reduces the difference between the

gamuts by compensating for the luminance shift, we still see some differences between the

gamuts.

important for us to compensate for this problem in at least two situations: While per-

forming psychophysical experiments for color science purpose with a projector, and

while tiling projectors together to build a multi-projector system.

Related to the choice we made in our experiment by using the brightest white point

as a reference, we found that the gamut of the position with the largest luminance results

in the largest estimated gamut volume. It is then a logical choice to use this as the basis

for the reference gamut.

Considering the case of a multi-projector system, since the chroma shifts in two op-

posite hue directions from the center of the lens, the area around the overlapping edges

will show two really different colors. Note that even though the computed chromi-

nance shift is major (we observed some ∆C∗ of about 6 from a position to another and

greater differences can be found between extreme positions), if we consider the spatial

content of an image, it is not certain that the chrominance shift will break the perceived

uniformity.

Similarly, the reduction in gamut volume of up to 52% when using the global white

point does not appear to be indicative of the perceived color capability of the projectors.

However, using the local white point seems to underestimate the real difference. This is

endorsed by the conventional approach. When we look at the full intensity white patch,

the perceived difference does not seem to be as large as the measured one.

In order to make a model, which fits our perceived color appearance, we need to

consider more psychovisual features, such as the color adaptation at the local and at the
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global level, cognition and physiology.

9.4 Common assumptions in color characterization of

projectors: A spatial point of view

In this section we present and discuss the common assumptions used in display color

characterization. We analyze the normalized response curves of the displays, the chro-

maticity constancy of primaries, and the independence between channels. We use a

method described by Bastani et al. (2005) in order to analyze the cross-channel interac-

tion of the displays. By keeping the input of two channels at either full or no intensity,

and varying the input of the third channel, the amount of channel interaction can be

found.

9.4.1 Normalized response curves

A common assumption in display characterization is to consider the normalized re-

sponse curve of each channel to have the same shape. By extension, each channel may

have the same shape as the graylevel response curve. In many common methods this

assumption can reduce the number of intensity measurements or evaluations that have

to be taken or done. This assumption has been shown to be valid for CRT monitors but

not for LCDs (Sharma, 2002). For projectors, if we look at the works of Seime and Harde-

berg (2002, 2003) or of Kwak and MacDonald (2000), the LCD projector does not appear

to fulfill this assumption, however the DLP in (Seime and Hardeberg, 2002, 2003) seems

to show approximately equivalent normalized response curves for each channel. Let us

note that in (Kwak et al., 2003), one LCD projector they tested seems to fit the hypothe-

sis. However, no quantitative data is given in these studies to assess this. The purpose

of this section is to evaluate this with quantitative data, and to extend the investigation

to the spatial dimensions.

In Figure 9.6 we show the response curve of a normalized graylevel intensity ramp

at the reference location of the DLP we tested, and a normalized sRGB response curve

sampled as the first curve. The sRGB response curve being the one used by default in

many cases, we used it as a reference.

We propose a simple method to give an indicator of similarity that consists in the

absolute difference between the integrals (i.e. the surface between both curves). We

multiplied the surface found by 1000 to avoid too small numbers. We compared the

sRGB and the response curve of our three projectors and found a δ of 4.31, 4.29 and 5.26

for LCD1, LCD2 and DLP. That enables us to relate the following results to something

known.
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Figure 9.6: Normalized response curve of the DLP projector compared with the normalized

sRGB response curve. The indicator δ is the surface between both curves × 1000.

Based on this indicator, we perform three experiments. First we compute the average

and maximum mismatch δmean between the intensity response curve of each channel

and the gray level response curve at each position. If there is no mismatch it can be

enough to measure only the gray level response curve at each spatial location. Results

are reported in Table 9.5.

We observe that the centers of the displays are among the locations with the largest

shift between curves for each display. If we relate these numbers with the one found

between the gray level reference curve and the sRGB curve, it is possible to consider

normalized response curves equivalent at each location whatever the channel for sRGB

accuracy. However, the mismatch does not appear to be negligible for many colorimetric

accurate applications.

Our second experiment consists in computing the mismatch between each primary

at different locations, and the same primary at the reference location. If there is no mis-

match, we could consider that measuring the response curves at one random location is

enough for each primary. Results are reported in Table 9.6.

It seems to be a valid assumption for DLPs. However, for the LCDs it is approxi-

mately as different as supposing the display to be sRGB (that can be an adequate hy-

pothesis depending on the accuracy one wants to reach).

Our last experiment testing this assumption is to compare response curves at all lo-

cations and for all channels with the reference location gray level normalized response

curve (as it can be measured in some cases for applying a classic physical color charac-

terization model). If there is no mismatch, it is enough to measure only one ramp at a

given location.

We found an average mismatch of 2.13, 2.48 and 1.10, and a maximum of 6.29, 8.30
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Table 9.5: Mismatch between the intensity response curves of each channel and the gray level

curve, depending on the location on the screen. The maximum and average mismatches are

reported.

Average mismatch Maximum mismatch

LCD1

1 3 5 1 3 5

1 0.96 2.59 2.61 1 2.63 3.88 4.54

3 1.15 3.00 2.43 3 2.57 4.85 3.71

5 2.01 2.64 1.87 5 2.87 3.69 3.42

LCD2

1 3 5 1 3 5

1 1.21 2.01 2.24 1 2.05 3.30 3.68

3 1.29 2.15 1.72 3 2.76 3.30 3.01

5 2.05 1.53 1.31 5 3.31 3.27 3.14

DLP

1 3 5 1 3 5

1 1.43 1.24 0.98 1 3.44 3.16 1.46

3 1.34 2.05 1.01 3 2.49 4.03 2.64

5 2.62 1.37 0.84 5 4.38 2.82 1.68

and 3.85 for LCD1, LCD2 and DLP.

In average, the difference is not as large as the difference compared with an sRGB

curve, especially for the DLP. However, the maximum error found in LCDs shows that

for this technology (or at least for these projectors) one can introduce a critical error

through this approximation.

More analysis should be performed, especially to find a just noticeable difference.

As a first conclusion, we would not use this assumption for projectors for accurate color

rendering. However, it seems that within DLP technology, one can consider the nor-

malized response curve of a given channel as invariant along the spatial dimension. If a

sRGB accuracy is enough for a given application, then it seems that measuring only one

ramp for one projector could be a feasible compromise.
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Table 9.6: Mismatch at each location, between channels for each primary and the channel re-

sponse curve at the reference location. The graylevel response curve mismatch is shown as well.

Average mismatch Maximum mismatch

LCD1

Red Green Blue Gray Red Green Blue Gray

3.02 1.49 1.26 1.71 5.15 3.71 3.40 3.87

LCD2

Red Green Blue Gray Red Green Blue Gray

1.94 2.36 2.02 2.38 3.85 5.50 3.43 4.99

DLP

Red Green Blue Gray Red Green Blue Gray

0.48 0.24 0.97 0.57 1.83 0.80 1.67 0.95

9.4.2 Chromaticity constancy

The assumption of chromaticity constancy is important in many physical display color

characterization models while performing the colorimetric transform. In this section,

we want to see if the behavior of the chromaticity of primaries changes with the spatial

location.

Figure 9.9, 9.7 and 9.8 illustrates the chromaticity values of the ramps of red, green

and blue for each projector and at different locations. In these figures the offset is shown

to be spatially variant. We can observe a slight shift between primaies. The LCDs show

less uniformity along the green channel, though the DLP shows less uniformity along

the red channel, and has one locaiton that is severly shifted from the others. An inter-

esting fact to notice is that the offset is strongly inhomogeneous along with the spatial

dimension.

9.4.3 Channel independence

An assumption made by several models is that of channel independence, e.g., that the

output of a gray ramp is equal to the sum of the three R, G, and B ramps. For each

projector, we have plotted the measured gray ramp and compared it with the computed

sum of the individual ramps, see Figure 9.10.

The lack of additivity we can observe in Figure 9.10 is due to the existence of channel

interaction. Bastani et al. (2005) suggested that the amount of interaction for a channel
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Figure 9.7: Illustration of the chromaticity constancy for the projector LCD1 at different loca-

tions, in (a) the x values from different locations are plotted in function of the digital input, in (b)

the y values from different locations are plotted in function of the digital input, and in (c) the

primaries of the digital locaitons are plotted for a digital input of 0.5 (128 on 255).

at a given intensity can be calculated using the formula in Eq. (9.1), where L(r, g, b)

represents the luminance that is measured for a specified RGB input. a and b are con-

stant values for two of the channels, while v is the varying input of the third channel.

Eq. (9.1) defines the interaction for the red channel. The interaction for the other chan-

nels are found in a similar manner. We preferred this method to the more complete, but

more complex method proposed in the IEC draft (IEC:61966-6, 1998) for visualization
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Figure 9.8: Illustration of the chromaticity constancy for the projector LCD2 at different loca-

tions, in (a) the x values from different locations are plotted in function of the digital input, in (b)

the y values from different locations are plotted in function of the digital input, and in (c) the

primaries of the digital locaitons are plotted for a digital input of 0.5 (128 on 255). it is almost

the same behavior as LCD1.

purpose.

CIRED(v, a, b) =
(L(v, a, b)− L(0, a, b))− (L(v, 0, 0)− L(0, 0, 0))

L(255, 255, 255)− L(0, 0, 0)
(9.1)

Figure 9.11 shows the interaction between the channels for the three projectors. We
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Figure 9.9: Illustration of the chromaticity constancy for the projector DLP at different locations,

in (a) the x values from different locations are plotted in function of the digital input, in (b) the y

values from different locations are plotted in function of the digital input, and in (c) the primaries

of the digital locaitons are plotted for a digital input of 0.5 (128 on 255). The red channel shows

more non-uniformity.

can clearly see that the LCDs have much more interaction than the DLP. The LCDs

feature quite similar interaction characteristics, which is unsurprising given that they

are of the same manufacturer and model.

The spatial effect on the interaction is shown in Figure 9.12 for LCD1 and DLP. We

noticed more interaction in the corners of the image in DLP technology. That could be
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Figure 9.10: The luminance of the gray ramp (solid line) compared with the sum of the individ-

ual ramps (dashed line) for the three projectors.
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Figure 9.11: Channel interaction for three displays. The horizontal axis represents the input

value of the denoted channel, while the vertical axis represents the calculated interaction value.

The solid black line is the interaction found when the two other channels are kept at maximum

input value, while the dashed and the dotted lines are when the a or b, respectively, is set to 0

when computing the interaction metric.

due either to the motion of the color wheel that is less synchronized with the micro-

mirrors motion at the corner or to some lens diffraction effect.
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Figure 9.12: Spatial channel interaction for two of the projectors, where each graph represents

the interaction at the corresponding spatial location. The combination of a and b that gives the

highest interaction is chosen for each channel.
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9.4.4 Discussion

To summarize, we can say that the normalized response curves vary enough with the

spatial location to influence strongly the accuracy of the characterization, except for

the tested DLP, where the spatial normalized response curve seems to be consistent by

channel. We confirm previous studies, which found that LCDs projectors have a high

degree of channel interaction, and their channel additivity is bad. However, DLP tech-

nology shows more independence, and a good additivity. The study of the chromaticity

constancy shows as well better performances for the DLP. Considering the spatial ef-

fect, there is some differences between spatial locations in channel interaction, but not

that much. We can say that the independence between channels remains quite invariant

along the spatial dimensions.

Further works are needed to quantify the consequence of this non-uniformities on

color characterization. In other word, how the differences measured are influencing the

color control in term of perceived difference.

To construct a spatial color characterization model, performing measurements at

many spatial locations on the displayed area might be required. However, the num-

ber of measurements could be reduced depending on the display characteristics. For

instance, considering the DLP we tested, it could be enough to evaluate each channel

normalized response curve at one location. Or, considering the interaction between

channels stable along the spatial dimensions, it could be enough to take some model’s

parameters at one location.

9.5 Conclusion and further work

We have shown that the measured chromaticity shift along the spatial dimension of a

projector is important, and that considering only the luminance to be non-uniform can

be a critical mistake in some applications. Through the analysis of features, we have

shown that most of the color shift, not induced by the lens system, was coming from the

spatial differences in response curve in LCD projectors, and from a spatial variation of

the channel interaction for DLP technology. These features will be of major interest for

designing a spatial color characterization model for projectors.

However, considering the image content, it is reasonable to think that the perceived

uniformity would not be broken in many cases. Further experiments could be done in

this direction to find what can be considered as perceived spatial uniformity.

Further work includes performing a more in-depth statistical analysis of the results,

and testing more projectors to improve the significance of the experiment. As a straight-

forward continuation of this work, we think it could be of great interest to utilize a

spatial-gamut mapping algorithm using a spatially varying gamut in multi-projector
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systems.



Chapter 10

General discussion

No time to choose when the truth must die,

No time to lose or say goodbye,

No time to prepare for the victim that’s there,

No time to suffer or blink

And no time to think.

Bob Dylan

Abstract

This chapter puts together many topics discussed in this thesis. From a practical use of the

algorithms designed, to some proposals of the further works that can be developed based on

the work we have done.
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10.1 Introduction

In this thesis, we have reviewed, analyzed and evaluated different methods to perform

pointwise color characterization for accurate color rendering on displays. We have been

through issues about spatial uniformity within projection systems. Here we present

thoughts considering the choice of the method for a given application. We discuss the

use of ICC profiles and standard CMMs and their limits considering spatial display

color characterization. We draw a scheme for a projector end-user spatial color char-

acterization, and we discuss the use of spatial-gamut mapping as a solution for multi-

display spatial color uniformity.

10.2 Accurate professional models or end-user consumer

models: a problem-dependent topic

Like any image processing technique, a display color characterization model has to be

chosen considering the needs and the constraints. Here the need is mainly the expected

level of accuracy. The constraints depend mainly on two things: the time and the mea-

surement. The time, because you may need to minimize the time of establishment of a

model, or its application to an image. The measurement because you may need to have

a special device with you to establish the model. The constraint of money is distributed

on the time, the software and hardware cost, particularly the measurement device.

However in the display case, the combination need VS constraint seems to be in

agreement. Let us expose two situations:

• The person who needs an accurate color characterization (such as a designer): has

often a color measurement device available, is working in a more or less controlled

environment, and does not mind to spend 15-20 minutes to calibrate his/her mon-

itor. This person could typically use the method we proposed in Section 6.1, cou-

pled with the refinement of the grid for model inversion that is presented in Sec-

tion 7.1 or any other accurate color characterization method available to him/her.

• The person who wants to display some pictures in a wedding party using a pro-

jector in an uncontrolled environment does not need a really accurate color ren-

dering. That is fortunate, because he/she does not have any measurement device,

does not have much time to perform a calibration (even taking the time to properly

warm up the projector will probably not be possible in this situation). However,

this person needs the colors not to betray the meaning she/he intends. in this case,

a fast end-user characterization should be precise enough. This person might use

a visual calibration, or even better, a visual/camera based calibration such as the
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one we present in Chapter 5. This method should be coupled to a user-friendly

software for making it easy and fast.

We see then that the constraints and the need are not necessarily in the opposite direc-

tion.

In any cases, there is a need to use one model to ensure the color content to be

respected. In many cases, there is a need of a universal way that can be understood and

applied by most of the softwares or systems. Such as an ICC profile.

10.3 On the use of ICC profiles and CMMs

The International Color Consortium aimed to define a standard for profile format. The

following is some remarks considering the ICC.1:2004-08 (ICC, 2004) and correspond to

the ISO 15076-1 standard. They did a great work, and many characterization models can

be embedded and used successfully within such a standard file. However, mainly (on

our opinion) because they decided to be independent of the CMM (Color Management

Module), there are some cases where they show some limits. The CMM handles all

computations that are needed to change from a color space to another. The purpose of

this section is to discuss some of the good points and some of the limits putting together

the content of some of the previous chapters, the consequences of embedding them in a

ICC profile, and the use of a standard CMM. These are only some basic straightforward

limitations, or lacks of optimization.

10.3.1 Limits considering the characterization method

If one wants to use optimally the methods we proposed in Chapter 6 and in Chapter 7,

there might be a need to use a home made custom made color management module.

Why? Because the data used, the interpolation method and so on can face limits either

considering ICC profil format or CMM limitations.

There are four points we want to discuss here:

• While building an CLUT ICC profile, there is a need to have linear spaces between

data. Even if there is the possibility to apply a function along each dimension, such

as what we do in Chapter 7, and another function after the output from the LUT,

in some cases it can be not enough, especially for a custom distribution of data.

For instance, while designing the grid in RGB for the inverse transform, we do not

have a well regular grid in the Profile connection space (PCS).

• The same number of data does not need to be used on each dimension while de-

signing a LUT profile (Table 36 of ICC (2004)). That fits well for instance with the
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inverse models we used in Chapter 6 and 7 where we used an optimized number

different along each axis.

• Although there is no restriction considering the size of the file, there will be some

problems to find an element with the increasing LUT size. The problem comes

mainly because it is computed by the CPU within a CMM. In our work, we used

a 3D texture, and the interpolation is easily handled by the GPU in real time for a

large LUT (up to an equivalent of a 50× 50× 50 LUT in practice).

• There is no tag for setting the interpolation method that has to be used and that

can be a critical issue if the profil is design for a given interpolation method, such

as a RBF 3D interpolation, while the CMM uses a linear interpolation.

10.3.2 Limits due to spatial issues

For our purpose in the part II of this thesis, which means correcting a spatial non-

uniformity within a display, ICC will not be sufficient as well as all CMMs that we

are aware of.

However, it can be quite simple to set a photometric spatial correction to embed in a

profile. A simple way would be to be able to add some tag in a spatial ICC profile. This

tag would relate to a shading table based either on measurement or on some a priori

knowledge on the display.

There is still a lot of work to do at the research level to be able to implement a

practical solution for a full spatial color characterization, so it is a bit early to discuss

about that.

Although there is a possibility to use several displays on one computer, there are

many reports of problems in using a different profile for each of these. CMMs could

be updated for this purpose. If there is an overlapping area, then there is no possibility

of adjustement via any CMM we have seen. There could be some possibilites to deal

with that if first CMMs and ICC would include a shading table to correct for spatial

non-uniformity, before to have something better.

10.4 Spatial photometric projector non-uniformity end-

user camera-based correction

In using the method presented in Chapter 5, since there is a camera, we have the po-

tential of a relative spatial photometer. We designed a method that may permit us to
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correct for photometric spatial non-uniformity. We still need to finish to implement and

to test this algorithm.

There are two possibilities to perform such a correction, either in considering simply

a shading table ignoring that the black level is not negligible, or in setting a range from

the maximum black offset to the minimum white and to map all values inside this range,

such as shown in Figure 8.2.

For this purpose, the camera has to be corrected for its vignetting effect. This can

be done in a end-user way, following the method presented in (Mansouri et al., 2005),

which considers the median of several acquisitions of (a sheet of paper as) a flat field

surface to estimate a spatial correction to remove the vignetting effect and some blotches

or spots that can be on the lenses.

Then in using the method presented in Chapter 5, the camera response curve can be

estimated and, shooting a correct pattern, the correction can be established.

10.5 Spatial color uniformity

This section discusses some ideas for dealing with the problem of color uniformity

within a projector system.

10.5.1 Spatial colorimetric characterization

The first thing to say considering a spatial colorimetric model is that we are limited

by the number of measurements that is practically possible to take. We can consider

different approaches to get data in a reasonable time:

• Considering a end user, we can consider the use of a camera, some visual pro-

cesses, data from the manufacturer, etc.

• Considering a professional use, which is still the most common case, some spatial

colorimeters can be use, or a point-wise spectroradiometer augmented with a high

quality camera.

• Some approaches aimed to use a camera built in the projector, however, manufac-

turers found this procedure too expensive since there is the need of a camera of

quality to be able to perform measurement.

In any case, there is a need to build a display spatial color characterization model

(there is the need in projector systems, but also in LCD monitors where the uniformity

is known to be bad). The only attempt we know is Hardeberg et al. (2003) work. They

achieved good results (see Section 8.2.2).
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From the Chapter 9, we know that some features will remain invariant all along the

spatial dimension of the display. That will help us to know what kind of model to use

and to find what kind of measurements are required to perform to reach the needed

accuracy.

At the end, there is still the need of defining standards and implementing them into

softwares to handle this kind of data.

10.5.2 Perceptual approach for non-uniformity and image dependent

processing

The attempt done by Majumder (2005); Majumder and Stevens (2005) gives good look-

ing results (there is no quantitative ones), but is half satisfying for us since it deals only

with intensity smoothing, and the color blotches remain. Moreover, it can not be satis-

fying in all cases since it considers human visual system limitations through threshold

contrast sensitivity function. The neighborhood to consider in term of pixel should de-

pend then on the distance of the viewer. For collaborative environment application that

can be a limit. However, it should be possible to perform such a correction considering

color. A possibility to model such a correction can be to consider a spatial-gamut mapping

(a gamut that vary spatially along the projector). Even if there is still the problem of ac-

quiring data, it seems to be a possibility to have smooth transition between all display

areas.

In order to make a model, which fits our perceived color appearance, we need to

consider more psychovisual features, such as the color adaptation at the local and at the

global level, cognition and physiology.

Moreover if we consider the image content, it is reasonable to think that the per-

ceived uniformity would not be broken in many cases. Further experiments should be

done in this direction to find what can be considered as perceived spatial uniformity.



Chapter 11

General conclusion

Le caméléon n’a la couleur du caméléon que lorsqu’il est posé

sur un autre caméléon.

François Cavanna

Abstract

This chapter concludes this thesis. We recall the main results of this work in the context of

display color characterization.

We proposed and evaluated many pointwise display characterization models, from an end-

user consumer method that does not require any expensive color measurement device to a 3D

LUT model based on polyharmonic splines interpolation that requires automatic and accu-

rate measurements. The conclusion is that the user need should be taken into consideration.

We then established a basis for spatial color characterization via the quantitative analysis

of the color shift and its spatial variation throughout the display area. We found that the

spatial chromaticity shift is not negligible in some cases, and that some features are spatially

invariant within one display of a given technology. The conclusion is that in some cases a

spatial color characterization is required.

In this research area there are still remaining challenges in several directions. First, there

is a need for spatial models based on colorimetry, and some frameworks and standards to

apply them in practice. Secondly, there is a need for a better understanding of spatial color

perception in order to design models that are using displays at their maximum capacity

considering the limits of the human visual system.

Thus, being able to manage display’s colors permits to work between applied color imaging

and fundamental color vision.
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11.1 Summary

In the context of color imaging, this thesis focused on colorimetric characterization of

displays and multi-display systems. We defined a duality in the need for consumer or

professional use. From the pointwise approach we shifted to some spatial considera-

tions.

We considered in the first part of this thesis point wise display color characterization.

We proposed, evaluated and improved several methods to control the color in displays.

Among the models tested, we investigated deeply the PLVC model especially in

comparison to the PLCC model. We have shown that for CRT and DLP technologies,

the PLCC model was performing well, as long as a black correction was carried out. The

results were found equivalent to the PLVC, in accordance with previously published re-

sults. However, we have shown that we can reduce significantly the characterization er-

ror by using PLVC instead of PLCC on LCD technology. This experiment can be pushed

forward to multi-primary displays.

We confirmed that the end-user method proposed by Bala and Braun was giving sig-

nificantly better results than using default gamma settings for both LCD and DLP pro-

jectors. We proposed an improved method by increasing the number of visual matching

patterns and in performing the estimation of each primary response curve indepen-

dently. This adds a little complexity but provides better results. This method is quick

and simple and does not need any measurement device other than a simple digital color

camera. There is still a challenging issue in the visual estimation of the projector black

offset. Moreover, there is probably some ways to extend this method to a spatial color

characterization model.

We worked on the distribution of color patches in color space for the establishment

of 3D LUT models. We proposed a new accurate forward model based on polyharmonic

splines and we demonstrated that it is possible to perform an accurate real time colori-

metric rendering. The accuracy of such a model is strongly influenced by the distribu-

tion of measured samples, and an iterative process to select these patches coupled with

an automatic measurement process improves the characterization result. We applied

this method to color rendering of multispectral images of art paintings with accurate

results, and the next work would be to include a color appearance model to ensure high

quality color rendering for virtual exhibition of paintings.

Considering the distribution of samples, we proposed some methods to build an

optimized structure that permits to invert any display color characterization forward

model. We used several criteria linked with the grid itself or with an evaluation data

set. The practical case we evaluated showed that we can achieve better results than

with a regular equidistributed grid. Some further work could be done concerning the
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optimization criteria used and the training data set. We do believe that this method to

build and select the optimized structure to invert the colorimetric model can be applied

to any output color device, such as printers, perhaps with other functions.

In the second part, we analyzed the spatial behavior of projection displays.

In our investigation, we performed a quantitative analysis of the color shift through-

out the display area. We have shown that the measured chromaticity shift along the

spatial dimension of a projector is quite large, and that considering only the luminance

to be spatially non-uniform can be a critical mistake in some applications. Through the

analysis of features, we have shown that most of the color shift, not induced by the lens

system, was coming from the spatial differences in response curve in LCD projectors,

and from a spatial variation of the channel interaction for DLP technology. These fea-

tures will be of major interest for designing a spatial color characterization model for

projectors.

However, considering the image content, it is reasonable to think that the perceived

uniformity would not be broken in many cases. Further experiments could be done in

this direction to find what can be considered as perceived spatial uniformity.

11.2 Closing

The choice of a display color characterization model depends not only on the display

technology in question, but also on the user needs. There is a clear difference between

a high-end professional characterization that aims to be as colorimetrically accurate as

possible, and a consumer-type characterization that has the less ambitious goals of pre-

serving the meaning and the aesthetic content of the displayed content. We have evalu-

ated a wide range of models, and the results presented in this thesis can help to decide

which model should be used for a given application and a given display.

The color spatial non-uniformity of projection displays can be a critical issue in

some cases. Vision researchers who are performing display-based psychophysical

experiments, and imaging engineers who are designing multi-display systems should

definitively consider correcting for this non-uniformity.

To conclude, the results presented in this thesis aim to help controlling color in dis-

plays. This can help color scientists and engineers in two directions. First, one can

design higher performance displays that take into account the capabilities and limits

of the human visual system to maximize their capabilities. Secondly, one can design

psychophysical experiments to help to understand the human visual system limitations

and behavior. Indeed, far beyond this work, understanding how humans perceive color
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images and how they interact with them may be a key element to better understand

mankind.
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Appendix A

Display technologies

Abstract

This appendix covers display technology. It gives some information considering color repro-

duction and the technology being behind the screen. We present the main technologies, and

how the color is created.

A.1 Foreword

This appendix is based on a lecture given to the master Media Technology at the Gjøvik Univer-

sity College. The sources are coming mainly form the web, from discussions, presentations and

from some articles. It has no pretension of exhaustivity, especially because the display market

is evolving very fast, and because it is not the purpose of this thesis. However it will help the

reader to understand the core of the thesis. Hopefully the reader will enjoy to have some more

information about display technology. The reader familiar with display technologies can either

skip it, or pass fast over it.

A.2 Introduction

A.2.1 Display device

To start with displays, we took randomly four definitions of display from different places:

• A display device, or information display, is a device for visual or tactile presentation of

images acquired, stored or transmitted in various forms. Inside this category are analog

or digital electronic displays, projectors, mechanical types, braille displays, idiot lights,

segment displays.

• A display device is a computer output surface, and projecting mechanism that shows an

image to the computer user. Usually, the display is considered including the screen or the

projection surface, and the display that produces the information on the screen.

• A display device is a CRT, flat panel LCD, plasma, aerial imaging, projector or other elec-

tronic device that is at the end point of a (digital, color) system, presenting the content.
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• An electronic display is a device or system, which converts electronic signal information

representing video, graphics and/or text to a viewable image of this information.

Whatever the definition, the common point is that we got the idea of visualizing some infor-

mation through a medium.

We will limit our study to digital color displays, which means that the information is origi-

nally a digital set of values and the output is a spatial arrangement of colors.

In such a system, the information takes different shapes. Before the display, there can be

a natural or analog scene, digital values from the camera, adobe RGB values, etc. Within the

display the information is changing as well since it is often an analog signal that has to be input

to a display, then the digital value has to be converted into a voltage. That is less true with

LCD, Plasma or OLED displays coupled with DVI or HDMI standards. After the display, the

information may change considering the environment, the geometrical situation of the observer,

etc.

A.2.2 Features

We can draw a list of features that are of importance for a display.

For the normal users, the important features can be: Brightness (luminance), contrast

(white/black), viewable size (diagonal, active display area), dot pitch (the distance between the

centers of two adjacent pixels), resolution or native resolution (horizontal and vertical size ex-

pressed in pixels, which is useless for CRT), response time (minimum time necessary to change

a pixel color or brightness), viewing angle, aspect ratio (4:3, 16:9, 16:10).

A high level user might want to have more information, such as: additivity properties (is

the color displayed the sum of the 3 independent channels ?), gamut size and shape (the gamut

being the set of colors that a display can reproduce, and/or the volume covered by these colors

inside a color space), response curve (relation between the voltage/digital input and the inten-

sity of the light output, gamma), black level (amount of light output when we want to display

nothing), primary constancy (is the chromaticity of each channel consistent versus the input ?),

calibration facilities (brightness, contrast, white point, customable LUT), characterization (rela-

tionship between the RGB input and the color displayed)

A.2.3 color reproduction

Most part of displays is based on the additive mixture of primaries. That means that a color C

is a weighted sum of N primaries, such as in Equation A.1:

C = α1.P1 + α2.P2 + α3.P3 + α4.P4 + ...+ αN .PN (A.1)

In many cases for a color display, there are three primaries 1, with dominant wavelength

around the red green and blue (the so-called RGB primaries). Then Equation A.1 can become

1Although there is more and more a white channel to increase the overall luminance of the display, or

more than 3 primaries to increase the gamut size.
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Equation A.2:

C = α1.R+ α2.G+ α3.B (A.2)

A.2.4 Types of displays

We can distinguish between three main types of displays:

• Virtual displays are forming the image to focus directly on the retina, they are single user

projection displays, and are using the same technology.

• Direct view displays that produce the image on the surface being viewed. They are usually

designed for a single user or a small number (monitors).

• Projection display creates the image on an auxiliary surface that is physically separated

from the image generating component. They are usually well fitted for group viewing.

A.2.5 Image generation

We can have two kinds of system to generate an image. A display can be emissive, such as CRT,

OLED, laser or plasma. On another hand, it can be based on a light modulating device, such as

LCD or micro-electronical device (DLP).

A projection system can be rear projection (the light is coming from the other side of the

screen relatively to the user -transmittance-) or front projection (the light come from the same

side and is reflected on the screen).

A.3 Current technologies and systems

Among the technologies presented thereafter, we count CRT, LCD, Plasma, LED, LCOS, TMOS,

Laser, DLP, Analog cinema projection device, Stereo-vision displays and so on.

A.3.1 Monitors

We will review major monitor technologies.

Cathod Ray Tube (CRT)

It exists since 1879 and is probably the most known technology both by users and scientists.

Electrons are emitted by an electron gun, and go to hit a phosphorescent material, which trans-

forms the energy in light.
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Figure A.1: Illustration of the CRT display. 1-Electron gun. 2-Electron beam.

3-Focusing coils. 4-Deflection coils. 5-Anode connection. 6-Mask for separat-

ing beams. 7 and 8-Phosphor coated on the inner side of the screen. From

http://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/CRT color enhanced.png/750px-

CRT color enhanced.png.

Technology details Electrons are coming from the cathode, and take there celerity with the

high voltage in the anode (difference of potential between both). Electrons are focused and

deflected using a magnetic or electrostatic field. The beam arrives then on the anode that is cov-

ered by a phosphorescent material (for instance rare earth). The arriving energy excites materials

electrons, and light is emitted when these electrons loose this energy. The chemical properties

of the phosphors define the spectrum of the light emitted (color). The last part is a perforated

piece of metal (shadow mask) that is aligned in such a way that only the red dots can be hurt by

the red beam (same for the blue and green). Controlling the intensity of the beam, the wanted

color is emitted. The mix between primaries is based on spatial assimilation. See Figure A.1.

Color and image Originally, the electron gun did just draw a line between two points (vec-

tor); there was no aliasing or pixelization. However it was limited to display a shapes outline.

Now, the gun scans the whole screen along a defined path. In varying the intensity applied

along the path, an image is created because of temporal assimilation. To reduce the flickering

effect that can rise up with this kind of assimilation, it is of use to interlace 2 images. The first

image describes the odd lines, then the even ones are described.

Color information is controlled by the power given to each gun (R,G,B). Note that the re-

lationship between the input voltage and the emitted light is not linear but follow a gamma

law.
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Advantages and drawbacks Advantages include the low cost production (matured tech-

nology), color fidelity (well known technology), color management systems has been originally

designed for it, gamut size. This technology allows the perception of true black (or almost, be-

cause of a low black level), works well at multiple resolution, displays full motion video better

when comparing with LCD (high refresh rate). The angle of view does not influence so much

the perception of colors.

However, there is a sharpness problem when too much power is applied to the fluorescent

panel. That is due to the uncollimated electron beam. This technology is known for its radiation

emission, larger size, heavy weight. It expends a lot of energy and throws off heat.

A compromise has to be found for the refresh rate. A low refresh rate leads to a flicker effect

due to the desactivation of phosphors between two passages of the electron beam. Instead of

that, a high refresh rate leads to a leak of sharpness due to the over-excitation of phosphors.

Although it seems this is the end of CRT, this technology still shows the best color rendering

available. LED based technologies may definitely overcome CRT.

Liquid crystal display (LCD)

It is the technology that has replaced CRT displays. It has grown up since the 80’s. A backlight

is used as light source, and some filters based on liquid crystals are controlling the amount of

light that is going out.

Technology details Two polarizers, which polarization directions show an angle of 90 (most

part of time) on each side of a “sandwich” compounded by two layers of glass are the base. The

layers of glass surround some liquid crystals in nematic state (between solid crystal and liquid).

The molecules are distributed without order, but in average parallel, i.e. with an orientation

direction as in a crystal. Around the crystals, polymer layers take the molecules fixed when no

power is applied, and play the role of electrodes. The LC panel is passive (it does not emit any

light).

The light comes from the backlight; it is polarized by the first polarizer (if there is no crystal,

the light is blocked by the second polarizer). With no power, the orientation of the crystals

molecules is given by the alignment with the surface of the polymer layer. With twisted nematic

(helicoidal arrangement), the arrangement of the crystals at rest changes the polarization of the

light of 90 (then the panel seems to be transparent). The change of polarization is due to the

birefringence of liquid crystals. When some power is applied, it creates a magnetic field, which

will modify the orientation of the molecules. In the case of twisted nematic, which will force

the molecules to be aligned. if so, they do not change the polarization of the light, then no (less)

quantity of light is in the good polarization state to pass through the second polarizer. Note that

the use of polarized light induces a loss of energy while passing through the first polarizer since

only the light in the right polarized state passes through.
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Color and image The LCD panel is originally in gray level (let pass more or less the light).

The color is reached applying color filters on sub pixels (spatial assimilation).

The color is limited by the spectral properties of the backlight and of the color filters used.

Originally only 63 colors could be really reproduced instead of 83 for a 8 bits device because of

a bad control of crystal’ orientation. This problem is mostly overcome now.

When the monitor is not used in the native resolution, some aliasing effect may happen.

Aliasing corresponds to the modifications a continuous signal can suffer when sampled and

reconstructed with a too small number of sample (See Figure A.2)

(a) Properly sampled image (b) Moiré effect due to aliasing

Figure A.2: Visualizations of the aliasing effect. The first image (a) is prop-

erly sampled; The second one (b) shows some moiré effect due to a sampling

badness. From http://en.wikipedia.org/wiki/File:Moire pattern of bricks.jpg and

http://en.wikipedia.org/wiki/File:Moire pattern of bricks small.jpg.

Increasing the resolution of a LCD panel leads to a lack of brightness. On Figure A.3, one can

see that the material used to fix the liquid crystal is filling more and more of the panel surface

while increasing the resolution. Several solutions can be used to overcome this problem, such

as using a reflective polarizing film to recycle existing light (increases efficiency of 20-30%), or

adding bulbs or increasing the power of the existing bulb.

To enhance the color and image rendering capabilities of an LCD display, it is possible to use

lumileds technology (using LEDs as backlight), to use wide color gamut cold cathode fluorescent

lamp as backlight, instead of a normal cold cathode fluorescent (That increases the color space

of about 28%, but is approximately 30% less efficient).

The in-plane switching and vertically aligned mode configurations improve the switching

speeds, the contrast, and the viewing angle compared with twisted Nematic, but 50% less light
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Figure A.3: Illustration of the variation of luminance with the resolution. The surface cov-

ered by the material used to fix the liquid crystal fils more and more of the panel surface while

increasing the resolution.

Figure A.4: Example of arrangement of sub pixels in a RGBW based LC display. From (Elliott

et al., 2005).

is transmitted.

Considering that natural images are typically made up of rich saturated colors, which are

hardly ever very bright, together with extremely bright unsaturated color, such as reflection

from smooth objects, it is possible to augment the traditional RGB sub pixel with a white sub

pixel (Elliott et al., 2005). Figure A.4 illustrates a way for the arrangement of such a pattern,

Figure A.5 illustrates the comparison with a traditional RGB system. This solution has already

been implemented in many mobile displays.

Main types of LCDs Following are the main arrangements:

• TN and DSTN (Dual Scan TN). TN is the basic technology, it has a bad response time (bet-

ter with DSTN, which makes a double scan). It has a passive matrix, and it is transparent

at rest state.

• TFT (Thin Film Transistor). The electrode is replaced by one electrode and a transistor

layer at the back. That permits a better control of the tension, then improve the response

time (≤ 10ms). It is an active matrix, and black at rest state (the layer of silicium for the

transistors)
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Figure A.5: Example of arrangement of sub pixels in a RGBW based LC display compared with

a traditional RGB pattern. Note that the structure shows the same modulation-transfer-function

limit. From http://www.clairvoyante.com/images/rgb-v-rgbw-circle-chart.png.

• IPS and S-IPS (In-Plane Switching) uses liquid crystals parallel to the screen (better vision

angle, but double number of transistors).

• MVA (Multi-Domain Vertical Alignment) and PVA (Patterned Vertical Alignment). Sev-

eral refraction domain by cells (better black level, then better contrast and angle view).

Latency time and motion blur The latency time or response time refers to the time for a

pixel to change its state from the more complete black to the highest saturated white, and to

come back to the black. Sometimes, the latency time is expressed as the time to go from a gray

level to another. This is an important feature of LCDs since major drawbacks are resulting of

a too slow response time. Between two frames, the pixels have not the time to reach the satis-

factory level, and it results in a blurring (ghost effect or motion blur). Applying more voltage

than required to the pixel at the beginning permits to reach faster the desired level. This was

originally a problem for LCD technology, but now it is fast enough. However, this result is reach

in decreasing the quality of the color rendering and the viewing angle.

Even if there is no latency, the motion blur will still happen since there is a hard transition

between two images in a video. however, there is a solution that may be used to reach a perfect
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motion. A black frame is intercalled between each frame. Images are combined with these black

frames, and no more motion blur is perceivable since the visual system adapts for a short while

to the black.

Advantages and drawbacks The design was clearly what made LCD to overcome CRT

when it appeared on the market (weight, flat). Moreover, it provides less flickering effect, is

energy efficient, and can provide high brightness.

However, there is a major leakage considering the contrast ratio (the crystal is not able to

block all the light, then the black level is high). The angle-view dependence is large, and the

color is limited by the backlight properties. Moreover, a major drawback is that it is defined

for only an optimal resolution. Note as well that the cost of the backlight represents about 70%

of the cost of the display. A major issue is that the spectral transmittance of a liquid crystal is

varying with the arrangement of the crystals. The consequence is that the primaries spectral

properties are not consistent with the increasing intensity.

Plasma Display Panel (PDP)

This technology exists since 1964.

Technology details It is based on the same principle as a fluorescent tube. Neon and Xenon

(noble gases) are contained in several boxes, sandwiched between 2 plates of glass (Figure A.6).

Electrodes are also present between the glass. Creating a voltage difference ionizes the gas (

ionized gas : one or more free electrons present), and creates plasma, which is conductive. The

gas ions can then rush and collide the electrodes. Their energy is transformed in photons. To

create color primaries, phosphors cover the surface, and the UV photons emitted by the plasma

excite the phosphor that emits light in the visible spectrum.

Advantages and drawbacks Using this technology, there are potentially no limit of size. It

has a wide gamut considering the phosphors used as primaries. The angle of view is good, there

is no black level, it is emissive.

However, it is expensive to build the system for very high resolution. The color control is

difficult, especially because the displayed color (not only the perceived one) is dependent of the

neighborhood, as the plasma is reacting with electro-magnetic fields, and as the luminance is

limited for high luminance scene in order to save some energy (The power required varies a

lot with the displayed content). Some ghost effects can appear when a cell stay excited even

without intended input power. The life time is not that good, it looses its luminosity with the

use.

LED based technology

Organic Light-Emitting Diode (OLED) (kodak, 1987), Light Emitting Polymer (LEP) (Cam-

bridge, display tech), Organic Electro-Luminescence (OEL) are Light-Emitting Diode (LED) dis-
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Figure A.6: Plasma Display Panel technology. From

http://en.wikipedia.org/wiki/File:Plasma-display-composition.svg.

plays, which emissive electro-luminescence layer is composed of a film of organic components.

The layer usually contains a polymer pixel, which can emit light of different colors

Technology details It is a solid state device, consisting in a series of organic thin films (semi-

conductors) sandwiched between two thin film conductive electrodes (See Figure A.7). When

electricity is applied, charges are injected inside the organic semiconductor, the created color

is dependent of the material used (red, green, orange, yellow, emerald green, blue, but as well

ultra-violet or infra-red). The thin film can be of almost every material where you can depose

the substrate. The technology to depose the substrate or to build the electrodes can be nanoim-

print (electrodes), inkjet printing (organic sc) vacuum deposition, vacuum thermal evaporation

or organic vapor phase deposition.

Semi-conductor A semi-conductor presents a conductivity between conductor and insu-

lator. Electric current is possible because of holes or/and electrons. Propagation by electrons is

normal (atoms exchange their extra electrons from one to the other from negative area to a less

negative). Propagation by holes is different. Charges travel from positive area to a less posi-

tive because of the motion created by the miss of an electron in a quasi-full electrical structure.

Controlling the number of holes or electrons permits to change the characteristic of the material

(doping the material). A material with more holes is called N-type, one with more electrons is

called P-type.

A P-N Junction is the juxtaposition of N and P material. When a positive tension is applied
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Figure A.7: OLED principle. From http://static.howstuffworks.com/gif/oled-transparent.gif.

to the P area, the holes are pushed to the junction. In the same time, in the N area, the electrons

are pushed to the junction. When they meet in the border, they can combined (electron-hole)

and emit a photon. See Figure A.8.

An organic semiconductor is the same process except that the material is different (crystal or

polymer). Organic means carbon based.

Types of LED based displays Based on the OLED concept, several kinds of displays can be

derived:

• FOLED (Flexible Organic Light-Emitting Diode) consists in printing the OLED on a flex-

ible substrate (plastic or metal). A lot of applications can be imagined, but it is more

breakable than glass substrates.

• PHOLED (Phosphorescent) A soluble phosphorescent material is used to create the OLED,

instead of fluorescent material. That means that 100% of the power applied is converted

into light.

• TOLED (Transparent) uses transparent electrodes and light emitting materials. Its then

possible to emit light by the top surface, by the bottom surface or by both sides. It has 70%
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Figure A.8: PN junction, illustration. From http://fr.wikipedia.org/wiki/Fichier:PnJunction-

Diode-ForwardBias.PNG.

transparency when not in use.

• SOLED (Stacked) improves color quality and resolution, stacking TOLEDs together. Stack-

ing sub pixels together, each pixel have its color components at the same place.

Advantages and drawbacks This technology is low power consuming. It has a good color

rendering (wide gamut), a good contrast because of a low black level, a good viewing angle. It

is Thin and may be flexible. It is easy and cheap to build.

However its major drawback is its lifetime (PHOLEDs can improve it, using less energy

leading to a longer life) and its sensibility to wetness during the fabrication process and the

need for containment inside materials. Another brake to its expansion is that it is an owner

technology (Eastman Kodak and others).

A.3.2 Projectors

We will review major projection system technologies, such as Cinema, CRT/Laser, LCD, DLP,

LCoS and so on.

Cinema analogic projection displays

Although it is not a digital device, it is interesting to give a word about it. These displays are

based on a printed film. Both subtractive and additive mixtures are present and the gamut of a

film looks more like a printer one. There are more and more replaced in projection theater, but

there are still present in the majority of the cinemas.
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Figure A.9: Pico projection display example. From http://www.macintom.com/wp/wp-

content/gallery/2009-01/microvision-pico-projector.png.

CRT projection displays

They use a small, high-brightness CRT to generate the image. This image is focused and en-

larged using a lens in front on the CRT face. A typical configuration consists in 1 to 3 separate

CRTs with 1 to 3 lenses. They have the same characteristics than the CRT monitors, augmented

by the problem of moving these system, and by the low level of luminance that can be reached.

Moreover they are expensive.

Laser projection displays

They are similar to CRTs, but the phosphors, emitting an incoherent and uncollimated light, are

replaced by lasers emitting a coherent and collimated light. Usually each laser has its lens, but

a one-lens solution can be performed without recombination (as in the CRT ones). the main

advantages of these projectors is that they can be of real small size, and they can have a good

intensity.

Note that pico projectors (See Figure A.9) are on the market for a couple of years now,

and that they can be based as well on DLP principle, using Micro-Electro-Mechanical Systems

(MEMS) or on LCoS and LED backlight. They have typically an output of about 10 lumens.

Light valve panels principle

The light is splitted in three (or more) components (RGB). Each color is modulated separately,

then recombined and sent via a single lens to the user (via the screen). We can distinguish

between single, two, or three panels:

• Single panel systems use only one light valve to modulate the three channels (color field
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Figure A.10: Tri-LCD projection system. From http://gp32.free.fr/projo/LCD.jpg.

sequential systems -DLP-, color micro-filter designs, angular separation methods).

• In two panel systems, one light valve modulates one primary, and an other one modulates

the 2 others. This configuration is useful if the panel can modulate 2 colors satisfactorily,

but not 3. For instance if the projection lamp is deficient for one color, requiring a longer

period of integration than for the 2 others to get enough light.

• Three panel systems consider one panel for each primary (many LCDs).

LCD projection systems

Technology details The light valve is a transmissive LCD Panel. The light is separated using

dichroic mirrors. Information for each channel is modulated using LCD panel(s). The light is

recombined within a dichroic prism and go through the lens to the screen, such as shown in

Figure A.10.

Advantages and drawbacks LCD projectors have a good saturation compared with DLP

when there is a white filter in the color wheel. it looks sharp at any resolutions.

However, the level of black offset is high (bad contrast). They suffer from the screen door

effect (lines between pixels are visible), and from spatial non-uniformities due to the difficulty

to align the LCD panels and the optics.
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Figure A.11: DLP principle. From http://www.pctechguide.com/images/57DLP 1chip.jpg.

Digital Light Processing (DLP)

The light valve is a digital micro-mirror device (DMD) in this case. The light is separated tem-

porally using a color wheel (Most part of the time, but a 3 DMDs system that uses dichroic

mirrors can exist. The light is then recombined using a dichroic prism). The DMD contains one

micro-mirror by pixel. The orientation of the mirrors determine the amount of light that will go

through the lens. A typical configuration is shown on Figure A.11.

DMD DMD is a technology that has been created in the 70s. In 1987, TIs researchers have put

the mirrors on a CMOS chipset matrix of 1280*1024 microscopic mirrors. Each mirror can pivot

on 10-15 as a switcher (on-off). If its on, all the light is transmitted to the lens. In off case the

light is not transmitted to the lamp, but to a black body, which absorbs it. The intensity levels

are obtained combining these two states frequencies. The mirrors are controlled by electrostatic

attraction.

Color wheel Although it is possible to use a dichroic mirror system to separate the light

into several components, the use of 3 DMD is expensive. The most part of time the one DMD

configuration appears. In this case, the light is separated temporally. To do that, a color wheel is

used (Figure A.12):

• 3 colors color-wheel (RGB), some rainbow effect may appear.

• 3+1 color-wheel (RGBW), which desaturates the colors.
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Figure A.12: A color wheel with 6 primaries. Note that the size and the ar-

rangement of each color is not the same to avoid some color breaking effect. From

http://www.jangro.com/images/samsung-dlp/samsung-color-wheel.jpg.

• 2*3 color-wheel (RGBRGB), helps to remove rainbow effect, in increasing the frequency.

• N primaries color-wheel (RGBCMY, RGBWCMY, RGBY, etc) are used to increase the size

of the gamut.

Advantages and drawbacks Advantages include the low level of black offset. the good pri-

maries constancy (the filter keeps on the same transmittance property), the easy way to increase

the number of primaries and the small size in the case of a single DMD. Disadvantages include

the color break-up (rainbow effect) and temporal stability that is less good than LCD but really

acceptable.

Liquid Crystals on Silicon (LCoS)

The reflective light valve is based on liquid crystals deposed on a reflective silicon plate (Fig-

ure A.13). They can be based on a color wheel, on three chipsets or on a colored chipset.

Multi-projector systems

A way to increase the display’s resolution is to tile several displays together. See Chapter 8.
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Figure A.13: LCoS technology. From http://en.wikipedia.org/wiki/File:Lcos.svg.

A.3.3 3D displays

Holography

The image captured is an image of interferences (not focused on a film). A coherent laser light

is reflected by an object, and combined at a film with light from a reference beam : the two

beams are interfering. The film records the interferences (keeping the information of phase)

and, illuminating the film with the same light, one can see the object in 3D.

Stereoscopy

Two different images of the same scene are sent to each eyes. The brain understands the in-

formation as two perspectives of the same object, giving the illusion of 3D. The use of special

glasses permits to separate both signals. Several ways may be used for this purpose, such as

polarizing light, combined with different polarizers on the glasses for each eye. It is possible as

well to use different spectral information to be sent, using different filters on the glasses for each

eye.

Auto stereoscopy The monitor sends different information to each eye (without the need of

special glasses). However, the head has to be well positioned.

Heliodisplay

The principle is to project images either on a compressed air flow or on a mist flow. Since there

is no depth reference (such as a monitor border) that creates the effect of 3D. Considering a rear

projection, the user has to have an oblique angle of view in order not to face the lamp.



186 A. Display technologies

A.4 A step further

Here is mixed some tomorrow’s technologies that might be already yesterday’s once since the

market is evolving really fast.

• Photonic crystals improve the luminance of LEDs, maybe already in displays. They use a

photonic crystal fixed on the LED, to improve the emission of light (Arsenault et al., 2007).

• TMOS (Time Multiplexed Optical Shutter) consists in temporal additivity in a solid state

(Selbrede and Yost, 2006).

• SED (Surface-conduction Electron-emitter Display) and FED (Field Emission Display).

The principle is the same than a CRT (so the same advantages), but with a kind of a

cathode ray tube behind each pixel, and slim like a LCD. It was supposed to arrive on

the market last year, but Canon and Toshiba, which were developing the project, stopped

mid-2008. It seems now that Canon started again with SED at the beginning of 2009.

• Dual view concept makes two persons to watch the same screen and to see different scenes

(See Figure A.14). These displays are based on the same approach than the stereoscopic

displays, considering special glasses to isolate each signal, or considering geometry (each

direction receives a different information).

• Real 3-D displays. On Figure A.15 is shown an attempt to create a real 3D display. The area

contains ionized gas. Focusing a laser beam at a given position permits to produce plasma,

which emits light. Currently there are many technical challenges with this approach.

• etc.

A.5 Color modification and black box effect on color char-

acterization

When considering display accurate colorimetric rendering, a model has to be established be-

tween the input value and the color displayed. However, there are many effects, voluntarily

done by the manufacturer to improve the image content, which affect the color rendering. For

example:

• To improve the color content in using several primaries, there is a need of a transform

between RGB and P1, P2, P3, ..., PN primaries. As well, the color saturation of the original

color can be increased to please more the user.

These transforms are often kept secret by the manufacturer. However, if they are consis-

tent, one can deal with them in using an empirical model for color control.
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Figure A.14: Dual view concept. From http://img1.lesnumeriques.com/news/712.jpg.

Figure A.15: A real three dimensional display. From

http://www.physorg.com/news11251.html.

• When intercalling a black frame between each frame to reduce motion blur, or keeping

the power consumption even in reducing the intensity of an image if it is very bright, the
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modification is image dependent.

These transforms are more problematic. There are solutions to solve a given technical

problem and in most cases can not be unactivated. The color rendering is then strongly

modified depending on the image content (or depending on the problem to solve).

These effects are creating many problems for the calibration and color characterization of dis-

plays.

As a scientist or a designer, we want our display to be colorimetrically accurate, but as a

common people we want to see a pleasant image. Until now, almost the same product was used

by both communities. However, it seems that more and more the displays people are using are

really different, depending on the purpose.

A.6 Conclusion

We hope this introduction to display technology, which is far beyond the purpose of the thesis,

has enlarged your horizon, and has been of benefit for the understanding of the thesis and its

context position.



Appendix B

Hexagonal regular sampling of CIELAB color
space

Abstract

This appendix presents a method to distribute regularly spaced data in CIELAB. This method

is based on sphere packing techniques. We used this distribution in order to perform a RBF

interpolation for the forward display color characterization model proposed in Chapter 6.

The first part of this annexe is mainly extracted from (Thomas, 2006). The algorithm details

are mainly from (Stauder et al., 2006) and (Thomas and Trémeau, 2007).

B.1 Introduction

In 1611, Johannes Kepler proposed a mathematical conjecture concerning the densest way to

arrange same sized spheres in a 3D euclidean space. Following that conjecture, a way to obtain

the most compact arrangement is to arrange spheres in order to form a face-centered cubic dis-

tribution (Kepler, 1611). During the XIXth century, Gauss demonstrated that the most compact

way to arrange discs in a 2D plan, could be reached if they are arranged in an hexagonal way.

His demonstration is based on the fact that the centers of the discs are at equal distance from

each neighbor. He kept open the possibility that a random arrangement can be more compact

(Gauss, 1801). Fejes proved that it is the only densest way in the XXth century (Tóth, 1960/61).

In 1998, Thomas Hales demonstrated by exhaustion that spheres arranged in a face-centered

cubic or in a hexagonal closed distribution show the more important density (Hales, 1998).

Based on these works and on the fact that the sphere centers are at equal distance from their

direct neighbors, one can define a regular sampling of the CIELAB colorpace.

This CIELAB sampling has been already used in different works, such as (Colantoni and

Thomas, 2009; Stauder et al., 2006, 2007; Thomas, 2006; Thomas, Chareyron and Trémeau, 2007;

Thomas and Trémeau, 2007). We propose to detail this algorithm in this appendix.

B.2 Sampling strategy

We distribute the samples as if they were the center of the spheres in a close-packing of spheres

problem. We sample a cube including the gamut of the display in CIELAB color space, using
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a hexagonal closed packing. We do not use the face-centered cubic lattices for algorithmic sim-

plicity. This last arrangement would not be of benefit for us since we do not use the properties of

periodicity and symmetry of such a structure, while the sampling remains the same. We use then

only the two layers alternative (see Figure B.1), creating a hexagonal closed lattice. It is enough

to perform a translation to go from the first layer to the second, and so on. Then, each sphere

center is at equal distance of its direct neighbors. Those neighbors form a Johnson polyhedron

number 27 (J27), i.e. a triangular orthobicupola.

Figure B.1: Sampling of the CIELAB color space.

B.3 Sampling algorithm

In the following, we introduce the sampling algorithm, such as in (Stauder et al., 2006; Thomas

and Trémeau, 2007).

Let us introduce the following notations:

Let us call L∗
x, a∗x, b∗x the coordinates of a given color in the CIELAB color space, and L∗

y ,a∗y,b∗y
the coordinates of a second color. The CIE ∆E∗

76 color distance between these two colors is the

euclidean distance, such as:

∆E∗
76 =

√

d2L + d2a + d2b (B.1)

with |L∗
x − L∗

y| = dL, |a∗x − a∗y| = da, |b∗x − b∗y| = db.
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Let dref be an arbitrary distance in CIELAB color space. If we consider da = dref , db = 0 and

dL = 0, then:
√

d2L + d2a + d2b = dref .

Likewise, if we consider da = 1
2 × dref , db =

√

3
4 × dref and dL = 0, then:

√

d2L + d2a + d2b = dref

.

Finally, if we consider da = 1
2 × dref , db =

1
2
√
3
× dref and dL =

√

2
3 × dref , then:

√

d2L + d2a + d2b = dref

.

Considering now the uniform color space sampling, let us give Lmin, Lmax, amin, amax, bmin,

and bmax the lower and upper color values of the CIELAB color space along the L∗, a∗ and b∗

axis.

Considering the arrangement explained above, the 3D grid is defined such as:

• |a∗ia − a∗ia+1
| = dref the distance, which separates two consecutive samples along the a∗

axis, such as the distance, which separates two samples along this axis is:

√

(

a∗ia − a∗ia+1

)2
= dref .

• |a∗ia,ib − a∗ia,ib+1
| = 1

2 × dref and |b∗ia,ib − b∗ia,ib+1
| =

√

3
4 × dref the distances, which separate

two adjacent samples along the a* and b* axis, such as the distance, which separates two

samples in the a*b* plane is

√

(

a∗ia,ib − a∗ia,ib+1

)2
+

(

b∗ia,ib − b∗ia,ib+1

)2
= dref .

• |a∗iL,ia,ib−a∗iL+1,ia,ib
| = 1

2×dref , |b∗iL,ia,ib−b∗iL+1,ia,ib
| = 1

2
√
3
×dref and |L∗

iL,ia,ib
−L∗

iL+1,ia,ib
| =

√

2
3 × dref the distances, which separate two adjacent samples along the a∗, b∗ and L∗ axis

such as the distance, which separates these two samples in CIELAB color space is:

√

(

a∗iL,ia,ib − a∗iL+1,ia,ib

)2
+

(

b∗iL,ia,ib − b∗iL+1,ia,ib

)2
+

(

L∗
iL,ia,ib

− L∗
iL+1,ia,ib

)2
= dref

.
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The smaller dref is, the finer the sampling of the color space is, then the number of samples

increases inversely proportionally to the distance dref .

If we consider:

NL =
Lmax − Lmin

dref

√

2
3

Na =
amax − amin

dref

Nb =
bmax − bmin

dref

√

3
4

with NL, Na and Nb the number of sample values for each axis. Then, N = NL ×Na ×Nb is

the number of samples, which is a function of 1
1

√

2
×d3

ref

.

The final number of patches is constituted of the intersection of the sampling and of the

volume of the gamut computed with the temporary model.



Appendix C

Polyharmonic splines kernel and Radial Basis
Function interpolation

Abstract

This appendix details the 3D polyharmonic splines interpolation/approximation we used in

Chapter 6.

C.1 Introduction

Polyharmonic splines are a subset of RBF (Radial Basis Funtion) that can be used for interpolate

or to approximate (Carr et al., 2001) arbitrarily distributed data.

In color imaging, beside of this method and its previous version, we only know the use of

Thin Plate Splines (TPS) for printers colorimetric characterization (Sharma and Shaw, 2006). TPS

are a subset of polyharmonic splines (bi-harmonic splines). Sharma and Shaw (2006) recalled

the mathematical framework and presented some examples for printers characterization. They

shown that using TPS, they achieved a better result than in using local polynomial regression.

They shown that in using a smoothing factor, error in measurement impact can be avoided at the

expense of the computational cost that optimize this parameter. However, they did not study

data distribution influence (but they said that the data distribution can improve the accuracy in

conclusion) neither the use of other kernels for interpolation.

C.2 Interpolation

The idea is to build a function f whose graph passes through the data and minimizes a bending

energy function. For a general M-dimensional case, we want to interpolate a valued function

f(X) = Y given by the set of values f = (f1, ..., fN ) at the distinct points X = x1, ..., xN ⊂ ℜM .

We choose f(X) to be a RBF of the shape:

f(x) = p(x) +
N
∑

i=1

λiφ(||x − xi||) x ∈ ℜM

where p is a polynomial, λi is a real-valued weight, φ is a basis function, φ : ℜM → ℜ,

and ||x − xi|| is the euclidean norm between x and xi. Therefore, a RBF is a weighted sum of
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translations of a radially symetric basis function augmented by a polynomial term. Different

basis functions (kernel) φ(x) can be used.

Considering the color problem, we want to establish three three-dimensional functions

fi(x, y, z). The idea is to build a function f(x, y, z) whose graph passes through the tabulated

data and minimizes the following bending energy function:

∫∫∫

ℜ3

(f3
xxx + f3

yyy + f3
zzz + 3f3

xxy + 3f3
xxz + 3f3

xyy + 3f3
xzz + 3f3

yyz + 3f3
yzz + 6f3

xyz)dxdydz (C.1)

For a set of data {(xi, yi, zi, wi)}
n
i=1 (where wi = f(xi, yi, zi)) the minimizing function is such

as:

f(x, y, z) = b0 + b1x+ b2y + b3z +
n
∑

j=1

ajφ(||(x − xj, y − yj, z − zj)||) (C.2)

where the coefficients aj and b0,1,2,3 are determined by requiring exact interpolation using the

following equation

wi =

n
∑

j=1

φijaj + b0 + b1xi + b2yi + b3zi (C.3)

for 1 ≤ n where φij = φ(||(xi − xj, yi − yj, zi − zj)||). In matrix form this is

h = Aa+Bb (C.4)

where A = [φij ] is an n × n matrix and B is an n × 4 matrix whose rows are [1 xi yi zi]. To

be solvable, an additional implication is that

BTa = 0 (C.5)

These two vector equations can then be solved to obtain

a = A−1(h−Bb) and b = (BTA−1B)−1BTA−1h.

C.3 Approximation

It is possible to provide a smoothing term. In this case the interpolation is not exact and becomes

an approximation. The modification is to use the equation

h = (A+ σI)a+Bb (C.6)

a = (A+ σI)−1(h−Bb) and b = (BT (A+ σI)−1B)−1BT (A+ σI)−1h.

where σ > 0 is a smoothing parameter and I is the n× n identity matrix.
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C.4 Kernels

In our context we used a set of 4 real functions as possible kernels, the biharmonic (φ(x) = x),

triharmonic (φ(x) = x3), thin-plate spline 1 (φ(x) = x2log(x)) and thin-plate spline 2 (φ(x) =

x2log(x2)), with x the distance from the origin. The use of a given basis function depends on the

display device, which is characterized, and gives some freedom to the model.





Appendix D

More results on PLVC

Abstract

The content of this appendix consists in more visualizations of the accuracy of the PLVC

model compared with the PLCC∗ model and in a non-additivity study of tested displays.

D.1 Foreword

In this appendice are the materials we could not add to the content of the thesis or of the article

for space and readability reasons.

D.2 Non-additivity evaluation

With regard to the non-additivity, we have performed a study of our tested devices. We present

results for this criterion in table D.1 following (Kwak and MacDonald, 2000). It appears that at

full intensity, the DLP shows good results considering this feature, the CRT is not really good,

probably because of the insufficient power (this display has a really low white around 60cd/m2).

For LCD projection, the results are good, it is believed that as they are 3-LCD, there is less

interaction at subpixel level, and in displaying patches, the interaction is the same and is taken

into account in the model globality. The two LCD monitors show really different results, but

one has a really low brightness. It is strange to notice that MLCD1 with this high interaction

between channel is giving such good results with the tested models (see Table 4.3), compared

with MLCD2. But that does not influence the comparison of the models since all tested methods

are supposing additivity.

D.3 More visualizations
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Table D.1: Basic additivity test for tested devices. The measured White is the full intensity of

all primaries together. The R+G+B is the full intensity for each primary taken separately. The

difference is expressed as a percentage. Note that MLCD1 has a very low brightness, less bright

than the CRT, which could be seen as strange, but the settings were set for a dark surrounding

work.

additivity X Y Z

White 115.00 128.60 155.40

ProjectorLCD1 R+G+B 111.93 125.12 154.11

Difference (%) 2.67 2.71 0.83

White 93.97 105.00 135.00

ProjectorLCD2 R+G+B 94.81 105.96 136.9

Difference (%) 0.89 0.91 1.41

White 91.80 104.80 126.9

ProjectorDLP R+G+B 92.69 105.726 127.974

Difference (%) 0.97 0.88 0.85

White 61.36 63.21 83.61

MonitorCRT R+G+B 64.82 66.443 88.629

Difference (%) 5.64 5.12 6.00

White 53.33 55.76 71.62

MonitorLCD1 R+G+B 50.54 52.77 68.081

Difference (%) 5.23 5.36 4.94

White 188.10 191.10 209.90

MonitorLCD2 R+G+B 187.59 190.53 210.91

Difference (%) 0.27 0.30 0.48
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Figure D.1: PLCD1: visualization of errors for the testing data set projected on the b∗L∗ plane.
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Figure D.2: PLCD2: visualization of errors for the testing data set projected on the a∗b∗ plane.
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Figure D.3: PLCD2: visualization of errors for the testing data set projected on the a∗L∗ plane.
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Figure D.4: PLCD2: visualization of errors for the testing data set projected on the b∗L∗ plane.



D.3. More visualizations 203

−40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

a*

b*

 

 

measured patches
PLCC* estimated patches
PLVC estimated patches

Figure D.5: PDLP: visualization of errors for the testing data set projected on the a∗b∗ plane.
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Figure D.6: PDLP: visualization of errors for the testing data set projected on the a∗L∗ plane.
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Figure D.7: PDLP: visualization of errors for the testing data set projected on the b∗L∗ plane.
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Figure D.8: MCRT: visualization of errors for the testing data set projected on the a∗b∗ plane.
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Figure D.9: MCRT: visualization of errors for the testing data set projected on the b∗L∗ plane.
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Figure D.10: MLCD1: visualization of errors for the testing data set projected on the a∗b∗ plane.
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Figure D.11: MLCD1: visualization of errors for the testing data set projected on the a∗L∗ plane.
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Figure D.12: MLCD1: visualization of errors for the testing data set projected on the b∗L∗ plane.
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Figure D.13: MLCD2: visualization of errors for the testing data set projected on the a∗b∗ plane.
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Figure D.14: MLCD2: visualization of errors for the testing data set projected on the b∗L∗ plane.
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