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Abstract. We introduce a new accurate and technology independent
display color characterization model for color rendering of multispectral
images. The establishment of this model is automatic, and does not ex-
ceed the time of a coffee break to be efficient in a practical situation.
This model is a part of the color management workflow of the new tools
designed at the C2RMF for multispectral image analysis of paintings
acquired with the material developed during the CRISATEL European
project. The analysis is based on color reconstruction with virtual illumi-
nants and use a GPU (Graphics processor unit) based processing model
in order to interact in real time with a virtual lighting.

1 Introduction

The CRISATEL European Project [4] opened the possibility to the C2RMF of
acquiring multispectral images through a convenient framework. We are now able
to scan in one shot a much larger surface than before (resolution of 12000×20000)
in 13 different bands of wavelengths from ultraviolet to near infrared, covering
all the visible spectrum.

The multispectral analysis of paintings via a very complex image processing
pipeline, allows us to investigate a painting in ways that were totally unknown
until now [6].

Manipulating these images is not easy considering the amount of data (about
4GB by image). We can either use a pre-computation process, which will produce
even bigger files, or compute everything on the fly.

The second method is complex to implement because it requires an optimized
(cache friendly) representation of data and a large amount of computations. This
second point is not anymore a problem if we use parallel processors like graphic
processor units (GPU) for the computation. For the data we use a traditional
multi-resolution tiled representation of an uncorrelated version of the original
multispectral image.

The computational capabilities of GPU have been used for other applications
such as numerical computations and simulations [7]. The work of Colantoni and
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al. [2] demonstrated that a graphic card can be suitable for color image processing
and multispectral image processing.

In this article, we present a part of the color flow used in our new software
(PCASpectralViewer): the color management process. As constraints, we want
the display color characterization model to be as accurate as possible on any
type of display and we want the color correction to be in real time (no pre-
processing). Moreover, we want the model establishment not to exceed the time
of a coffee break.

We first introduce a new accurate display color characterization method. We
evaluate this method and then describe its GPU implementation for real time
rendering.

2 Color Management Process

The CRISATEL project produces 13 planes multispectral images which corre-
spond to the following wavelengths: 400, 440, 480, 520, 560, 600, 640, 680, 720,
760, 800, 900 and 1000nm. Only the 10 first planes interact with the visible
part of the light. Considering this, we can estimate the corresponding XYZ()
tri-stimulus values for each pixel of the source image using Equation 1:

⎧
⎪⎨

⎪⎩

X =
∑λ=760

λ=400 x(λ)R(λ)L(λ)
Y =

∑λ=760
λ=400 y(λ)R(λ)L(λ)

Z =
∑λ=760

λ=400 z(λ)R(λ)L(λ)
(1)

where R(λ) is the reflectance spectrum and L(λ) is the light spectrum (the
illuminant).

Using a GPU implementation of this formula we can compute in real-time
the XYZ and the corresponding L∗a∗b∗ values for each pixel of the original
multispectral image with a virtual illuminant provided by the user (standard or
custom illuminants).

If we want to provide a correct color representation of these computed XYZ
values, we must apply a color management process, based on the color charac-
terization of the display device used, in our color flow. We then have to find
which RGB values to input to the display in order to produce the same color
stimuli than the retrieved XYZ values represents, or at least the closest color
stimuli (according to the display limits).

In the following, we introduce a color characterization method which gives
accurate color rendering on all available display technologies.

2.1 Display Characterization

A display color characterization model aims to provide a function which esti-
mates the displayed color stimuli for a given 3-tuple RGB input to the display.
Different approaches can be used for this purpose [5], based on measurements of
input values (i.e. RGB input values to a display device) and output values (i.e.
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Fig. 1. Characterization process from RGB to L∗a∗b∗

XYZ or L∗a∗b∗ values measured on the screen by a colorimeter or spectrometer)
(see figure.1).

The method we present here is based on the generalization of measurements
at some position in the color space. It is an empirical method which does not
consider any assumptions based on display technology. The forward direction
(RGB to L∗a∗b∗), is based on RBF interpolation on an optimal set of mea-
sured patches. The backward model (L∗a∗b∗ to RGB) is based on tetrahedral
interpolation. An overview of this model is shown in Figure 2.

Fig. 2. Overview of the display color characterization model

2.2 Forward Model

Traditionally a characterization model (or forward model) is based on an in-
terpolation or an approximation method. We found that radial basis function
interpolation (RBFI) was the best model for our purpose.

RBF Interpolation. is an interpolation/approximation [1] scheme for arbi-
trarily distributed data. The idea is to build a function f whose graph passes
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through the data and minimizes a bending energy function. For a general M-
dimensional case, we want to interpolate a valued function f(X) = Y given by
the set of values f = (f1, ..., fN ) at the distinct points X = x1, ..., xN ⊂ �M .
We choose f(X) to be a Radial Basis Function of the shape:

f(x) = p(x) +
N∑

i=1

λiφ(||x − xi||) x ∈ �M

where p is a polynomial, λi is a real-valued weight, φ is a basis function, φ :
�M → �, and ||x − xi|| is the euclidean norm between x and xi. Therefore,
a RBF is a weighted sum of translations of a radially symetric basis function
augmented by a polynomial term. Different basis functions (kernel) φ(x) can by
used.

Considering the color problem, we want to establish three three-dimensional
functions fi(x, y, z). The idea is to build a function f(x, y, z) whose graph passes
through the tabulated data and minimizes the following bending energy function:
∫∫∫

�3
(f3

xxx+f3
yyy +f3

zzz +3f3
xxy +3f3

xxz +3f3
xyy +3f3

xzz +3f3
yyz +3f3

yzz +6f3
xyz)dxdydz

(2)

For a set of data {(xi, yi, zi, wi)}n
i=1 (where wi = f(xi, yi, zi)) the minimizing

function is such as:

f(x, y, z) = b0 + b1x + b2y + b3z +
n∑

j=1

ajφ(||(x − xj , y − yj , z − zj)||) (3)

where the coefficients aj and b0,1,2,3 are determined by requiring exact interpo-
lation using the following equation

wi =
n∑

j=1

φijaj + b0 + b1xi + b2yi + b3zi (4)

for 1 ≤ n where φij = φ(||(xi − xj , yi − yj , zi − zj)||). In matrix form this is

h = Aa + Bb (5)

where A = [φij ] is an n × n matrix and where B is an n × 4 matrix whose rows
[1 xi yi zi]. An additional implication is that

BT a = 0 (6)

These two vector equations can be solved to obtain

a = A−1(h − Bb) and b = (BT A−1B)−1BT A−1h.

It is possible to provide a smoothing term. In this case the interpolation is not
exact and becomes an approximation. The modification is to use the equation

h = (A + λI)a + Bb (7)
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a = (A + λI)−1(h − Bb) and b = (BT (A + λI)−1B)−1BT (A + λI)−1h.

where λ > 0 is a smoothing parameter and I is the n × n identity matrix.
In our context we used a set of 4 real functions as kernel, the biharmonic

(φ(x) = x), triharmonic (φ(x) = x3), thin-plate spline 1 (φ(x) = x2log(x)) and
thin-plate spline 2 (φ(x) = x2log(x2)), with x the distance from the origin. The
use of a given basis function depends on the display device which is characterized,
and gives some freedom to the model.

Color Space Target. Our forward model uses L∗a∗b∗ as target (L∗a∗b∗ is a
target well adapted for the gamut clipping that we use). This does not imply
that we have to use L∗a∗b∗ as target for the RBF interpolation. In fact we have
two choices. We can use either L∗a∗b∗ which seems to be the most logical target
or XYZ associated with a XYZ to L∗a∗b∗ color transformation.

The use of different color spaces as target gives us another degree of freedom.

Smooth Factor Choice. Once the kernel and the color space target are fixed,
the smooth factor, includes in the RBFI model used here, is the only parameter
which can be used to change the properties of the transformation. With a zero
value the model is a pure interpolation. With a different smooth factor, the
model becomes an approximation. This is an important feature because it helps
us to deal with the measurement problems due to the display stability (a color
rendering for a given RGB value can change with the time) and to the measure
repeatability of the measurement device.

2.3 Backward Model Using Tetrahedral Interpolation

While the forward model defines the relationship between the device “color
space” and the CIE system of color measurement, we present in this section
the inversion of this transform. Our problem is to find, for a L∗a∗b∗ values com-
puted by the GPU from the multispectral image and the chosen illuminant, the
corresponding RGB values (for a display device previously characterized).

This backward model could use the same interpolation methods previously
presented but we used a new and more accurate method [3]. This new method
uses the fact that if our forward model is very good then it is associated with
an optimal patch database (see 2.4 ). Basically, we use a hybrid method; a
tetrahedral interpolation associated with an over-sampling of the RGB cube
(see Figure 3). We have chosen the tetrahedral interpolation method because
of its geometrical aspect (this method is associated with our gamut clipping
algorithm).

We build the initial tetrahedral structure using an uniform over sampling of
the RGB cube (n × n × n samples). This over sampling process uses the for-
ward model to compute the corresponding structure in the L∗a∗b∗ color space.
Once this structure is built, we can compute, for an unknown CLab color, the
associated CRGB color in two steps: First, the tetrahedron which encloses the
point CLab to be interpolated should be found (the scattered point set is tetra-
hedrized); and then, an interpolation scheme is used within each tetrahedron.



A Color Management Process 133

Fig. 3. Tetrahedral structure in L∗a∗b∗ and the correponding structure in RGB

More precisely, the color value C of the point is interpolated from the color val-
ues Ci of the tetrahedron vertices. A tri-linear interpolation within a tetrahedron
can be performed as follows:

C =
3∑

i=0

wiCi

The weights can be calculated by wi = Vi

V with V the volume of the tetrahedron
and Vi the volume of the sub-tetrahedron according to:

Vi =
1
6
(Pi − P )[(Pi+1 − P )(Pi+2 − P )]; i = 0, ..., 3

where Pi are the vertices of the tetrahedron and the indices are taken modulo 4.
The over-sampling used is not the same for each axis of RGB. It is computed

according to the shape of the display device gamut in the L∗a∗b∗ color space.
We found that than an equivalent to 36 × 36 × 36 samples was a good choice.
Using such a tight structure linearizes locally our model which becomes perfectly
compatible with the used of a tetrahedral interpolation.

2.4 Optimized Learning Data Set

In order to increase the reliability of the model, we introduce a new way to de-
termine the learning data set for the RBF based interpolation (e.g. the set of
color patches measured on the screen). We found that our interpolation model
was most efficient when the learning data set used to initialize the interpola-
tion was regularly distributed in our destination color space (L∗a∗b∗). This new
method is based on a regular 3D sampling of L∗a∗b∗ color space combined with
a forward - backward refinement process after the selection of each patch. This
algorithm allows us to find the optimal set of RGB colors to measure.

This technique needs to select incrementally the RGB color patches that will
be integrated into the learning database. For this reason it has been integrated
into a custom software tool which is able to drive a colorimeter. This software
also measures a set of 100 random test patches equiprobably distributed in RGB
used in order to determine the accuracy of the model.
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2.5 Results

We want to find the best backward model which allows us to determine, with
a maximum of accuracy, the RGB values for a computed XYZ. In order to
complete this task we must define an accuracy criteria. We chose to multiply
the average ΔE76 by the standard deviation (STD) of ΔE76 of the set of 100
patches evaluated with a forward model. This criteria makes sense because the
backward model is built up on the forward model.

Optimal Model. The selection of the optimal parameters can be done using a
brute force method. We compute for each kernels (ie. biharmonic, triharmonic,
thin-plate spline 1, thin-plate spline 2), each color space target (L∗a∗b∗, XYZ
and several smooth factors (0, 1e-005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1) the values of this criteria and we select the minimum.

For example the following table shows the report obtains for a SB2070 Mit-
subishi DiamondPro with a triharmonic kernel for L∗a∗b∗ (Table 1) and XYZ
(Table 2) as color space target (using a learning data set of 216 patches):

According to our criteria the best kernel is the triharmonic with a smooth
factor of 0.01 and XYZ as target.

Table 1. Part of the report obtained in order to evaluate the best model parameters.
The presented results are considering L∗a∗b∗ as target color space, and a triharmonic
kernel for a CRT monitor SB2070 Mitsubishi DiamondPro.

smooth factor 0 0.0001 0.001 0.01 0.1

ΔE Mean 0.379 0.393 0.376 0.386 0.739
ΔE STD 0.226 0.218 0.201 0.224 0.502
ΔE Max 1.374 1.327 1.132 1.363 2.671
ΔE 95% 0.882 0.848 0.856 0.828 1.769

ΔRGB Mean 0.00396 0.00459 0.00438 0.00421 0.00826
ΔRGB STD 0.00252 0.00323 0.00316 0.00296 0.00728
ΔRGB Max 0.01567 0.02071 0.01768 0.01554 0.05859
ΔRGB 95% 0.00886 0.01167 0.01162 0.01051 0.01975

Table 2. Part of the report obtained in order to evaluate the best model parameters.
The presented results are considering XYZ as target color space, and a triharmonic
kernel for a CRT monitor SB2070 Mitsubishi DiamondPro.

smooth factor 0 0.0001 0.001 0.01 0.1

ΔE Mean 0.495 0.639 0.539 0.332 0.616
ΔE STD 0.293 0.424 0.360 0.179 0.691
ΔE Max 1.991 2.931 2.548 1.075 4.537
ΔE 95% 1.000 1.427 1.383 0.7021 1.751

ΔRGB Mean 0.00674 0.00905 0.00720 0.00332 0.00552
ΔRGB STD 0.00542 0.00740 0.00553 0.00220 0.00610
ΔRGB Max 0.02984 0.03954 0.03141 0.01438 0.04036
ΔRGB 95% 0.01545 0.02081 0.01642 0.00597 0.01907
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The measurement process took about 5 minutes and the optimization process
took 2 minutes (with a 4 cores processor). We reached our goal which was to
provide an optimal model during a coffee break of the user.

Our different experimentation showed that a 216 patches learning set was a
good compromise (equivalent to a 6×6×6 sampling of the RGB cube). A smaller
data set gives us a degraded accuracy, a bigger gives us similar results because
we are facing the measurement problems introduced previously.

Optimized Learning Data Set. Table 3 and Table 4 show the results obtained
with our model for two displays of different technologies. These tables show
clearly how the optimized learning data set can produce better results with the
same number of patches.

Table 3. Accuracy of the model established with 216 patches in forward and backward
direction for a LCD Wide Gamut display (HP2408w). The distribution of the patches
plays a major role for the model accuracy.

Forward model Backward model
ΔE Mean ΔE Max ΔRGB Mean ΔRGB Max

Optimized 1.057 4.985 0.01504 0.1257
Uniform 1.313 9.017 0.01730 0.1168

Table 4. Accuracy of the model established with 216 patches in forward and backward
direction for a CRT display (Mitsubishi SB2070). The distribution of the patches plays
a major role for the model accuracy.

Forward model Backward model
ΔE Mean ΔE Max ΔRGB Mean ΔRGB Max

Optimized 0.332 1.075 0.00311 0.01267
Uniform 0.435 1.613 0.00446 0.01332

Table 5. Accuracy of the model established with 216 patches in forward and backward
direction for three other displays. The model performs well on all monitors.

Forward model Backward model
ΔE Mean ΔE Max ΔRGB Mean ΔRGB Max

EIZO CG301W (LCD) 0.783 1.906 0.00573 0.01385
Sensy 24KAL (LCD) 0.956 2.734 0.01308 0.06051
DiamondPlus 230 (CRT) 0.458 2.151 0.00909 0.06380

Results for Different Displays. Table 5 presents different results obtained
for 3 others displays (2 LCD and 1 CRT).

Considering that non trained humans can not discriminate ΔE less than 2, we
can see here that our model gives very good results on a wide range of display.
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2.6 Gamut Mapping

The aim of gamut mapping is to ensure a good correspondence of overall color
appearance between the original and the reproduction by compensating for the
mismatch in the size, shape and location between the original and reproduction
gamuts.

The L∗a∗b∗ computed color can be out of gamut (i.e. the destination display
cannot generate the corresponding color). To ensure an accurate colorimetric
rendering, considering L∗a∗b∗ color space, and low computational requirements,
we used a geometrical gamut clipping method based on the pre-computed tetra-
hedral structure (generated in our backward model) and more especially on the
surface of this geometrical structure (see figure.3).

The clipped color is defined by the intersection of the gamut boundaries and
the segment between a target point and the input color. The target point used
here is an achromatic L∗a∗b∗ color with a luminance of 50.

3 GPU-Based Implementation

Our color management method is based on a conversion process which will com-
pute for a XYZ values the corresponding RGB.

It is possible to implement the presented algorithm with a specific GPU lan-
guage, like CUDA, but our application will only works with CUDA compatible
GPU (nvidiaT M G80, G90 and GT200). Our goal was to have a working appli-
cation on a large number of GPU (AMD and nvidiaTM GPUs), for this reason
we choose to implement a classical method using a 3D lookup table.

During an initialization process we build a three dimensional RGBA floating
point texture which cover the L∗a∗b∗ color space. The alpha channel of the
RGBA values saves the distance between the initial L∗a∗b∗ value and L∗a∗b∗

value obtained after the gamut mapping process. If this value is 0 the L∗a∗b∗

color which will have to be converted is in the gamut of the display otherwise
this color is out gamut and we are displaying the closest color (according to our
gamut mapping process). This allows us to display in real time the color errors
due to the screen inability to display every visible colors.

Finaly our complete color pipeline includes: a reflectance to XYZ conversion
then a XYZ to L∗a∗b∗ conversion (using the white of the screen as reference)
and our color management process based on the 3D lookup table associated with
a tri-linear interpolation process.

4 Conclusion

We presented a part of a large multispectral application used at the C2RMF. It
has been shown that it is possible to implement an accurate color management
process even for a real time color reconstruction. We showed a color management
process based only on colorimetric consideration. The next step is to introduce
a color appearance model in our color flow. The use of such color appearance
model, built up on our accurate color management process, will allows us to do
virtual exhibition of painting.
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