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Abstract. This paper presents a useful algorithmic strategy to sample
uniformly the CIELAB color space based on close packed hexagonal
grid. This sampling scheme has been used successfully in different re-
search works from computational color science to color image process-
ing. The main objective of this paper is to demonstrate the relevance
and the accuracy of the hexagonal grid sampling method applied to the
CIELAB color space. The second objective of this paper is to show that
the number of color samples computed depends on the application and
on the color gamut boundary considered. As demonstration, we use this
sampling to support a discussion on the number of discernible colors
related to a JND.

Keywords: Sampling; 3D close packed hexagonal grid; perceptually
uniform color space; computational color imaging

1 Introduction

CIELAB color space [3] has been accepted by the CIE (International Commis-
sion on Illumination) as a perceptually pseudo-uniform color space. As such, the
Euclidean distance between two specified colors in this space is proportional to
the color difference between these two colors perceived by a standard observer.
Although this color space has been defined only for very well defined and lim-
ited colorimetric conditions, it has been successfully used in practice in many
applications in color image processing or computational color science.

Sampling a color space is a major issue in many applications in terms of
hardware complexity and speed, accountability to perception, and resulting im-
age quality [8]. Historically, a parallelipipedic grid was used for sampling this
space [11]. Such a grid is defined by a regular lattice that is reproduced over
and over in order to fill the space. In some cases, the sampling is performed in
an RGB or CMY space and then transformed into CIELAB, which leads to
a large non-uniformity of the final sampling [19,30], see Table 1, Table 2, and
Figure 1.
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Table 1. An indirect sampling of CIELAB color space from an uniform sampling of a
linear RGB induces non-uniformities. The minimum, maximum and average distances
between two adjacent samples in the CIELAB color space depend on the sampling
step of RGB color space [30]. In this example, the RGB space is coded on 8-bits.
Calculations are done with the standard illuminant CIE C. The JND proposed in this
article is of 0.2 ∆E∗

ab units.

Sampling Min Max Mean Percent of ∆E∗
ab

step ∆E∗
ab ∆E∗

ab ∆E∗
ab inf. to 0.2

1 0.152 13.210 0.633 1.63

0.5 0.076 6.660 0.316 39.54

0.25 0.038 3.340 0.157 80.83

Table 2. An indirect sampling of CIELAB color space from an uniform sampling of
a non-linear sRGB color space induces non-uniformities too. The minimum, maximum
and average distances between two adjacent samples in the CIELAB color space de-
pend on the sampling step of sRGB color space. In this example, we computed these
differences within the sRGB space coded on 6, 7, 8, 9 and 10-bits with different percep-
tual metrics (∆E∗

ab, ∆E∗
94, ∆E∗

00). Calculations are done with the standard illuminant
CIE D65. We can notice less non-uniformity than shown in Table 1 because of the
gamma correction involved in the sRGB transform.

Bits number 6 7 8 9 10
dataset size 643 1273 2563 5123 10243

∆E∗
ab Mean 1.9134 0.9474 0.4714 0.2351 0.1174

Min 0.0075 0.0016 0.0003 0.0 0.0
Max 5.3717 2.7098 1.3752 0.6973 0.3561

∆E∗
94 Mean 1.0286 0.509 0.2532 0.1263 0.0631

Min 0.0025 0.0005 0.0001 0.0 0.0
Max 4.5906 2.2797 1.1554 0.585 0.2997

∆E∗
00 Mean 0.9828 0.4867 0.2421 0.1208 0.0603

Min 0.0024 0.0005 0.0 0.0 0.0
Max 5.6559 2.8403 1.4409 0.7435 0.3862

(a) Regular sampling of sRGB. (b) Transform of a regular sampling
from sRGB to CIELAB.

Fig. 1. Visualization of a regular sampling of sRGB and its conversion into CIELAB

space. We can notice a large lack of uniformity in such a sampling.
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In other cases, the space is directly sampled using a parallelipipedic grid,
which has the default property of not being really uniform. For instance, in the
case of a cubic sampling using edges of size a, the distance between a sample
and its closest neighbors can be either a, a

√
2 or a

√
3.

If we could define a Just Noticeable Difference (JND) between color samples
as a given Euclidean distance in CIELAB, then we would like to sample it in
the most efficient way, i.e. to have the same JND between each sample and its
neighbors.

Through this paper we want to show the advantages of using a regular sam-
pling of the CIELAB color space in providing details, issues and algorithm im-
plementation. We want also to provide answers to the following questions: how
many discernible colors can be defined in the CIELAB color space uniformly
spaced?

In section 2, we first recall the history of this sampling, then in section 3 we
explicit the sampling strategy proposed and provide formula and corresponding
algorithm in pseudo-code. This sampling has been used successfully in different
works related to computational color imaging. Some examples are given and
commented in section 4. Next, in section 5, we propose a strategy to compute
the number of discernible colors. We continue, in section 6, with a discussion and
provide some results in order to demonstrate the relevance and the accuracy
of the hexagonal grid sampling method applied to the CIELAB color space.
Finally, we conclude this work in pointing out the need of a color space definition
with non-Euclidean perceptual metrics.

2 History and strategy

In 1611, Johannes Kepler proposed a mathematical conjecture concerning the
densest way to arrange same sized spheres in a 3D Euclidean space. Following
that conjecture, a way to obtain the most compact arrangement is to arrange
spheres in order to form a face-centered cubic distribution [15]. During the 19th

century, Gauss demonstrated that the most compact way to arrange discs in
a 2D plan, could be reached if these discs are arranged in a hexagonal way.
His demonstration is based on the fact that the center of each disc is at equal
distance of its six direct neighbors. He kept open the possibility that a random
arrangement can be more compact [7]. Fejes proved that it is the only densest
way in the 20th century [29].

In 1998, Thomas Hales exhaustively demonstrated that spheres arranged in a
face-centered cubic or in a hexagonal closed distribution yield the highest density
[9].

Based on these works and on the fact that the sphere centers are at equal
distance from their direct neighbors, one can define a regular sampling of a
tridimensional Euclidean space, such as CIELAB. Such a sampling has been
used already in the field of computational color science and color imaging. Firstly
it has been used for color specification, such as Munsell re-annotation [32] and
OSA color system arrangement [6,17]. Secondly, and specifically, for the sampling
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of CIELAB color space, it has been used for color image quantization and
description [28,27,5] and for display color characterization [24,25,4].

3 Formula and algorithm

3.1 Sampling strategy

A 3D color space, including the gamut of a given device, the spectrum locus
under a given illumination, or the gamut of an image, can be sampled in the
CIELAB color space, using a hexagonal closed packing scheme. We distribute
samples in the CIELAB color space, inside the considered solid, as if they
were the center of spheres in a close-packing of spheres problem. We do not use
the face-centered cubic lattices for algorithmic simplicity. This last arrangement
would not be of benefit for color imaging applications since we do not use the
properties of periodicity and symmetry of such a structure, while the sampling
remains the same (we do not discard the fact that for some color specification
spaces or other applications, these properties could be useful).

In the algorithmic strategy we propose here, we use only a two layers alter-
native such as illustrated in Figure 2, creating a hexagonal closed lattice. It is
enough to perform a translation to switch from the first layer to the second, and
so on. Then, each sphere center is at equal distance of its direct neighbors, which
form a Johnson polyhedron number 27 (J27), i.e. a triangular orthobicupola [12].

Fig. 2. Sampling scheme of CIELAB color space. The hexagon drawn in dark plain
lines is defined along the L* axis by a first layer meanwhile the second hexagon drawn
in light plain lines corresponds to a second layer at the distance dref of the first layer.
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3.2 Computation

In this section we explain the sampling algorithm, such as it has been used in
[24,28,5].

Let us introduce the following notations: L∗
x, a

∗
x, b

∗
x denote the coordinates

of a given color in the CIELAB color space, and L∗
y,a

∗
y,b

∗
y the coordinates of a

second one. The CIE∆E∗
ab color distance between these two colors corresponding

to the Euclidean distance is defined such as:

∆E∗
ab =

√

d2L + d2a + d2b (1)

with |L∗
x − L∗

y| = dL, |a∗x − a∗y| = da, |b∗x − b∗y| = db.
Let dref be an arbitrary distance in CIELAB color space between two ad-

jacent samples, which is named as the sampling distance. If we set that the
two samples belong to the same layer along the L* axis, i.e. dL = 0, and that
da = dref and db = 0, then

√

d2L + d2a + d2b = dref . Likewise, if we set that the
two samples belong to the same layer along the L* axis, i.e. dL = 0, and that

da = 1

2
×dref and db =

√

3

4
×dref , then

√

d2L + d2a + d2b = dref . Finally, if we set

da = 1

2
×dref , db =

1

2
√
3
×dref and dL =

√

2

3
×dref , then

√

d2L + d2a + d2b = dref .

Let us now set Lmin, Lmax, amin, amax, bmin, and bmax the lower and upper
gamut color values of the CIELAB color space along the L∗, a∗ and b∗ axis.

Considering the arrangement explained above, the 3D grid is then defined
such as (See Figure 2):

– if the distance which separates two consecutive samples along the a∗ axis is
such as dref = |a∗ia − a∗ia+1

| then the distance which separates two samples

along this axis is

√

(

a∗ia − a∗ia+1

)2

= dref .

– if the distances which separate two adjacent samples along the a* and b*

axis are such as 1

2
× dref = |a∗ia,ib − a∗ia,ib+1

| and
√

3

4
× dref = |b∗ia,ib −

b∗ia,ib+1
|, then the distance which separates two samples in the a*b* plane is

√

(

a∗ia,ib − a∗ia,ib+1

)2

+
(

b∗ia,ib − b∗ia,ib+1

)2

= dref .

– the distances which separate two adjacent samples along the a∗, b∗ and L∗

axis are such as 1

2
×dref = |a∗iL,ia,ib

−a∗iL+1,ia,ib
| and 1

2
√
3
×dref = |b∗iL,ia,ib

−

b∗iL+1,ia,ib
|, or |a∗iL,ia,ib

− a∗iL+1,ia,ib
| = 0,

√

1

3
× dref = |b∗iL,ia,ib

− b∗iL+1,ia,ib
|

and
√

2

3
× dref = |L∗

iL,ia,ib
− L∗

iL+1,ia,ib
|, then the distance which separates

these two samples in CIELAB color space is

dref =

(

(

a∗iL,ia,ib
− a∗iL+1,ia,ib

)2

· · ·

+
(

b∗iL,ia,ib
− b∗iL+1,ia,ib

)2

+
(

L∗
iL,ia,ib

− L∗
iL+1,ia,ib

)2
1/2
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The smaller dref is the finer the sampling of the color space is, then the
generated number of samples increases inversely proportionally to the distance
dref .

Thus, if we consider:NL = Lmax−Lmin

dref

√
2
3

,Na = amax−amin

dref
andNb =

bmax−bmin

dref

√
3
4

,

with NL, Na and Nb the number of sample values generated along the L∗,
a∗ and b∗ axis respectively. Then, N = NL ×Na ×Nb, the number of samples is
function of 1

1
√

2
×d3

ref

.

The final number of patches is constituted of the intersection of the sampled
cube with the gamut we want to sample.

3.3 Algorithm

Algorithm 1 Grid Generation

1: procedure GridGeneration(in dref , L
∗
min, L

∗
max, a

∗
min, a

∗
max, b

∗
min, b

∗
max, out

result[])

2: h←
√
3

2
dref

3: t←
√

3

2
dref

4: q ←
dref

2

5: m← 0
6: n← 0
7: count← 0
8: for i← L∗

min to i < L∗
max with i← i+ t do

9: for j ← a∗
min to j < a∗

max with j ← j + l do

10: for k ← b∗min to k < b∗max with k ← k + h do

11: L∗ ← i

12: a∗ ← j

13: b∗ ← k

14: if n mod 2 6= 0 then

15: a∗ ← a∗ + q

16: end if

17: if m mod 2 6= 0 then

18: a∗ ← a∗ + q

19: b∗ ← b∗ + q

20: end if

21: result[count]← L∗, a∗, b∗

22: n← n+ 1
23: count← count+ 1
24: end for

25: end for

26: m← m+ 1
27: end for

28: end procedure
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In this section, we explicit the algorithm. The sampling function depends of
the upper and lower boundaries of each axis and of dref . It creates as output an
array that contains the list of obtained samples (See Algorithm 1).

4 An application dependent problem

In the following we give some examples of applications for which such a sampling
is useful. These examples are related to: LUT interpolation, quantization and
visualization. These examples show that the number of discernible colors depends
of the application.

– Color image quantization.
A uniform quantization algorithm has been proposed using this sampling,
giving good results compared with other methods [28]. This scheme was
based on a split and merge process based on simple weighting indicators
(Figure 3).

Fig. 3. Visualization of the color gamut of an image. On the left, the image, in the mid-
dle the gamut of the image, on the right the image gamut sampled with the presented
scheme.

In [28] it is demonstrated that the quality of the quantization depends firstly
of the number of colors desired. It is also demonstrated that with a dref =
2 or a dref = 3 in CIELAB we can obtain a good compromise between
sampling precision and image quality, and that the choice of dref value, is
before all, image dependent.

– Color image characterization and visualization for cultural heritage.
For the study of art painting, this sampling is of great help to visualize the
color content of calibrated images of masterpieces [5].
Indeed, visualization of the color content of a painting can help to better
understand the style, compositional structure and material content. There
are several ways to visualize colorimetric data from a color image. One op-
tion is to use 3D Virtual Reality to view colorimetric data in an arbitrary
orientation in a standard color space. Based on this sampling, a new colori-
metric visualization method has been proposed [5]. The originality of this
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(a) Image considered on the left and a sample on it on the right.

(b) Visualization of the color information from the
image sample above.

Fig. 4. Visualization of the color content of a calibrated picture of Virgin and Child
with Saint John the Baptist and Three Angels by Sebastiano Mainardi. We can see
the color gamut of the image (the color data clouds), the 3D histogram (the spheres,
which radius is proportional to the number of pixels of a given color in the image) and
information on the color gradient that links adjacent colors in the image (the width
of the tetrahedral structure, more the edges are thick more these colors are spatially
closed within the image, showing a color gradient).
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method is that it includes also the spatial organization of the colors within
the painting. Thus, it is possible to visualize information on color gradients
that may appear in the painting using simple 3D primitives. The efficiency
of this method has been shown on a colorimetrically calibrated image repre-
senting an Italian Renaissance painting (Figure 4). In this application, the
relevance of the method and the number of samples depends firstly of the
value dref used and secondly of the shape of the gamut considered.

– Display colorimetric characterization.
Device color characterization has been successfully performed while using
this sampling [24,25,4]. Results overcome most of today’s methods. The best
results are obtained when this sampling is used in synergy with an interpo-
lation/approximation method based on polyharmonic splines (Figure 5).

Fig. 5. Visualization of the color gamut of a display sampled with the presented scheme.
The gamut boundaries are not shown here but can be easily computed from the data
set using any method.

From experiments done in our laboratories with different digital devices,
e.g. CRT monitors or LCD monitors, we estimated that with a dref = 10
or a dref = 15 in CIELAB we can obtain a good compromise between
the number of samples to measure in order to characterize a display and
the characterization accuracy. We also observed, but not proved, that the
number of samples depends firstly of the value dref used and secondly of the
size of the gamut considered.

We have seen in the three applications mentioned that the number of relevant
colors depends firstly of the image studied and/or of the shape and the size of the
gamut considered. We can also claim that the number of relevant colors depends
strongly on the number of discernible colors, and consequently on the value dref
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used. Let us now consider another kind of application, for which the accuracy of
results depends even more on the accuracy of the sampling.

5 Number of discernible colors

In colorimetry, the discretization of the color gamut of the spectrum locus can
be optimized accordingly to a JND. If we consider dref as a JND, then we do not
need to consider a continuous space anymore, but only the number of samples
given by such sampling scheme, as illustrated in Figure 6.

(a) dref of 3: 111,933 selected colors. (b) dref of 5: 24,178 selected colors

(c) dref of 10: 3,025 selected colors

Fig. 6. Visualization of the discretization of the color gamut associated to the spectrum
locus of the 1931 standard observer under a D65 standard illumination. Here, we used
three different dref and obtained three datasets of colors that describe plainly this
color gamut, assuming perceptual uniformity with the Euclidean metric and dref as
the JND.

The parameters of the algorithm method used may be debated as some factors
influence the sampling quality. First, parameter dref is critical for the sampling,
but some other factors play also a role in the final quality. We can notice two
major factors: the Color Gamut Boundary (CGB) used and the origin of the
sampling process in interaction with the boundaries. The CGB has no direct
interaction with the sampling strategy itself. But in a given application, results
can be critically different while using one or another CGB in the number of
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selected data and in the number of occurrences of these data in a given image.
So, under estimating the gamut or over estimating the gamut can be seen as a
problem.

The origin of the sampling is also of major importance. For instance, while
working with color imaging devices, there is often an offset, which leads the
gamut not to be defined in CIELAB coordinates (0, 0, 0). The darkest point
could be defined for instance by (4, 1, 2), in this case it could be judicious to
choose the starting point of the sampling such as (4, 1, 2) to be sure to have the
most useful data related to the darkest part. The same effect can be observed in
the brightest part of the gamut defined by the highest coordinates of the gamut
shape which should be (100, aw, bw). But, the last sample included in the data set
can be (98, al, bl) depending on dref . The same effect can be observed everywhere
around the boundaries. It is then necessary to add an offset parameter from
where the sampling shall start. This offset will not be debated more here, but
for some application it is of major importance. It can be defined by a priori
knowledge on the gamut or/and on the CGB, or refined with several iterations.

The most critical parameter is the choice of dref . Tremeau et al. [30] demon-
strated that a dref = 0.2 in CIELAB could be considered as a good approx-
imation of the JND. With such a distance the number of samples generated is
very high. Intuitively, one would like to find a good tradeoff between the accu-
racy of the sampling, the sensitivity of the Human Visual System, and hardware
complexity and speed.

A good strategy could be to keep dref stucks with a JND or to an accept-
ability threshold based on human vision. In the colorimetric case, several choices
can be done. Kang [14] said on the page 167 of his book that the JND is of 1
∆E∗

ab unit. Mahy et al. [18] study assessed that the JND is of 2.3 ∆E∗
ab units.

In the case of color imaging devices, many different sets of thresholds have been
used [1,10,22,23], considering ∆E∗

ab, for color imaging devices. Stokes et al. [26]
found a perceptibility acceptance for pictorial images of an average of 2.15 units.
Catrysse et al. [2] used a threshold of 3 units.

So, what is the best value for dref? To answer to this question, let us consider
for example that we want to sample the color gamut associated to the spectrum
locus of the 1931 standard observer under a D65 standard illumination (See
Figure 6).

6 Discussion and results

If we use a dref of 3, we obtain 111,933 discernible colors. In the same way, we
obtain 24,178 colors for a dref of 5, and 3,025 colors for a dref of 10.

With this sampling, both Min, Max and Mean values of ∆E are equal to
dref and the variance of the twelve direct neighbors is equal to 0. These values,
compared with the values given in Table 1 and Table 2, demonstrate that this
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sampling is more uniform than the indirect sampling of CIELAB color space
based on an uniform sampling of the RGB color space.4

If we increase the dref value, then consequently the number of sample com-
puted decrease. These two parameters are related by a non-linear law shown in
Figure 7.
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Fig. 7. Relationship between dref and the number of samples data for an CIE standard
observer 1931 and a D65 illumination.

We can compare these results with the number of discernible colors proposed
by other authors:

– Judd and Wyszecki [13] who talked of about 10,000,000 colors included into
the theoretical limits.

– Pointer and Attridge [21], considering some restriction in the possible natural
spectra (the MacAdam limits), who talked of about 2,279,381 colors.

– Linhares at al. [16], based on natural scene analysis, who talked of about
2,275,698 colors.

Although the first ones used a parallelipipedic grid and the last ones used
an analysis based on the CIEDE2000 color difference, the number of discernible
colors both proposed is quite consistent.

If we look at our results using ∆E∗
ab, we can find a number of discernible

colors of 12,163,500 using a JND of 1 units, which is relatively closed to the
number given by Judd and Wyszecki. In another hand, the JND of 1 seems to

4 The values computed for the indirect sampling of the CIELAB color space are only
computed with 6 neighbors.



Sampling CIELAB 13

be not very well fitted by ∆E∗
ab. If we consider a given number of about 2,300,000

discernible colors, the JND would be of around 1.78 ∆E∗
ab units while using our

sampling method, which is closer to the one proposed by Mahy et al. In all
cases, a variation can be tolerated due to the approximation done on the gamut
boundaries and on the perceptual uniformity of the couple (CIELAB, ∆E∗

ab).
Some could argue that does not make sense to define a JND value in the

CIELAB color space because in this color space MacAdam ellipses are, for
some of them, up to 3 times larger than the others. Others claim that even if the
CIELAB color space is only approximately uniform, it is nevertheless essential
to define a unique JND value whatever the colors considered, otherwise it does
not make sense to compute a ∆E∗

ab to compare any color difference.
Based on the different studies mentioned in this paper and on the computa-

tions done, we consider that the best tradeoff, between the number of discernible
colors and the JND between them, seems to be a JND between 1.5 and 2. ∆E∗

ab

units. In taking it the other way around, we could assume that there are, at
most, 2,300,000 discernible colors in this color gamut.

Of course this number is not a definite perceptual number of discernible
colors, but only an indication of a number of samples used to define a given
gamut. Morovic et al. [20] demonstrated that the quest of such a number of visible
colors is vain. However, this case studied helps to demonstrate the efficiency of
our sampling.

Even if the complexity of the hexagonal grid sampling is slightly higher than
with the parallelepiped grid sampling and that the number of samples is lower
with the parallelepiped sampling, there is a benefit to use the hexagonal sam-
pling. Indeed, the accuracy of the sampling is greatly increased with the hexag-
onal grid sampling than with the parallelepiped one.

7 Conclusion

We have shown that the uniform sampling strategy detailed in this paper could
be of great interest in many applications. However until now it was not widely
used in the image processing community, as there was some uncertainties about
the number of discernible colors and about the parameter dref . We have demon-
strated in this paper that the number of color samples is dependent of the shape
and of the size of the color gamut considered. We have also shown that, for color
images, this number is also dependent of the color gamut of the image studied.
We have proposed a strategy to optimize this sampling in function of the color
gamut boundary. We have demonstrated that the number of discernible color
is dependent of the parameter dref and that this latter can be set to the JND.
Lastly, we have demonstrated the relevance and the accuracy of the hexagonal
grid sampling method applied to the CIELAB color space.

As an extension, we propose to build a similar uniform sampling in using a
tabulated version of CIELAB adapted to perceptual metrics different from the
Euclidean one, such as the ∆E94, ∆ECMC , ∆E00 and to extend it to other color
spaces than the CIELAB color space, such as color appearance spaces (e.g. JCH
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color space). Let us note that, to achieve such kind of sampling, it is far more
difficult. One can used the tabulated version of CIELAB proposed by Urban
et. al [31]. We initiated a work based on a different approach in a previous paper
[5], and a complete study of the distribution we reached will be presented in a
near future communication.
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22. Schläpfer, K.: Farbmetrik in der reproduktionstechnik und im mehrfarbendruck.
In: Schweiz, S.G. (ed.) 2. Auflage UGRA (1993)

23. Stamm, S.: An investigation of color tolerance. In: TAGA Proceedings. pp. 156–
173. TAGA Proceedings (1981)

24. Stauder, J.F., Colatoni, P.F., Blonde, L.F.: Device and method for characterizing
a colour device. EP1701555 (September 2006)

25. Stauder, J., Thollot, J., Colantoni, P., Tremeau, A.: Device, system and method
for characterizing a colour device. European Patent WO/2007/116077, EP1845703
(October 2007)

26. Stokes, M., Fairchild, M.D., Berns, R.S.: Precision requirements for digital color
reproduction. ACM Trans. Graph. 11(4), 406–422 (1992)
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