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Abstract. Hyperspectral imaging offers high spectral and spatial reso-
lution, but its high costs and time-consuming nature make it difficult to
use. Spectral Filter Array (SFA) imaging presents an alternative, offer-
ing high spectral resolution, user-friendliness, and affordability, but at
the cost of limited spatial resolution. This paper presents an approach to
address this trade-off, starting with raw overlapping frames from spec-
tral videos, followed by a demosaicking network process before tackling
the stitching problem. Our experiments on various spectral videos, sup-
ported by image quality metrics and qualitative demonstrations, indicate
that this approach effectively enhances the spatial resolution of spectral
images while reducing artifacts. The integration of the demosaicking and
the stitching provides a robust solution for spectral video applications,
paving the way for further advancements in panoramic spectral image
stitching.

Keywords: Spectral Imaging · Stitching · Demosaicking · Super
Resolution

1 Introduction

Spectral Imaging holds immense potential for applications such as food safety
inspection [26], land cover categorization [16] and object tracking [12], offering
a nuanced and comprehensive perspective that extends beyond the capabilities
of traditional imaging techniques. In the realm of cultural heritage, the uti-
lization of spectral videos can prove instrumental in capturing intricate details
of artifacts, manuscripts, and historical sites [24]. But due to hardware limita-
tions, the spatial resolution is limited, compared to Color Filter Array (CFA) [3]
imaging. Moreover, demosaicking which refers to the process of creating a fully-
defined spectral image free of spatial and spectral distortions, is a crucial stage
for Spectral Filter Array (SFA) camera [13]. Through the seamless integration of
demosaicking and stitching algorithms, spectral videos can be transformed into
large panoramas by combining multiple spectral images with overlapping areas.
Demosaicking, in particular, plays a pivotal role in reconstructing a fully-defined
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image from a mosaic image. This process enhances the visual clarity and accu-
racy of the final image, enabling the preservation of spectral informations [18].

In the context of remote sensing, spectral video holds the key to unlock-
ing a wealth of information about the Earth’s surface [29]. By capturing data
across multiple spectral bands, these videos provide a richer and more com-
prehensive understanding of the environment. The combination of demosaicking
and stitching techniques in remote sensing applications facilitates the creation of
high-resolution, spectral panoramas. This panoramic view can be instrumental
in monitoring land cover changes, assessing vegetation health, and identifying
environmental anomalies.

By stitching together multiple images of the same location taken from various
angles, a panorama image is created through the process of image stitching. In
general, when dealing with an issue involving just two images, one of the images is
used as the reference, while the other is used to estimate a 3×3 homography, also
known as a camera matrix [11]. However, the more images that are included, the
more complex this problem becomes [22]. Another pivotal consideration in the
construction of panoramas involves not only the spatial arrangement of images
but also the harmonization of visual attributes across individual frames. It is
imperative to adjust the appearance of each image meticulously to eliminate
discernible boundaries in the resultant panorama. Even when images are cap-
tured simultaneously, variations in exposure, contrast, and the introduction of
effects such as vignetting may necessitate careful calibration to achieve seamless
integration [31]. Given the context of working with spectral images, the meticu-
lous harmonization of visual attributes to achieve seamless transitions between
images can result in a reduction of the spectral fidelity. This unintended conse-
quence is undesirable, emphasizing the need for caution when undertaking the
harmonization of visual attributes.

This paper aims to contribute to the field of spectral imaging by exploring
the potential of spectral stitching to enhance the quality and spatial resolution of
spectral images. By increasing the number of spectral images used in the stitching
process, it is possible to achieve a more detailed and accurate representation of
the target object or scene. This approach has the potential to be particularly
useful in applications such as remote sensing, cultural heritage preservation,
where the ability to capture highly detailed spectral information is crucial. This
paper presents our findings on how the number of spectral images impacts the
quality and spatial resolution of stitched images.

This paper is structured as follows: Sect. 2 offers an overview of existing lit-
erature on stitching algorithms and spectral demosaicking. In Sect. 3, we delve
into our proposed methodology, providing a detailed explanation of our app-
roach. Section 4 outlines our experimental setup and presents our analysis of the
obtained results. Finally, we conclude with a brief summary of our findings and
discuss avenues for future research.
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2 Related Work

SFA camera emerged as a good option to captures well-aligned spectral images
using a one-shot acquisition [13]. An SFA is made by arranging several bandpass
optical filters in a pattern that repeats spatially, covering the monochromatic
imaging sensor, inspired from the Bayer CFA [3]. Since all spectrum bands in the
SFA are spatially subsampled, only sparse data from a single band is preserved in
each individual pixel of the collected original spectral image. Consequently, the
missing spectral values must be approximated from the gathered sparse spatial
data in order to obtain fully-defined (demosaicked) spectral images (see Fig. 1).
This process is referred to as SFA demosaicking [5], provides a critical component
for reconstructing spectral images for SFA based camera [21].

Several handcrafted strategies have been investigated in previous research
on SFA image demosaicking [25,27]. The weighted bilinear (WB) interpolation
approach was presented by Brauers and Aach [5], extending CFA demosaicking
to SFA. Chini et al. [7] first introduced the idea of the pseudo-panchromatic
image (PPI), which is the average image of all spectral channels. The PPI differ-
ence (PPID) approach was developed by Mihoubi et al. [17,18] to improve SFA
demosaicking. It sharpens the PPI by taking the channel residual structure and
spatial-spectral correlation of SFA images into account. Convolutional neural
networks (CNNs) have demonstrated potential in demosaicking tasks in recent
years. Using mosaic convolution-attention networks, Feng et al. [10] developed
a deep CNN that focuses on first feature extraction from unprocessed mosaic
images. Nevertheless, checkerboard distortion results from their mosaic convolu-
tion module ignoring for spatial location variations. The demosaicking architec-
ture was updated by Pan et al. [15] by utilizing a conventional two-pass residual
interpolation approach and adding PPIs computed by a CNN. Despite its effec-
tiveness, this method might have halo effects when guided filters are used. By
introducing a Residual Network and improving PPI generation, Zhao et al. [30]
built upon the work of Pan et al. [15]. They achieved state-of-the-art metrics
and enhanced demosaicking outcomes by including edge-related data and using
adaptive spatial and spectral correction inside the network.

Furthermore, image stitching has been an active area of research for many
years, with methods continuously becoming more robust and yielding better
results. Early methods relied on user-provided information to produce visually
appealing panoramas. A major paper named AutoStitch by Matthew Brown
and David G. Lowe [6], along with their proprietary software tool that could
allow anyone to produce great panoramas simply by uploading their images in
any order. Their algorithm was based on the features detector and descriptor
SIFT [8], proposed by Lowe in 2004, and the RANSAC algorithm [4]. Since then,
multiple other methods have emerged, each one proposing better results in edge
cases by computing the stitching in a slightly different manner. Among the most
popular recent methods, we can mention the APAP [28] and the AANAP [14]
algorithms. We propose in this paper to implement a python version of the
AutoStitch [6] algorithm specifically for spectral imaging. Since it is a well-
established algorithm in the stitching community.
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3 Methodology

Starting with the initial phase, our approach integrates a demosaicking net-
work to obtain fully defined spectral images from mosaic images. This founda-
tional step ensures refined inputs for the subsequent image stitching process.
Transitioning to image stitching, the absence of ground truth image makes it
impossible to apply metrics like PSNR or SSIM, as there is no reference for
comparison between the stitched image and a target image. To this end SOTA
stitching solution [14,28], often uses blind image quality assessment metrics such
as BRISQUE [19] or NIQUE [20].

Our sequential procedure begins with the application of our Deep Spectral
Demosaic network to obtain fully-defined (demosaicked) spectral images. Next,
we apply the SIFT [9] and RANSAC [4] algorithms to the PPI for feature match-
ing. To address variations in gain, we integrate gain compensation techniques
and perform multi-band blending to seamlessly merge the images. To obtain a
spectral stitched image, we apply the same computed parameters for the other
bands without any new parameter computations, as all the bands have the same
field of view.

3.1 Deep Demosaic Net

The proposed deep learning model comprises two integral modules: the Deep
PPI module (PPI-net) and the Deep Residual Demosaic module (DRDm). The
PPI-net is dedicated to extracting a pseudo-panchromatic image (PPI) from
a raw mosaic image, serving as an intermediate representation capturing spa-
tial information from multiple channels. Pre-trained to reconstruct a pseudo-
panchromatic image from the raw SFA image, the PPI-net establishes a founda-
tional step (see Fig. 1).

Fig. 1. Deep Spectral Demosaicking network architecture
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The proposed deep demosaicking model comprises a two-branch CNN, the
first branch consists of a deep pseudo-panchromatic network (PPI-net) in order
to estimate the pseudo-panchromatic image from raw image, drawing inspiration
from the successful methodology proposed by [23,30]. Additionally, the second
branch serves as a preliminary demosaicking outcome achieved through bicubic
interpolation. These branches are seamlessly combined into a cohesive module,
namely the deep residual demosaicking (DRDm).

PPI-net. The determination of the pseudo-panchromatic image (PPI) at each
pixel (p) involves computing the average value across all channels of spectral
channels, as outlined in prior research [18].

IPPI
p =

1
N

N∑

n=1

IGT
p , (1)

where N denote the number of spectral bands.

Fig. 2. Illustration of PPI-net module. Where ⊕ denotes elementwise sum.

Given the clear positive linear correlation found between the recon-
structed spectral image and the preserved high-frequency details in the pseudo-
panchromatic image (PPI) [23], we propose employing elementwise summation
between ĪM and ÎM , as depicted in Fig. 2. Here, M represents a filter matrix
tailored for a 3 × 3 SFA pattern [15,18].

M =
1
36

⎡

⎢⎢⎣

1 2 2 1
2 4 4 2
2 4 4 2
1 2 2 1

⎤

⎥⎥⎦ . (2)

Additionally, the PPI-net module’s loss function, represented by Eq. 3, is
meant to minimize the difference between the estimated PPI produced by the
PPI-net and the ground truth PPI determined by Eq. 1.
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LPPI =
W∑

w=1

H∑

h=1

∣∣∣
∣∣∣ÎPPI(h,w) − IPPI(h,w)

∣∣∣
∣∣∣ , (3)

where LPPI is using MSE. h and w represents respectively the height and width
of the image. Moreover, ÎPPI is the estimated PPI and IPPI is the ground truth
PPI.

DRDm Module. Following the calculation of the pre-demosaicked image, using
bicubic interpolation denoted as Ibic and the estimated PPI denoted as ÎPPI ,
both outputs are passed on into two identical blocks. Following this, they are
concatenated and used as the DRDm module’s input jointly with the sparsity
image. The reconstruction part, shallow feature extraction, residual in residual
(RIR) deep feature extraction, and deep feature extraction are the main compo-
nents of our DRDm module.

Furthermore, the loss function of the DRDm module aim to minimize the dif-
ference between the estimated demosaicked spectral image and the ground truth
image IGT . Specifically, this loss function is the Mean Squared Error (MSE),
which is defined as:

LDRDm =
1
P

P∑

p=1

∣∣∣
∣∣∣IGT

p − Îp

∣∣∣
∣∣∣
2

2
, (4)

here, P refers to the total count of pixels, where p denotes the index of the pixel
as indicated in Eq. 4.

3.2 Training Details

Our demosaicking model was trained using the ARAD-1K dataset [2]. This
framework is implemented based on PyTorch, and trained using a NVIDIA RTX
2080 GPU equipped with 20GB of VRAM and CUDA 11.8 for a total of 2000
epochs. We employed the Adam optimizer to update model parameters, speci-
fying β1 = 0.9 and β2 = 0.999. Data augmentation techniques were applied to
enhance the robustness of the training process, encompassing random cropping
of spectral images from ARAD-1K datasets to 128 × 128 patches, as well as
rotations by 90◦, 180◦, and 270◦. Moreover, the batch size was set to 16. To
facilitate convergence, we initialized the learning rate to 10−4 and adopted a
halving strategy every 250 epochs. Moreover, All testing experiments are imple-
mented using the same machine: Intel Core i9-11900k CPU 2.40GHz, NVIDIA
GPU RTX 3070 and 16 Gb of RAM.

3.3 Image Stitching

Feature Matching. The first step is to characterize each image by extracting
local features. To do so, we use the SIFT extractor [8], which for each image gives
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us the locations of a certain number of keypoints, along with a descriptor for each
of these keypoints. The main reason for using SIFT instead of other methods
such as the Harris Corner Detector [9] is that SIFT features are invariant under
rotation and scale changes, which means that our model can handle images with
varying orientation and zoom. Please note that, from now on, images will be
indexed as i and j to differentiate between the two images we are trying to stitch.

Once the features have been extracted from all images, a match is being cal-
culated for each pair of images. To do so, each feature of one image is matched
to its two nearest neighbors in feature space from the other image. Then, the
Lowe’s ratio test is used to keep only relevant matching features. This test con-
sists in comparing the first nearest neighbors to the second, and keeping only
the matches where the distance with the closest neighbor is significantly smaller
than the distance with the second closest one (significantly being determined by
the value of the used scaling factor). This test performs a soft thresholding that
eliminates most of the wrong matches. After this step, we have for each pair of
images a list of matches, each one composed of a feature from each images. The
next step is to use those matches to identify the images that would overlap each
other in the panorama, and to compute homography matrices (Fig. 3).

Fig. 3. Overview of our stitching pipeline, where we use only the resulting PPI image to
compute stitching parameters. The rest of the spectral bands do not require computing
stitching parameters from scratch; instead, the computed stitching parameters from the
PPI band can be directly applied to them.

Robust Homography Estimation Using RANSAC. Using a minimum
collection of randomly selected correspondences, RANSAC (random sample con-
sensus) [4] is a robust estimation process that estimates images transformation
parameters and selects the solution that best corresponds with the data. It works
with multiple iterations. At each iteration, a set of four feature matches is ran-
domly selected, and is used to compute the homography H between them using
the direct linear transformation method [28]. This operation is repeated a cer-
tain number of times, each with a different randomly selected set of four samples.
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Then, the homography with the highest number of inliers (i.e. matches whose
projections are consistent with H within a tolerance ε pixels) is selected. It can
be shown that, for a pair of images where half of the matches are corrects, the
probability to have not found the correct homography after 500 iterations is
approximately 1 × 10−14, thus making it a pretty robust method.

Probabilistic Model for Verifying Image Matches. At this stage, each
pair of images consists of a list of features matches and a homography for one
image relatively to the other. However, we do not know yet which pairs of images
should indeed overlap in the final panorama, and which pairs actually do not
have any area in common. To verify the image matches, we compare the features
matches that are consistent with the homography (RANSAC inliers) with the
features matches inside the area of overlap between the two images but not
consistent (RANSAC outliers). For a given image we denote the total number of
features in the area of overlap nf and the number of inliers ni. Then, by making
small assumptions on the distributions of the feature matches, we can estimate
the probability that the image match is correct using these two numbers, and
obtain a condition for an image match to be correct:

ni > α + β × nf . (5)

The detailed calculus can be found in the AutoStitch original paper [6]. The
parameters α and β could theoretically been adjusted based on the data, but we
used the provided values, that is α = 8 and β = 0.3

Using the above condition, we can keep only the correct image matches, and
divide the data into connected components (i.e. sets of images that are linked
together by matches). This allows us to recognize multiple panoramas in a set
of images and reject noisy images that do not match any other images.

3.4 Gain Compensation

We discussed how to calculate each camera’s geometric characteristics in earlier
sections. Here, we demonstrate how to get the total gain across images, a pho-
tometric parameter. Similar configuration applies here, with an error function
established across all images. For all overlapping pixels, the error function is the
sum of the gain-normalized intensity errors [6]:

e =
1
2

n∑

i=1

n∑

j=1

Nij(
(giIij − gjIji)2

σ2
N

+
(1 − gi)2

σ2
g

). (6)

where Nij = |R(i, j)| is the number of pixels in image i that overlap in image
j , Īij is the mean intensity of the image i in the overlap region with image j,
defined as

Īij =

∑
ui∈R(i,j) Ii(ui)

Nij
, (7)
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where gi is the gain associated with image I. The parameters σN and σg denote
the standard deviations of the normalized intensity error and gain, respectively.
It is noteworthy that an increase in these parameters is expected to result in
a reduction of spectral fidelity. This phenomenon is explained by the relatively
low standard deviations, specifically σN = 1.5 and σg = 0.1, underscoring the
nuanced impact of parameter settings on the fidelity of spectral representations
(Fig. 4).

Fig. 4. Left: Stitch Image with multi band blending. Right: Stitch Spectral Image
without blending.

3.5 Blending

Multi-band Blending. The idea behind multi-band blending is to blend low-
frequency information over a large spatial range, and high-frequency information
over a short range. This approach ensures that small details are preserved while
still allowing for a smooth transition between images. To achieve this, we first
initialize blending weights for each image by finding the set of points for which
image i is primarily responsible:

W i
max =

{
1 if W i = argmaxW j

0 otherwise
(8)

in other words, W i
max will be 1 when image i has the maximum weight and 0

where any other image has a higher weight. These maximum-weight maps are
progressively blurred to create the blending weights for each band, along with a
similar blurring performed on the image itself to build each band. For the first
band, a high pass version of the rendered image is formed:

Ii
σ = Ii ∗ gσ, (9)

Bi
σ = Ii − Ii

σ, (10)
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where ∗ indicates convolution and gσ is a Gaussian of standard deviation σ. In
doing so, the spatial frequencies in the range of λ ⊂ [0, σ] are represented by Bσ.
The same convolution is used to construct the weight matrix linked to this band

W i
σ = W i

max ∗ gσ, (11)

here, W i
σ represent the blend weights Then, other bands are computed iteratively,

using a standard deviation σ′ =
√

(2k + 1)σ which is getting larger, with k > 0

Ii
(k+1)σ = Ii

kσ ∗ gσ′ , (12)

Bi
(k+1)σ = Ii

kσ − Ii
(k+1)σ, (13)

W i
(k+1)σ = W i

kσ ∗ gσ′ , (14)

this way, each band k represents spacial frequencies in the range of wavelengths
λ ⊂ [

√
(2k − 1)σ,

√
(2k + 1)σ]. Finally, overlapping images are merged linearly

for each band using the associated blend weights.

Imulti
kσ =

∑n
i=1 Bi

kσW i
kσ∑n

i=1 W i
kσ

. (15)

More details and illustrations about this method can be found in the AutoS-
titch paper [6].

4 Experiment

To evaluate the effectiveness of our method, we designed a series of experiments
aimed at discerning the impact of both viewing distance and the number of spec-
tral images used on the visual quality of the stitched images. The experiments
were conducted under controlled conditions to ensure consistency and reliability
of the results. We began by selecting a calibrated object and placing it under
uniform D65 illumination. Using a 9 band SFA camera from SILIOS Technolo-
gies [1], we captured raw images of the object from a considerable distance
manually controlling the focus of the camera. The images were taken in a hand-
held manner, which introduced small rotations and translations. Initially, only
two images were acquired, each covering a portion of the object’s field of view.
Subsequently, we systematically decreased the distance between the camera and
the object, thereby increasing the number of raw images captured for stitching
purposes. This approach allowed us to examine the impact of viewing distance
on the stitching process and the resulting image quality (see Figs. 5 and 6).

The captured images were processed using our implemented stitching algo-
rithm, which combines multiple images to create a panoramic view of the object.
The algorithm utilizes the multi-band blending technique to seamlessly merge
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Fig. 5. Spectral Stitched Images of the Same Object, a Calendar: Each stitching com-
posed of various images from different distances—(a) from a distance of 130 cm, (b)
from 93 cm, (c) from 76 cm, (d) from 58 cm, (e) from 35 cm.

adjacent images while preserving the spectral information captured by each
image.

We assessed the visual appearance of the stitched images across different
numbers of images to investigate their impact on image quality. Our analysis
aimed to discern whether increasing the number of images enhances the quality
of the stitched output or amplifies the probability of distortion. By comparing
results obtained from varying numbers of images, we sought to identify trends
regarding the influence of image count on image quality. Additionally, we exam-
ined the effects on image quality metrics based on natural image statistics such
as BRISQUE and NIQUE to determine whether increasing the number of images
correlates with improved objective measures of image quality. This investigation
aimed to provide insights into the optimization of spectral imaging techniques,
particularly in understanding the trade-offs between the number of images used
and the resulting image quality.

Initially, it might seem intuitive that moving closer to the object and captur-
ing more images would inherently lead to superior stitching results. However, our
experiments challenge this assumption. We observed that as the distance between
the camera and the object decreased and the number of images increased, the
likelihood of encountering distortion and high-frequency blur in the stitched
images also increased (see Fig. 7). This phenomenon suggests that proximity
and image abundance do not guarantee improved stitching outcomes; instead,
they may exacerbate issues related to image alignment, blending, and, notably,
focus.
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Fig. 6. Spectral Stitched Images of the Same Object, a Calendar: Each stitching com-
posed of various images from different distances: (a) from a distance of 130 cm, (b)
from 93 cm, (c) from 76 cm, (d) from 58 cm, (e) from 35 cm.

Indeed, one significant factor contributing to reduced stitching quality at
closer distances is the increased risk of the camera losing focus. As the camera
moves closer to the object, achieving and maintaining optimal focus becomes
increasingly challenging, particularly when capturing multiple images to be
stitched together. This potential loss of focus further compounds the challenges
associated with proximity and image abundance, contributing to the degradation
of stitching quality.

Furthermore, our analysis uncovered a interesting trend regarding the rela-
tionship between the number of images used for stitching and the resulting per-
formance metrics and visual quality. While increasing the number of images and
decreasing the distance to the object initially led to notable enhancements in
stitching quality, we identified a critical threshold beyond which the marginal
gains began to diminish. Beyond this threshold, the improvements in perfor-
mance metrics and visual fidelity stagnated as depicted in the Table 1.

These findings underscore the importance of carefully balancing the trade-
offs between proximity, image quantity, and stitching quality in spectral image
stitching applications. While closer distances and more images offer the poten-
tial for enhanced detail and fidelity, they also introduce challenges related to
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Table 1. Average Performance based metrics for various objects.

Nb of Images BRISQUE ↑ NIQUE ↓
2 32.17 6.07
4 41.81 5.04
8 52.04 3.72
16 62.08 2.49
32 62.84 2.30

focus maintenance that can compromise the final stitching results. Understand-
ing the nuanced dynamics at play in the stitching process is crucial for optimiz-
ing performance and achieving the desired balance between image quality and
computational efficiency.

Fig. 7. Unwanted artifacts appearing. Displayed spectral image at 420 nm.

5 Conclusion

In this paper, we proposed a sequential demosaicking and stitching algorithm for
spectral imaging using a hand-held SFA camera from SILIOS Technologies [1].
Our approach involves capturing multiple raw images of a single object and
stitching them together to obtain a higher spatial resolution and more detailed
images. Through a series of experimentation and analysis, we have demonstrated
the efficacy of our algorithm in enhancing the quality of spectral image stitching.

Moreover, Our study shows that capturing spectral images at a close distance
to an object results in more images to stitch together, leading to highly detailed
panoramas. However, this close proximity also increases the likelihood of distor-
tion problems. Furthermore, The potential applications of this research include
fields such as remote sensing, agriculture, and cultural heritage, where having
both high spatial and spectral resolution in images is crucial. By leveraging these
insights, future advancements in spectral image stitching can be driven towards
more robust and reliable solutions that meet the diverse needs of the imaging
community.
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