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Abstract: Spectral imaging has revolutionisedvarious fields by capturing detailed spatial and spectral
information. However, its high cost and complexity limit the acquisition of a large amount of data
to generalise processes and methods, thus limiting widespread adoption. To overcome this issue, a
body of the literature investigates how to reconstruct spectral information from RGB images, with
recent methods reaching a fairly low error of reconstruction, as demonstrated in the recent literature.
This article explores the modification of information in the case of RGB-to-spectral reconstruction
beyond reconstruction metrics, with a focus on assessing the accuracy of the reconstruction process
and its ability to replicate full spectral information. In addition to this, we conduct a colorimetric
relighting analysis based on the reconstructed spectra. We investigate the information representation
by principal component analysis and demonstrate that, while the reconstruction error of the state-of-
the-art reconstruction method is low, the nature of the reconstructed information is different. While it
appears that the use in colour imaging comes with very good performance to handle illumination,
the distribution of information difference between the measured and estimated spectra suggests that
caution should be exercised before generalising the use of this approach.

Keywords: spectral imaging; spectral reconstruction; RGB imagery

1. Introduction

Spectral imaging systems (SIs) capture the distribution of light in a scene across several
spectral bands. As a result, they offer more complete visual data compared to conventional
colour cameras, which only operate within three broad spectral bands (red, green, and blue).
SIs present numerous advantages for various computer vision applications such as medical
imaging [1,2], remote sensing [3,4], and object tracking [5], to cite a few. Nonetheless, their
utilisation has been constrained by factors such as size, cost, and low spatial resolution.
Notably, the limitations stem from the availability and diversity of spectral data.

The computer vision field evolved together with imaging technology from grayscale
to colour, and from colour to multi-modal, spectral, or polarisation imaging. Each evolution
is bringing access to new information in order to overcome the limitations of the previous
modality. Despite remarkable performance with colour images, spectral imaging emerges
as a promising avenue specifically tailored to address the limitations of colour imaging,
offering a richer and more nuanced understanding of the underlying data [6]. This shift
in emphasis underscores the need to explore beyond conventional RGB datasets and
highlights spectral imaging as a key approach in overcoming the constraints associated
with colour representation.

Existing spectral databases have played a pivotal role in advancing research in com-
puter vision, providing valuable datasets for various applications [7]. However, the current
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repositories, though valuable, face limitations in terms of diversity, scale, and represen-
tation of real-world scenarios. These databases often cover specific domains or scenes,
making them less suitable for broader applications. It is worth mentioning that existing
databases cannot be concatenated, mostly because of standardisation problems, spectral
specificity, and spatial resolution [8].

Furthermore, a richer and more diverse spectral database would enable researchers to
explore a wider range of applications beyond the current scope. These include, but are not
limited to, fields such as object detection, scene understanding, and autonomous driving,
where spectral imaging holds immense potential. Notably, these tasks often demand robust
deep learning models, necessitating a substantial volume of high-quality training data.
Through spectral reconstruction (SR) (Figure 1), also referred to as spectral uplifting or
spectral superresolution, we gain access to a practically unlimited source of RGB images
present in various datasets like Imagenet [9].

Figure 1. Spectral reconstruction from an RGB image, where the spectral reconstruction model
estimates the original spectral information from the RGB image.

This article explores the limitation of reconstructed spectral data from RGB by con-
ducting experiments over the spectral distribution and colorimetric relighting analysis.
Three primary initiatives have been considered for obtaining spectral data. The first
involves capturing more data using spectral cameras. However, this approach faces chal-
lenges related to standardisation, given the varying configurations of spectral cameras [8].
The second method entails generating data in computer graphics [10], leveraging tools like
Mitsuba [11], but is often tied to specific reflectance models, and the low number of scenes
created lacks generalisation ability. Lastly, the third initiative, which forms the focus of
this study, revolves around spectral reconstruction from RGB data [7]. This cutting-edge
technique marks a significant advancement in the field, as it enables the transformation
of conventional RGB images into highly detailed representations encompassing a more
extensive range of spectral information.

This article is structured as follows. In Section 2, we delve into the existing body of
work related to spectral reconstruction methods. In Section 3, we present our experimental
protocol, discussing both the spectral dataset and the deep learning-based model used,
as well as the application of performance-based metrics, along with spectral analysis using
principal component analysis (PCA). Section 4 serves as the analysis section, where we
delve into the interpretation and commentary on the obtained results. In addition to the
analysis of reconstruction accuracy and spectral information representation, Section 4
also includes a colorimetric analysis. Specifically, we compute the Euclidean distance
∆E∗

ab between the spectral reconstructed data and the ground-truth spectral data under
various illuminants, providing further insights on how the spectral reconstruction quality
impacts the specific colour imaging application. Finally, Section 5 presents our conclusion,
summarising key insights and implications and proposing potential avenues for future
research. In this context, we show, on two independent datasets and two different spectral
reconstruction methods, that the information in the original spectra and the estimated ones
seems very different on a PCA space, which suggest caution in the use of the estimated
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data. On the other hand, we also show that, from a colorimetric perspective, the estimated
spectra are sufficient to perform relighting of the scene or chromatic adaptation.

2. Related Work
2.1. Spectral Image Acquisition

Recent advancements in imaging systems have introduced various sophisticated
techniques for capturing spectral images. Despite the progress, these methods still face
significant challenges. Traditional scanning techniques, although widely used, are often
slow and cumbersome. Technologies such as pushbroom and whiskbroom scanners,
commonly employed in remote sensing and other applications, require time-consuming
processes and large, non-portable equipment [12,13].

In an effort to address these limitations, innovative solutions like snapshot compres-
sive imaging (SCI) systems have been developed. These systems can compress complex
hyperspectral data into a single 2D image, offering a more efficient approach compared
to conventional methods [12,14–17]. Among these, the Coded Aperture Snapshot Spectral
Imaging (CASSI) system stands out for its potential to revolutionise the field [16,18].

However, despite their potential, these advanced imaging systems are still limited by
high costs and practical challenges. The expense of SCI systems makes them inaccessible
for broader use. Additionally, issues such as spectral estimation errors persist, impacting
the accuracy and reliability of the captured data [19].

These challenges highlight the critical need for further research in spectral reconstruc-
tion. Improving these technologies to be more affordable, efficient, and accurate is essential
for their widespread adoption and application in various fields.

2.2. SR from RGB

The first SR techniques looked for three-dimensional linear spectrum models. It was
then demonstrated that the spectra may be precisely retrieved from RGB using a linear
transform if such a “3D” linear model is applicable [20,21]. Simple statistical models like re-
gression [22–24] and Bayesian inference [25,26] have been provided, which facilitate higher-
or full-dimensional spectrum recovery, despite the fact that a 3D model can only cover
a limited variance in real-world spectra [27,28]. With the growing quantity of accessible
data, novel methods such as deep neural networks (DNN) [29–34], sparse coding [35],
and shallow networks [36–38] have been based on richer inference algorithms. A compre-
hensive comparison of the approaches is not yet accessible, though, because not all early
and modern methods have been benchmarked on the same database. Nonetheless, it is
reasonable to state that DNNs are acknowledged as the top SR technique.

Regression [22], one of the earliest techniques, has become popular because of its
straightforward, fast, accurate, and closed-form solution. RGB and their spectral estima-
tions are related in the most basic “linear regression” [22] by a single linear transformation
matrix. Moreover, polynomial and root-polynomial regression [23,24] expand the RGB into
polynomial/root-polynomial terms, which are subsequently transferred to spectra using a
linear transform, in order to add non-linearity. Regressions that minimise the mean squared
error (MSE) in the training set are sometimes referred to as “least-squares” regressions.
Nevertheless, Lin and Finlayson [39] proposed a “relative-error-least-squares” minimi-
sation strategy for regressions, which further enhances the performance of regression-
based SR because SRs are—at least recently—more frequently assessed using relative
errors [20,29,35,40].

Many recent methods for SR rely on DNN architectures, specifically, convolutional
neural networks (CNNs) or generative adversarial networks (GANs), where large image
patches serve as standard inputs. In the NTIRE 2018, 2020, and 2022 Spectral Reconstruction
Challenges, DNN-based solutions dominated the top rankings. For instance, the NTIRE
2018 challenge was won by “HSCNND”, which utilised a densely connected structure,
while “AWAN” emerged victorious in the NTIRE 2020 challenge, employing an atten-
tion network structure. Notably, the latest winner of the NTIRE challenge (edition 2022),
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“MST++”, proposed a novel approach using a transformer-based model for efficient spectral
reconstruction. However, despite these advancements, most DNN evaluations are con-
ducted on optimally captured images, neglecting more challenging real-world conditions
such as exposure variations and diverse scene compositions. Comprehensive assessments
reveal that DNNs are often susceptible to exposure changes, unfamiliar scenes, and scenes
lacking specific image contents [41].

Initially, spectral reconstruction relied on regression-based [42] and sparse-coding
techniques [43]. While not completely replacing linear methods, deep learning models [33],
which are mostly non-linear procedures, have considerably increased in popularity in recent
years. Moreover, community challenges have recently emerged to stimulate research in
developing robust and reliable networks for spectral reconstruction from RGB images [7,35].
Consequently, spectral reconstruction techniques have been extensively explored within
the research community, with a multitude of studies contributing to this area [35,43].
For a detailed overview and in-depth information, we direct the interested reader to the
comprehensive review on spectral reconstruction methods in the literature [44]. Spectral
reconstruction from RGB images has been significantly influenced by the pioneering work
of the colour imaging community, as demonstrated by [45]. In the image formation model,
the spectral function r(λ) represents the intensity distribution across wavelengths that
is defined as the radiance spectrum. In accordance with this, the sensitivities of the R,
G, and B sensors are represented as sk(λ), where k = R, G, B. Therefore, the RGB image
creation is expressed as the inner productbetween the spectral sensitivity and the measured
radiance [45]:

ρk = ∑
λ∈ω

sk(λ)r(λ) (1)

where ω denotes the visible range, which in this article is set to [400, 700] nanometers,
and λ ∈ ω. Moreover, the ground-truth spectra are sampled at n equally spaced wave-
lengths. Equation (1) can therefore be vectorised:

STr = ρ (2)

where the 3-value RGB colour is represented by ρ = (R, G, B)T , the n× 3 spectral sensitivity
matrix is S = (sR, sG, sB), and r ∈ Rn is the discrete representation of spectra. The linear
colour or raw camera response, which is frequently utilised as ground-truth RGB for
training spectral reconstruction algorithms [29], is denoted by this ρ vector.

Spectral reconstruction methods are employed to map RGB colours to spectral estima-
tions. This mapping is accomplished through a representation of the spectral reconstruction
algorithm using a specific mapping function ψ : R3 ⇒ Rn; SR can be written as follows:

ψ(ρ) ≈ r (3)

3. Methodology

Given the maturation of spectral reconstruction methodologies, we advocate for
the adoption of state-of-the-art approach for deriving spectral information from RGB
imagery, but we want to emphasise the limitation of the technique. Therefore, to validate
the generalisation capability and replicability of the MST++ [46] and A++ [47] models in
spectral reconstruction, and to demonstrate their potential applicability to diverse scenarios,
we assess their performance on unseen data. Additionally, our investigation extended to
analysing the spectral distribution patterns using the Spectral Image Database for Quality
dataset (SIDQ) [48], which introduced a hyperspectral image database consisting of nine
scenes. These scenes were meticulously chosen to represent diverse materials such as
textile, wood, and skin. The dataset provides spectral reflectance data, acquired using a
hyperspectral system (HySpex VNIR-1600 manufactured by Neo, Oslo, Norway), with a
spectral range spanning from 410 to 1000 nm, containing 160 spectral bands (where 85 bands
are in the visible light spectrum), coded over 16 bits. Importantly, the SIDQ dataset includes
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not only hyperspectral data but also their RGB counterparts. To ensure comparability of the
results obtained from the different models and datasets used in this study, we unified the
interval by considering only the bands from 410 to 700 nm when working with the SIDQ
dataset. As we possess the RGB counterparts of the hyperspectral images, our next step
involves leveraging SR models to reconstruct spectra from the RGB images. It is essential
to note that the resulting spectra will be in the interval of [400, 700] nm. Subsequently, we
compare the reconstructed spectra obtained through the MST++ and A++ models with the
original hyperspectral images from the SIDQ dataset. This comparative analysis provides
insights into the accuracy and efficacy of the spectral reconstruction model, offering a
robust evaluation of our approach. Moreover, we used the CAVE dataset [49] in addition
to the SIDQ dataset for our analysis. The CAVE dataset contains 32 different spectral
reflectance data spanning from 400 to 700 nm, with 31 spectral bands coded over 16 bits
and their RGB counterparts. Both the CAVE and SIDQ datasets are normalised between
0 and 1. This normalisation, along with the diversity in terms of the number of scenes and
spectral bands, allows for a more comprehensive evaluation and generalisation capability
of the models used in this study.

Evaluation Metrics

To assess the accuracy and fidelity of the spectral reconstruction, we employed quan-
titative performance metrics, including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Mean Relative Absolute Error (MRAE), computed between
the spectral reconstructed image x̂ and the ground-truth images x. These metrics provide a
comprehensive evaluation of the reconstructed spectra by quantifying the similarity and
deviation from the ground truth spectral data.

1. Root Mean Square Error:

RMSE =

√
1
n
∥x − x̂∥2 (4)

where n represents the number of spectral bands. Moreover, RMSE is scale-dependent,
that is, the overall brightness level in which the compared spectra reside will reflect
on the scale of RMSE;

2. Peak Signal-to-Noise Ratio:

PSNR = 20 × log10

( xmax

RMSE

)
(5)

where xmax is the maximum possible value for our images;
3. Structural Similarity Index:

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
(6)

where µx, µx̂, σ2
x , and σ2

x̂ are the mean and variance of the reference image x and
estimated image x̂, respectively, while σxx̂ is the covariance. The SSIM of all bands is
acquired by calculating the SSIM of each channel separately and averaging all SSIMs;

4. Mean Relative Absolute Error:

MRAE = 100 × 1
n
|| x − x̂

x
||1 (7)

where n is the number of spectral channels, and we perform an element-wise division
to compute the L1 norm. In essence, the MRAE metric calculates the average absolute
deviation across all spectral channels. This metric is widely recognised as the standard
measure for ranking and assessing SR algorithms in the latest benchmark studies [29];

5. Entropy Similarity Metric:
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While commonly employed in fields like molecular spectroscopy [50] for its ability
to capture the similarity in entropy distributions between spectra, entropy similarity
remains relatively underutilised within the spectral imaging community. Unlike
conventional metrics, Entropy Similarity provides a comprehensive assessment of the
fidelity of spectral reconstruction by quantifying the agreement between the spectral
entropy patterns of the reconstructed and ground truth spectra.

ES(x, x̂) = 1 − |H(x)− H(x̂)|
max(H(x), H(x̂))

(8)

where H(x) represents the entropy of image x. Similarly to SSIM and PSNR, ES is
acquired by calculating the ES for each spectral channel separately and averaging all
ESs. Since it is a similarity metric, a higher score indicates better alignment, with a
score of 1 representing perfect alignment.

In addition to the performance metrics, we conducted PCA to examine the the variance
in spectral distribution:

1. This analysis involved concatenating the reconstructed spectra (from both MST++
and A++) with the ground-truth spectral image. The concatenated data facilitated
the generation of clouds of points, enabling a visual comparison of the spectral
distributions. By aligning the reconstructed and original spectral data on the same
axis, PCA allowed for a comprehensive exploration of the variance within the spectra;

2. Also, we performed PCA without concatenation, directly computing the eigenvectors
to investigate the spectral distribution of reconstructed data, generated by both mod-
els, against original spectral data and their RGB counterpart. This approach provided
insights into the underlying structures of the spectral data without the influence of
concatenation. Through the computation of eigenvectors, we gained a deeper under-
standing of the spectral variability and the principal components driving the variance
within the spectra.

Furthermore, a relighting analysis was conducted to evaluate the colorimetric perfor-
mance of the two state-of-the-art SR methods to observe their capacity to predict colori-
metric values under different lights. We specifically considered Illuminants D65 and A,
but also a white LED light, LED-B1 (see Figure 2). The analysis involved using reflectance
factors from spectral data and multiplying them with the respective illuminant to obtain
radiance data. For the reconstructed spectra (from both the A++ and MST++ models), we
assumed an E illumination for the initial RGB images, implying that the colour images
were white-balanced, thus approximating a flat spectral distribution. This step ensures that
the reconstructed data maintain consistency with the assumed illumination conditions. It is
noteworthy that such an assumption is not needed for the original spectral data provided by
the CAVE and SIDQ datasets, as they are already provided as reflectance data. The radiance
data were then converted to the CIE 1931 XYZ colour space using the 2 degrees standard
observer colour-matching functions. Subsequently, the XYZ values were transformed into
the CIELAB colour space to enable perceptually uniform colour comparisons [51]. Finally,
the Euclidean distance was computed between the reconstructed spectral data and the
ground-truth spectral data in the CIELAB colour space to assess the colour accuracy of
the SR methods under different illumination conditions (see Figure 3). This colorimetric
analysis provides valuable insights into the robustness and generalisation capabilities of
the SR methods across varying lighting scenarios.
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Figure 2. Spectral power distribution of the used illuminants.

Figure 3. Colorimetric analysis between spectral reconstructed data and the original spectral image.

4. Analysis
4.1. Spectral Analysis

Table 1 provides an overview of the performance metrics associated with spectral
reconstruction models, specifically MST++ and A++, applied to the SIDQ dataset [48].
The metrics include PSNR, SSIM, MRAE, and ES. These metrics offer insights into the
quality and fidelity of the reconstructed spectral data across different scenes within the
SIDQ dataset. Moreover, Table 2 presents the same performance metrics (PSNR, SSIM,
MRAE, and ES) for spectral reconstruction achieved by both the MST++ and A++ models
across all scenes within the CAVE dataset [49]. It is important to note that neither MST++
nor A++ models were trained on both datasets. We observe that, for conventional metrics
such as PSNR, SSIM, and MRAE, the transformer solution (MST++) outperforms the pixel-
based solution (A++ model). While both models perform well, the A++ model outperforms
MST++ for the Entropy Similarity (ES) metric, highlighting the importance of exercising
caution when evaluating models. In addition, the illustrations in Figure 4 corroborate the
findings in Tables 1 and 2, revealing a notably low error map between the reconstructed
spectral image from RGB and the original hyperspectral image across various scenes.
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Table 1. Performance-based metrics between the original spectral data and the reconstructed spectral
data for the SIDQ dataset. Arrows indicate the performance trend: ↑ denotes that higher values are
better, and ↓ denotes that lower values are better.

Scene PSNR ↑ SSIM ↑ MRAE ↓ ES ↑
A++ MST++ A++ MST++ A++ MST++ A++ MST++

Cork 33.46 38.21 0.9907 0.9982 0.153 0.063 0.967 0.952
Hat 27.03 30.13 0.9829 0.9954 0.234 0.109 0.899 0.962

Leaves 36.34 37.96 0.9932 0.9946 0.132 0.076 0.988 0.915
Orange 30.38 34.27 0.9367 0.9971 0.266 0.090 0.937 0.931
Painting 34.36 36.54 0.9919 0.9979 0.094 0.075 0.969 0.939
Paper 1 22.37 28.42 0.9658 0.9836 0.230 0.163 0.950 0.974
Skin 1 31.63 40.95 0.9881 0.9987 0.197 0.061 0.939 0.984
Skin 2 25.84 29.17 0.9877 0.9939 0.202 0.123 0.943 0.917
Wood 35.93 39.31 0.9947 0.9984 0.1313 0.076 0.937 0.864

Average 30.70 34.65 0.9831 0.9953 0.182 0.092 0.943 0.936

Table 2. Performance-based metrics between the original spectral data and the reconstructed spectral
data for the CAVE dataset. Arrows indicate the performance trend: ↑ denotes that higher values are
better, and ↓ denotes that lower values are better.

Scene PSNR ↑ SSIM ↑ MRAE ↓ ES ↑
A++ MST++ A++ MST++ A++ MST++ A++ MST++

Balloons 24.89 26.10 0.9674 0.9927 0.4119 0.146 0.902 0.913
Beads 25.07 28.76 0.9855 0.9952 0.2776 0.0968 0.9457 0.7791

CD 28.49 35.15 0.946 0.997 0.575 0.072 0.9373 0.7997
Chart 22.89 27.26 0.9674 0.9806 0.415 0.227 0.9561 0.8665
Clay 29.94 33.46 0.9850 0.9968 0.294 0.063 0.8992 0.8949
Cloth 25.85 29.98 0.9771 0.9960 0.3364 0.1208 0.9307 0.8461

Egyptian Statue 26.16 28.18 0.9676 0.9942 0.4478 0.1144 0.8114 0.6485
Face 21.66 24.59 0.9845 0.9913 0.2943 0.1648 0.8806 0.7649
Beers 25.86 28.75 0.9908 0.9883 0.1749 0.1996 0.8050 0.9753
Food 29.09 32.00 0.9906 0.9963 0.2297 0.0854 0.8676 0.8477

Lemon Slices 31.85 34.14 0.9915 0.9971 0.2195 0.092 0.8336 0.8066
Lemon 24.36 27.79 0.9909 0.9939 0.2224 0.1319 0.8643 0.7872
Peppers 26.31 28.76 0.9909 0.9945 0.2231 0.1119 0.9549 0.8100

Strawberries 29.65 31.59 0.9620 0.9961 0.4762 0.1035 0.8961 0.7992
Sushi 34.70 39.97 0.9756 0.9985 0.3892 0.0465 0.8892 0.8674

Tomatoes 35.09 39.25 0.9708 0.9984 0.4267 0.0472 0.8034 0.8144
Feathers 22.24 26.31 0.9800 0.9930 0.3276 0.1273 0.8974 0.7680
Flowers 22.93 25.62 0.9632 0.9924 0.4645 0.1375 0.8779 0.7484

Glass Tiles 26.48 28.84 0.9864 0.9950 0.2685 0.1153 0.9486 0.7792
Hairs 24.24 25.04 0.9909 0.99179 0.2167 0.1490 0.8960 0.8563

Jelly Beans 24.42 25.21 0.9864 0.9925 0.2645 0.1492 0.9040 0.7114
Oil Painting 25.08 27.05 0.9920 0.9935 0.2004 0.1420 0.9532 0.9113

Paints 21.26 22.23 0.9617 0.9889 0.4419 0.1780 0.9485 0.8869
Photo and Face 20.48 25.73 0.9858 0.9923 0.2865 0.1497 0.9125 0.7178

Pompoms 23.95 25.18 0.9600 0.9919 0.4554 0.1491 0.9575 0.8082
Apples 29.88 31.28 0.9639 0.9959 0.4711 0.0973 0.8320 0.7155
Peppers 21.66 23.93 0.9759 0.9906 0.3579 0.1679 0.9196 0.7983
Sponges 21.63 22.43 0.9635 0.9828 0.4141 0.1967 0.9675 0.8429

Stuffed Toys 25.08 26.87 0.9743 0.9933 0.3747 0.1237 0.9291 0.8464
Superballs 33.04 34.96 0.9791 0.9973 0.3532 0.0596 0.8943 0.8665

Thread Spools 25.19 28.28 0.9885 0.9942 0.2506 0.1273 0.8529 0.7596

Average 26.45 29.12 0.9826 0.9901 0.3521 0.1298 0.9289 0.8874
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(a) SIDQ Orange Sample

(b) CAVE Balloons Sample

(c) SIDQ Painting Sample

Figure 4. (Left): Original spectral band at 410 nm. (Middle): Heat map using absolute difference
between the reconstructed spectral image from A++ model and the original spectral image. (Right):
Heat map using absolute difference between the reconstructed spectral image from MST++ and the
original spectral image.

It is important to note that both models performed equivalently across the two datasets
tested. However, there was a magnitude difference observed between the results obtained
from the two datasets (see Tables 1 and 2). We observed an overall better performance of
the models when using the SIDQ dataset compared to the CAVE dataset. This observation
can be attributed to the differences in scene content between the two datasets. Specifically,
the CAVE dataset consists of more complex scenes with a higher prevalence of specular
and dark areas, which can pose challenges for spectral image reconstruction algorithms.
In contrast, the SIDQ dataset is characterised by smoother and flatter scenes with fewer
specular and dark regions, which may facilitate more accurate reconstruction of spectral
images. Therefore, the differences in scene complexity and the presence of specular and
dark areas could explain the observed performance differences between the two datasets.

However, upon closer examination of the error map, it becomes apparent that, in the
specular regions, the errors are more pronounced compared to other areas for both tested
methods. The spectral reconstruction encounters notable challenges in accurately capturing
and reproducing these specular reflections, leading to an increased error in these specific
regions. In the context of the Sample Painting (Figure 4, third row), the white pixels
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stand out significantly in error, particularly in regions with saturated appearance. These
pronounced errors are closely linked to the over-exposition of certain regions in the images,
which poses a significant challenge for the neural-based spectral reconstruction model in
accurately representing these regions. The struggle to reconstruct these over-exposed areas
correctly contributes to the observed increase in errors. Additionally, it is worth noting that
Y.T. Lin et al. [45] demonstrated that under-exposure spectral images similarly affects the
neural based model performance, emphasising the sensitivity of the spectral reconstruction
process to both over- and under-exposed conditions.

Furthermore, our investigation (see Figures 5–7, first rows) into the spectral infor-
mation contained in the reconstructed and original spectral images has brought to light
discernible disparities between the two spectral images. The reconstructed data for both
models, notably, may not faithfully replicate the exact spectral information inherent in
the original spectral image. The challenges encountered in accurately representing over-
exposed areas, among other factors, highlight a fundamental limitation: spectral recon-
struction does not capture the full extent of the spectral information. This underscores the
necessity for prudence in interpreting the spectral content of the reconstructed data.

Moreover, to delve deeper into the distribution of data, we extended our analysis by
examining the eigenvectors of each of the two first principal components obtained from the
PCA for the reconstructed spectral data, original spectra, and RGB counterpart. The eigenvec-
tors represent the direction of maximum variance within the data. Plotting these eigenvectors
enables a direct comparison between reconstructed spectral data, original spectral data and the
RGB data. In Figures 5–7, second row, we observe that the eigenvectors of the reconstructed
spectral image occupy an intermediate position between the RGB eigenvectors and those
derived from the original spectral image. This suggests that the reconstructed data capture
some, but not all, of the spectral variability present in the original data. The alignment of
the reconstructed eigenvectors with the RGB eigenvalues highlights a partial convergence of
information between the colour channels and the reconstructed spectral space.

(a) SIDQ Orange Eigenvector

(b) PCA component distribution for the Sample Orange

Figure 5. (a) Comparison of the eigenvectors of the first two components from the PCA. (b) PCA
distribution between the original spectral image (red), MST++-reconstructed spectral image (blue),
and A++-reconstructed spectral image (green), while the black area is a combination of the distribu-
tions for sample Orange.



Sensors 2024, 24, 3666 11 of 16

(a) CAVE Balloons Eigenvector

(b) PCA component distribution for the Sample Balloons

Figure 6. (a) Comparison of the eigenvectors of the two first components from the PCA. (b) PCA
distribution between original spectral image (red), MST++-reconstructed spectral image (blue),
and A++-reconstructed spectral image (green), while the black area is a combination of the distribu-
tions for sample Balloons.

(a) SIDQ Painting Eigenvector

(b) PCA component distribution for the Sample Painting

Figure 7. (a) Comparison of the eigenvectors of the two first components from the PCA. (b) PCA
distribution between original spectral image (red), MST++-reconstructed spectral image (blue),
and A++-reconstructed spectral image (green), while the black area is a combination of the distribu-
tions for sample Painting.

4.2. Colorimetric Analysis

In our analysis of the spectral reconstruction results (see Tables 3 and 4), we start by
looking at the average Euclidean distance values across all scenes under different lighting
(D65, A, LED-B1). Table 3 presents the Euclidean distance (∆E∗

ab) between the original
spectral data and the reconstructed spectra for two distinct models (A++ and MST++),
under three different illuminants (D65, A, and B1), across all scenes from the SIDQ dataset.
Moreover, Table 4 also shows the Euclidean distance (∆E∗

ab) between the original spectral
data and the reconstructed spectra for the two models (A++ and MST++), evaluated under
three different illuminants (D65, A, and B1) for all scenes from the CAVE database.
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Table 3. ∆E∗
ab difference between the color images computed from the reconstructed data and the

original data for SIDQ dataset for the considered lights.

Scene CIE D65 CIE A LED B1

A++ MST++ A++ MST++ A++ MST++

Cork 0.440 0.203 0.455 0.229 0.484 0.2
Hat 0.650 0.764 0.795 0.604 0.950 0.703

Leaves 0.503 0.310 0.578 0.365 0.523 0.346
Orange 0.306 0.654 0.569 0.462 0.481 0.599
Painting 0.287 0.293 0.301 0.305 0.310 0.287
Paper 1 0.592 0.547 0.785 0.497 0.599 0.516
Skin 1 0.385 0.240 0.812 0.254 0.874 0.226
Skin 2 0.270 0.217 0.737 0.256 0.721 0.217
Wood 0.370 0.299 0.683 0.334 0.614 0.303

Average 0.422 0.391 0.635 0.367 0.617 0.377

Table 4. ∆E∗
ab difference between the color images computed from the reconstructed data and the

original data for the CAVE dataset for the considered lights.

Scene CIE D65 CIE A LED B1

A++ MST++ A++ MST++ A++ MST++

Balloons 0.58 0.27 0.680 0.27 0.633 0.263
Beads 0.73 0.33 0.907 0.29 0.760 0.334

CD 0.46 0.22 0.603 0.26 0.449 0.247
Chart 0.32 0.21 0.419 0.24 0.354 0.229
Clay 0.68 0.28 0.929 0.25 0.731 0.279
Cloth 0.44 0.24 0.392 0.21 0.481 0.253

Egyptian Statue 0.31 0.21 0.422 0.23 0.329 0.204
Face 0.32 0.25 0.426 0.26 0.368 0.246
Beers 0.31 0.21 0.361 0.21 0.355 0.205
Food 0.54 0.23 0.677 0.19 0.581 0.215

Lemon Slices 0.37 0.25 0.472 0.26 0.395 0.253
Lemon 0.52 0.28 0.804 0.27 0.523 0.285
Peppers 0.63 0.27 0.835 0.275 0.679 0.287

Strawberries 0.43 0.29 0.541 0.271 0.456 0.268
Sushi 0.37 0.19 0.515 0.214 0.407 0.217

Tomatoes 0.36 0.21 0.506 0.201 0.390 0.205
Feathers 0.52 0.27 0.720 0.225 0.569 0.249
Flowers 0.43 0.27 0.583 0.245 0.501 0.249

Glass Tiles 0.60 0.22 0.713 0.237 0.627 0.247
Hairs 0.33 0.22 0.378 0.236 0.311 0.221

Jelly Beans 0.51 0.26 0.571 0.264 0.521 0.261
Oil Painting 0.47 0.26 0.601 0.261 0.474 0.259

Paints 0.39 0.20 0.498 0.212 0.445 0.212
Photo and Face 0.29 0.26 0.398 0.274 0.327 0.255

Pompoms 0.65 0.29 0.845 0.209 0.744 0.236
Apples 0.45 0.23 0.580 0.242 0.492 0.249
Peppers 0.60 0.30 0.999 0.287 0.669 0.306
Sponges 0.81 0.29 0.130 0.240 0.925 0.265

Stuffed Toys 0.45 0.24 0.545 0.202 0.474 0.242
Superballs 0.53 0.28 0.660 0.243 0.531 0.272

Thread Spools 0.41 0.24 0.573 0.271 0.413 0.275

Average 0.477 0.259 0.589 0.243 0.513 0.251

Surprisingly, these values consistently stay below 1, showing a strong match between
predicted and actual spectral data across various lighting conditions [52]. Moreover, the MST++
spectral reconstruction model stands out for its notably better performance in comparison to
the A++ model. This indicates its proficiency in accurately reproducing colours even under
different illuminants, which significantly impacts image quality. Consistent with our spectral
analysis, the heat maps in Figures 8 and 9 corroborate our previous findings that dark and
specular regions have lower performance in terms of colour accuracy. This is evident from the
higher ∆E∗

ab values observed in these regions compared to other areas in the scenes.
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(a) ∆E∗ab heat map under Illuminant A

(b) ∆E∗ab heat map under Illuminant D 65

(c) ∆E∗ab heat map under Light LED B1

Figure 8. Sample Balloons from the CAVE dataset. (Left): Original RGB image. (Middle): Delta E Map
from the A++ reconstruction model. (Right): Delta E Map from the MST++ reconstruction model.

(a) ∆E∗ab heat map under Illuminant A

(b) ∆E∗ab heat map under Illuminant D 65

(c) ∆E∗ab heat map under Light LED B1

Figure 9. Sample Painting from the SIDQ dataset. (Left): Original RGB image. (Middle): Delta E Map
from the A++ reconstruction model. (Right): Delta E Map from the MST++ reconstruction model.
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5. Conclusions

In conclusion, spectral reconstruction from RGB imagery holds promise for revolu-
tionising computer vision tasks by providing access to rich and extensive spectral data
without the need for expensive and complex data-acquisition campaigns. The adoption
of state-of-the-art models, coupled with comprehensive datasets, can yield accurate and
effective spectral reconstruction. However, challenges persist, primarily concerning re-
construction errors associated with over- and under-exposed areas, as well as the fidelity
of the reconstructed information. While common performance metrics suggest good re-
sults, a closer look at the spectral distribution of the reconstructed data reveals some areas
for improvement.

The colorimetric analysis of relighting from spectra further emphasises the robustness
of spectral reconstruction techniques, particularly the MST++ method, in faithfully repro-
ducing colours across different illuminants. This underscores the potential for enhancing
image quality and colour fidelity in practical applications.

Therefore, methods should undergo rigorous testing against real spectral data to vali-
date their applicability in practical settings. Furthermore, an avenue for future research lies
in training deep learning models using spectral reconstructed data to investigate their be-
haviour and potential for achieving superior results compared to using actual spectral data.
Future works may also consider the development of quality metrics for RGB-to-spectral
methods based on our observations. This article underscores the promising prospect of
employing spectral data, rather than RGB data, across diverse computer vision applications.
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