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ABSTRACT In spectral imaging, the constraints imposed by hardware often lead to a limited spatial
resolution within spectral filter array images. On the other hand, the process of demosaicking is challenging
due to intricate filter patterns and a strong spectral cross correlation. Moreover, demosaicking and super
resolution are usually approached independently, overlooking the potential advantages of a joint solution.
To this end, we use a two-branch framework, namely a pseudo-panchromatic image network and a pre-
demosaicking sub-branch coupled with a novel deep residual demosaicking and super resolution module.
This holistic approach ensures a more coherent and optimized restoration process, mitigating the risk of
error accumulation and preserving image quality throughout the reconstruction pipeline. Our experimental
results underscore the efficacy of the proposed network, showcasing an improvement of performance
both qualitatively and quantitatively when compared to the sequential combination of state-of-the-art
demosaicking and super resolution. With our proposed method, we obtained on the ARAD-1K dataset an
average PSNR of 48.02 (dB) for domosaicking only, equivalent to the best method of the state-of-the-art.
Moreover, for joint demosaicking and super resolution our model averages 35.26 (dB) and 26.29 (dB),
respectively for x2 and x4 upscale, outperforming state-of-the-art sequential approach.The codes and
datasets are available at https://github.com/HamidFsian/DRDmSR.

INDEX TERMS Spectral imaging, demosaicking, super resolution, deep learning, pseudo-panchromatic
image, spectral filter array.

I. INTRODUCTION
Spectral imaging has emerged as a promising candidate to
address the inherent limitations of color imaging. While color
cameras have traditionally been invaluable tools for image
capture across a myriad of applications, they are limited in
spectral separability and to provide a comprehensive spectral
information. In contrast to traditional color cameras, spectral
cameras offer a more comprehensive source of spectral data.
This superior capability proves especially advantageous in
applications such as food safety inspection [1], land cover
categorization [2] and object tracking [3].

Conventional spectral imaging is a spatial, spectral and
temporal sampling on the image plane. Implementing a
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snapshot imaging technique increase the temporal resolution
at the expense of the spectral and spatial information [4].
A good temporal resolution is relevant to analyse dynamic
systems. spectral filter array (SFA) [4] imaging techniques
are based on the color filter array (CFA) and obtain both spa-
tial and spectral information from a single image exposure.
Its tiny sensor size and capacity to capture snapshots present
a wealth of possibilities for a variety of uses.

An SFA-based device is used to create a spectral mosaic
image, similar to color imaging sensors with CFA. For tra-
ditional methods, extending CFA demosaicking algorithms
towards SFA algorithm has been explored [5]. However, this
straightforward rearrangement results in aliasing distortion
in both the spectral and spatial domains and do not
systematically incorporate high-frequency information due to
the increased number of bands and the absence of a dominant
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band. Therefore, spectral demosaicking, which refers to the
process of creating a fully-defined multispectral image (MSI)
free of spatial and spectral distortions, is a crucial stage
in SFA-based imaging approaches. Moreover, and due to
hardware limitations, most SFA devices have substantially
lower spatial resolution compared to CFA-based images.
To address this limitation, super resolution techniques emerge
as indispensable tools in enhancing the spatial resolution of
SFA images.

The exploration and application of demosaicking and super
resolution techniques have been central to research and
practical uses for decades. However, treating demosaicking
and super resolution as separate processes can be suboptimal,
leading to error accumulation, as mentionned by [6]. One
significant concern in this regard is the potential propagation
and magnification of artifacts introduced during demo-
saicking in subsequent super resolution processing stages.
For instance, super resolution algorithms may interpret
demosaicking artifacts, such as color zippering, as valid
components of the input image signal, contributing to an
increase in overall image inaccuracies. This issue complicates
the accurate reconstruction of spectral images, emphasizing
the need for a more integrated and cohesive approach
to address both demosaicking and super resolution tasks
simultaneously. Despite the well-established understanding
that the sequential application of demosaicking and super
resolution for both SFA and CFA cameras is sub-optimal [7],
[8], there has been relatively less attention given to the
development of a joint solution compared to sequential
approach. Acknowledging this gap in the existing research,
our paper aims to contribute to the field by proposing a
novel approach —a joint demosaicking super resolution model
for SFA images. Through this joint framework, we aim
to enhance the overall quality of reconstructed images
from spectral filter array cameras, addressing the limitations
associated with the traditional sequential application of these
image processing techniques [7]. To summarize, The main
contributions of our paper are delineated as follows:

1) To the best of our knowledge, our paper introduces the
first joint demosaicking and super resolution network
specifically designed for SFA-based images. This
innovative approach aims to overcome the limitations
associated with the traditional sequential applica-
tion [7], [9] of these two essential image processing
techniques.

2) We enhance the capabilities of our network through the
incorporation of a novel module named Deep Residual
Demosaicking and Super Resolution (DRDmSR). This
module, featuring Residual in Residual (RIR) structure
to obtain a very deep trainable network. Skip connec-
tions, both long and short, in RIR aid in bypassing
prevalent low-frequency information, enabling the
main network to effectively learn more valuable
information. In addition to channel attention (CA)
mechanism which adjusts feature scale by considering
the interdependencies among feature channels.
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3) Through rigorous experimentation and evaluation, our
proposed architecture demonstrates superior perfor-
mance compared to existing methodologies in the
field of spectral demosaicking and super resolution
for both synthetic and real data. The empirical results
showcase the efficacy of our approach, establishing
a new benchmark for image reconstruction in SFA-
based cameras. Furthermore, spectral reconstruction
from RGB data to train our framework has shown
great utility in the generalization of our framework (see
section V-C).

Our paper is structured as follows: In Section II, we delve
into the existing body of work related to demosaicking
and super resolution, presenting a review of prior research
efforts and methodologies in each domain. Following this,
Section III provides an insight into our imaging system
model, explaining key components and considerations that
form the foundation of our experimental setup. Moving
to the core of our contribution, Section IV introduces our
proposed joint demosaicking and super resolution frame-
work. We detail the architecture of our model, emphasizing
the integration of the DRDmSR and its coupling with the
Pseudo Panchromatic Network (PPI-Net). In Section V,
we transition to the experimentation phase, providing an
extensive exploration of our experimental setup, dataset, and
performance metrics. The empirical results and comparisons
with existing methodologies are presented to validate the
effectiveness of our proposed approach. Finally, Section VI
concludes the paper, summarizing our main contributions,
discussing the implications of our results, and suggesting
potential avenues for future research in the context of spectral
filter array cameras.

Il. RELATED WORK

In this section, we offer an overview of previous research
and discuss the challenges related to demosaicking and
super resolution. Then, we explore the existing literature
concerning joint solutions for these tasks.

A. DEMOSAICKING

Image demosaicking (DM), is an ill-posed problem that
involves interpolating full-resolution spectral images from
mosaic images. Model-based and learning-based approaches
are the two basic groups into which existing methods can be
divided. In order to facilitate the recovery of missing data,
model-based techniques [10], [11] concentrate on building
mathematical models and image priors in the spatial-spectral
domain. Learning-based methods [11], [12] use a wealth
of training data to learn how to construct the process
mapping.

Previous studies on SFA image demosaicking have looked
into a variety of handcrafted techniques [13], [14], [15], [16].
Brauers and Aach [17] introduced the weighted bilinear (WB)
interpolation technique and expanded the CFA demosaicking
to SFA. The pseudo-panchromatic image (PPI), or average
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image of all spectral channels, was initially introduced
by Chini et al. [18]. The PPI difference (PPID) method
was introduced by Mihoubi et al. [19], [20] to facilitate
SFA demosaicking by sharpening the PPI using a channel
residual structure, taking into account the spatial and spectral
correlation of SFA image. A vast number researchers tried to
develop data-driven methods to achieve high-accuracy SFA
image demosaicking [13], [21], [22], [23], [24], motivated
by the recent success of deep convolutional neural networks
(CNNs) in various SFA-based image applications, such
as object tracking [25], image denoising [26] and image
deblurring [27].

In a similar vein, several CNN-based deep learning models
for demosaicking have been proposed. In comparison to
the PPID technique [20], Shinoda et al. [28] shows better
results using a deep demosaicking network that makes
use of three-dimensional (3D) convolutions and a deep
residual network ResNet. Nevertheless, images produced
through this methodology may manifest false color artifacts
in regions characterized by high contrast and luminos-
ity. Feng et al. [29] introduced a deep CNN using mosaic
convolution-attention network showing the importance of
initial feature extraction from the raw mosaic image. But,
their mosaic convolution module do ignore the fluctuation
of spatial locations, which leads to checkerboard distortion.
Pan et al. [30] introduces a modification to the demosaicking
framework by incorporating PPIs, estimated through a
CNN, and employing a traditional two-branch residual
interpolation method for demosaicking. The first branch
utilizes the CNN-generated PPI to guide the handling of
residuals between each subsampled band and the correspond-
ing PPL. In the second branch, the initially demosaicked
band is employed to further mitigate residuals between
itself and the subsampled mosaic image. Nevertheless, the
incorporation of guided filters in this process gives rise
to a halo effect in the demosaicking results. Following
the success of Panetal. [30], Zhao et al. [31] introduced
a Residual Network and an improved PPI generation by
infusing edge-related information and employing adaptive
spatial and spectral compensation within the network to
improve demosaicking results, while achieving state-of-the-
art metrics.

B. SUPER RESOLUTION

Single Image super resolution (SISR) is the process of pro-
ducing a high resolution (HR) image from it corresponding
low resolution (LR) image. We can categorize SR methods
into two groups: Model based techniques [32], [33], [34]
and learning based methods [35]. Model-based techniques
for SISR are infamous for their aliasing artifacts and edge
blurring [32], [33]. Deep learning-based methods have made
significant progress recently. In order to tackle the SISR
challenge, SRCNN [35] first presented a deep learning
based model that performed significantly better than model
based methods. Benefiting from the ResNet [36] approach,
VDSR [37] trained 20 layers deep networks with long
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residual connections. These networks could only learn more
high-frequency data and accelerate convergence. In order to
further enhance SISR performance, EDSR [38] suggested
integrating several resblocks and removing the batch-
normalization layer. This can save GPU RAM, stack more
layers, and widen networks [39]. LapSRN [40] suggested
repeatedly super-resolving LR images in order to reduce GPU
memory usage and improve performance. Moreover, Sidorov
and Hardeberg [41] proposed a fully-convolutional encoder-
decoder network designed to reconstruct images from noisy
inputs by leveraging the intrinsic prior contained in the
network structure without any training.

The most recent work include RDN [42], produced
residual dense blocks (RDB) by combining ResNet with
DenseNet [43]. The proposed RDB can allow higher growth
rate to improve performance through local feature fusion.
In order to calibrate feature maps and propose RIR structure
to produce a very deep convolutional networks that achieved
new state-of-the-art performance for SISR task, RCAN [44]
first included attention mechanism, which was influenced by
SENet [45]. However, the joint solution of demosaicking and
super resolution has been underesearched so far with some
exceptions in the CFA community [6], [7], [9].

C. JOINT SOLUTION

Even though there have been a lot of CDM and SISR methods
presented in the previous several decades, in practical appli-
cations, the two approaches are often explored separately and
used in order. Although it is much easier to examine the two
problems individually than to consider them combined, there
are three major issues with the former plan:

1) Sub-optimal process. Both tasks are closely connected
and may be thought of as a similar inverse problem
since they are based on the limits of sensors for
determining spatial and spectral information. Thus, itis
not ideal from a mathematical perspective to split the
joint issue into two subproblems and solve them one
after the other.

2) Accumulation of error. Since DM is an inverse
problem. Artifacts and errors may be introduced.
Consequently, these artifacts may mislead the SISR
method, resulting in the accumulation and spread of
these artifacts in the final image.

3) An inefficient use of computational and memory
resources. The well-established ‘“CDM-followed-by-
SR” pipeline for model-based algorithms [13], [32]
suggests separately investigating prior knowledge for
the two tasks on the same image content, which
may result in needless repetition of computation. The
convolutional layers used for feature extraction and
refinement in CNN-based techniques [29], [42] cannot
be effectively used by both tasks in the sequential
pipeline.

While joint demosaicking and super resolution (JDSR)
seems to be an appealing idea, the bibliography for a JDSR
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FIGURE 1. The raw data acquisition process of a scene using snapshot spectral camera and the reconstruction of the

fully-defined super resolved image.

approaches is short. Moreover, it consist only CFA-based
solution, and no work have been proposed for SFA based
imaging. The very first model was proposed by [7], where
several residual blocks where directly linked to establish a
nonlinear mapping from the low resolution image input to
the high resolution output. Moreover, Xu et al. [6] introduced
a JDSR network called RDSEN, where the foundational
unit integrates dense connections into the RCAB [44].
Preceding RDSEN, a pre-demosaicking network (PDNet)
was devised to generate an intermediate demosaicked
image. Through joint end-to-end training of PDNet and
RDSEN, the model presented in [6] achieves state-of-the-
art performance. In a recent development, Chang et al. [9]
propsed the TSCNN model which differs from RDSEN [6]
by maintaining the same resolution as the Bayer-sampled
LR image for initial feature extraction, utilizing the green
channel for better performance. It also includes densely-
connected dual-path enhancement blocks (DDEB) and a
dual-branch feature refinemen (DFR) module to decompose
input features into high and low-frequency components,
enhancing multi-frequency information in images for an
efficient CNN model. These models are specifically tailored
for CFA based camera, using a bayer filter and taking
advantage of a dominant band (Green band). However,
they are not suitable for SFA-based images, incorporat-
ing a spectral filter array with more spectral bands and
may or may not exhibit a Bayer-like Green dominant
channel.

Ill. MODEL AND PRELIMINARIES

A. SFA MOSAICKING MODEL

First, the incident light is directed into the spectral filter array,
and then into the single sensor, which in turn provides a
mosaic image, denoted as I,4,, with a spatial resolution of
W x H pixels. Moreover, at every pixel of the mosaic image
Lrqw, only a single band is available out of the C bands.
Mathematically, by taking into account that a fully-defined
MSI with C bands (which is not available in practice) {IC}Cczl,
is modulated by {Sc}le. Therefore, the mosaic image is
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formulated as
c
Law = SO, M
c=1

where S, is a sparse band-wise binary mask, containing
values solely at positions that align with the ¢ band
on the SFA. Moreover, © is the element-wise product.
Demosaicking is performed on each sparse channel of S, to
obtain a reconstructed image 1 with C fully defined channels.
Figure 1 shows the imaging reconstruction process scheme.

B. PPI: METHODOLOGY AND ESTIMATION
The PPI is determined at each pixel by calculating the mean
value over all channels of a fully defined spectral image [18]

Ipp; = N ZIC- )
c=1

Following the assumption in [18], when channels exhibit
spectral separation, signifying a notable distance between the
centers of bands associated with these channels, they demon-
strate a higher correlation with the pseudo-panchromatic
image (PPI) than with each other. Mihoubi et al. [19] intro-
duced a straightforward approach for estimating an initial
PPI by convolving the SFA with a weighted average filter,
denoted as M. Given the impracticality of obtaining all /.
values for ¢ € {1, C} at pixel position ¢, M is configured
to consider surrounding / values around pixel position. This
design is based on the assumption that neighboring pixels
of the PPI exhibit strong correlations. Additionally, the
coefficients of M are structured to ensure that the sum of
coefficients for each channel is identical, emphasizing equal
importance for each channel in the PPI generation process.
Following the notation from [46] for an m x n SFA mosaic
pattern with no dominant band, the M matrix is expressed as

M,, x M,
mxn

M 3)
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FIGURE 2. Overview of our model framework. Iraw. Is. Ipjc, 1PP! and | denotes respectively, input raw image,
sparse image, pre-demosaicked image, estimated pseudo panchromatic image and the estimated
demosaicked super resolved image. Our framework contains two main modules namely PPI-net and the

DRDmSR module.

where

Kim if m is odd,

M = [1 K 1] therwi )
= —1, =] otherwise,
2 1,m—1 )

Kin! if n is odd,
M,=1 1 1 5
" [EaKl,n—l, E]T otherwise, )

where the term K ,, denotes a matrix consisting of all ones,
with dimensions 1 x m.

An initial PPI noted as ™ is derived by computing the
convolution between /,,,, and M

™M =L M. (6)

Building upon the assumption articulated by Mihoubi et al.
[20], asserting the strong correlation among neighboring
pixels, the filter matrix M is structured specifically for a4 x 4
SFA mosaic pattern

1 2 2 2 1
24 a4
M=—1|2 4 4 4 2 )
41s 4 4 4 2
1 2 2 2 1

IV. DEEP JOINT DEMOSAICKING AND SUPER
RESOLUTION NETWORK

In this section, we present a comprehensive framework
featuring a two-branch Convolutional Neural Network
(CNN) designed specifically for the demosaicking and Super
Resolution of SFA images, as illustrated in Figure 2. Our
network architecture is characterized by the integration
of two distinct branches: the first branch comprises a
Deep Pseudo Panchromatic Image network (PPI-Net) [46].
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While the second branch performs pre-demosaicking oper-
ations using interpolation method. These branches are
seamlessly fused into a unified module termed the Deep
Residual Demosaicking and Super Resolution (DRDmSR)
module.

In the subsequent sections, we introduce the first branch,
namely the deep PPI-net, which serves as the cornerstone of
our approach. Following this, we delve into the details of the
DRDmSR module, elucidating its underlying principles and
operational mechanisms. Through this sequential presenta-
tion, we aim to provide a comprehensive understanding of
the intricate interplay between the constituent components of
our proposed framework.

A. DEEP PPI NETWORK

Considering the pronounced positive linear correlation
observed between the reconstructed spectral image and the
high-frequency details preserved in the PPI [46], we advocate
for the utilization of elementwise summation between I and
1™ as illustrated in Figure 3. Furthermore, recognizing that
the initial PPI generated by Equation 6 can be interpreted as
a smoothed version of Ipp; [46], we adopt an architecture
proposed by [46], inspired by methodologies in the image
deblurring domain. Subsequently, we leverage the PPI-net to
enhance the sharpness of IV .

Figure 3, illustrates the PPI-Net, which integrates a CNN
architecture with a conventional PPI estimation method.
Initially, a preliminary M is obtained by applying the PPI
filter M to the raw mosaic image I,,,. Subsequently, four
convolutional layers with varying kernel sizes (C x 9 x 9,
Cx7x7, Cx5x5,and1 x5 x 5, where C denotes
the number of channels) are used to determine the residual
between the preliminary I and the ground truth Ipp; defined

VOLUME 13, 2025
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FIGURE 3. Overview of PPI-net module. where @ denotes elementwise
sum and M the filter matrix.

in Equation 2 in order to estimate 177/

w H
Lep = > 3 |[1777(h,w) = Tppr(h, w)

w=1 h=1

; ®

here, Lpp; denotes the loss function targeted for minimization
within our PPI-net module, and Ipp; is the simulated ground
truth PPI defined in Equation 2. Additionally, H and W
represent the height and width of the PPI, while 4 and w
indicate the pixel coordinates.

B. DRDmSR NETWORK

After obtaining the estimated PPI, denoted as 1PP1 , and
the pre-demosaicked image, achieved through bicubic inter-
polation denoted as I;. in Figure 2, both outputs are fed
into identical blocks. They are then concatenated along
with the sparsity image for input into the DRDmSR
module.

The key components of our DRDmSR module include
the upscale module, reconstruction section, shallow feature
extraction, RIR deep feature extraction, as depicted in
Figure 4.

Let’s refer to Fiypur and Foupy; a8 DRDmSR’s input and
output, respectively. As examined in [44], we derive the
shallow feature Fy from the Fj,, input using a single
convolutional layer (Conv)

Fo= HConv(Finput)a (9)

where the convolution operation is indicated by Hcony(.). The
RIR module is then used to extract deep features using Fy.
Therefore, we can write

Frir = Hrir(Fo), (10)

here, Hpr(.) indicates our deep residual in residual
structure, which contains two residual groups (RG). This
Hpgjg variation, influenced by the success of RCAN [44],
incorporates another rendition of the channel attention
mechanism similar to the one employed in SE-Resnet [45].
Our suggested RIR offers an especially large receptive field
size. As a result, we handle its output Frr as a deep
feature, which is subsequently processed by an upscale
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module to increase the spatial resolution of the spectral
image.

Foupur = Fum = Hyp (FRIR), (11)

here, Fyyy is the upscaled output and the Hyyy(.) denotes the
upscaling module depicted in Figure 4.

Various choices exist for upscale modules, each offering
distinct advantages and trade-offs. Common upscale mod-
ules include the deconvolution layer, also known as the
transposed convolution layer [47], which aims to upsample
the feature maps by learning an inverse operation to
convolution. Another approach involves nearest-neighbor
upsampling followed by convolution [48], which utilizes
simple interpolation techniques before applying convo-
lutional operations. Additionally, the Efficient Sub-Pixel
Convolutional Network (ESPCN) [49] presents an alternative
method, where the network directly learns to upscale feature
maps by utilizing sub-pixel convolutional layers. In our
implementation, following the success of ESPCN, we adopt
a similar upscaling strategy, employing convolutional layers
followed by a pixel shuffle operation to enhance spatial
resolution.

Residual Channel Residual . , ReLU
RCAB ‘Attention Block Group 'P.xelsm.me ‘Cum 33 ‘

FIGURE 4. Overview of the DRDmSR module where it consists of 3 main
blocks, Residual Group (RG), Residual channel attention block (RCAB) and
upscaling module.

C. RESIDUAL IN RESIDUAL STRUCTURE

The RIR structure is a pivotal element in our approach
to joint demosaicking and super resolution. It enables
training of deep convolutional neural networks (CNNs),
resulting in superior performance. Comprising RG (see
Figure 4) containing Residual Channel Attention Blocks
(RCAB) and Long Skip Connections (LSC). Moreover,
RCABs (see Figure 5) introduce an adaptive channel attention
mechanism within each RG, rescaling channel-wise features
based on interdependencies among channels. This enhances
CNN'’s representational ability, focusing on high-frequency
information while bypassing low-frequency details through
Short Skip Connections (SSC). LSCs establish long-range
connections between RGs, ensuring effective gradient flow
during training and efficient propagation of useful informa-
tion and allow the RIR structure learning residual information
in a coarse level.
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I-Clm]mel Attention
Mechanism

Global A.verage Conv 3x3
Pooling

'ReLU @ Sigmoid Function

FIGURE 5. Overview of RCAB module, where & and ® denotes
respectively, elementwise sum and elementwise multiplication.

D. LOSS FUNCTION

We employ a composite loss function, denoted by L,
to train the entire framework. Its objective is to concurrently
minimize the signal reconstruction errors of both the PPI and
joint demosaicked super-resolved image.

L = Lppr + LprDmSR- (12)

where Lpp; is the loss function of the PPI-Net defined
in Equation 8, Lpgpmsg is the loss function for the
DRDmSR module, where this latter is a combination
as,

Lprpmsr = Linse + Lyaveler- (13)

Mean Squared Error (MSE) is commonly employed as a
loss function in the field of image processing. Its purpose
is to drive the pixel values of the estimated image closer
to those of the ground truth image in their entirety. Thus,
we used the MSE as a loss function, comparing both the
ground truth image and the estimated demosaicked and super-
resolved image.

P

1 or

Lie = Z} Hlp .y
p:

here, P denotes the total number of pixels, with p representing
the index of the pixel.

In order to enhance the sharpness and texture richness
of the estimated demosaicked and super-resolved image,
we incorporate an additional edge loss, denoted as Lyayelet-
This involves transforming both the ground truth image 7¢7
and the estimated image 1 into the wavelet domain, followed
by computing the MSE between the transformed 77 and 1
within the high-frequency sub-bands. In this study, the edge
loss is evaluated within the wavelet domain, which can be

Py

represented as follows:
1
Lyaveler = P_ Z_: ‘

here, wST and 1, represent the coefficient of 797 and 1,
respectively. P,, denotes the number of high-frequency

—
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wavelet coefficients obtained from the image decomposition
using the stationary wavelet transform. For our analysis,
we employ the Haar filter and configure the transform level
to 2.

01
" |}
ATTTTTT
4 g |

o7 o
1
Ground Truth Estimated
MSI MSI
i PR
’f\ DRDmSR-net

i
N
REEEEa:

Lo
I Mosaic Image
Downscaled
MSI

4. Downscaling
{ f) Operator

FIGURE 6. llustration of data pipeline. From high resolution fully-defined
spectral image denoted 19T to demosaicked super resolved spectral
image denotes as /.

V. EXPERIMENTS

A. SETTINGS

We provide clarification on the training settings, evalua-
tion metric, degradation models, and datasets used in the
experiment.

1) DATASETS AND DEGRADATION MODELS

We assess the performance of our framework using two
distinct datasets. The first dataset comprises natural spectral
images sourced from the ARAD-1K dataset [50]. The second
dataset consists of reconstructed spectral images from RGB
images obtained from the Vimeo dataset [51]. Spectral recon-
struction can be used to increase the quantity of available
spectral images for training [52]. To reconstruct the RGB
images from the Vimeo dataset we used the MST++ [53].
Furthermore, as part of the preparation for joint demosaicking
and super resolution tasks, we apply bicubic interpolation
to downscale the spectral images as depicted in Figure 6.
The NTIRE 2022 Spectral demosaicking Challenge presents
the ARAD-1K dataset, surpassing existing datasets like
CAVE [54], TT59 [55], and TokyoTech [27]. ARAD-1K
represents a pioneering large-scale dataset tailored specifi-
cally for SFA demosaicking of natural scenes, comprising
1000 images with 16 spectral bands covering wavelengths
from 400 to 1000 nm. These images provide 16-channel full-
resolution spectral data with a spatial resolution of 480 x
512, serving as ground truth (GT). Raw mosaic images are
generated from the GT using a 4 x 4 SFA pattern with no
dominant band. The dataset is partitioned into 900 training
images, 50 validation images, and 50 confidential test images
without corresponding GT. For our joint demosaicking and
super resolution approach. We utilize the 900 images with
GT for training and 50 images for testing to quantitatively
evaluate our model.

VOLUME 13, 2025
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PPIE-SSARN DPDNet

(b) Demosaicking results at 650nm
FIGURE 7. Visual comparison of demosaicking results on the ARAD-1K dataset, showcasing our method alongside PPIE-SSARN [31], MCAN [29],
DPD-Net [46], and Weighted Bilinear [17]. The first column presents the ground truth (GT), followed by zoomed-in regions for detailed analysis. While

both our method and recent competitors do not exhibit visible artifacts, our method demonstrates superior spectral fidelity, closely matching the
ground truth. This aligns with the quantitative results in Table 1.

GT Ours PPIE-SSARN + MCAN + FSRCNN DPDNet + FSRCNN
FSRCNN

(a) Results at 400nm

(b) Results at 620nm.

(c) Results at 530nm

FIGURE 8. Comparison of visual demosaicking and super resolution (x2 upscale) results using the ARAD-1K dataset between our method,
PPIE-SSARN [31], MCAN [29], DPD-Net [46] each coupled with FSRCNN. The initial column displays the ground truth (GT), supplemented by enlarged
views of specific regions. Our method demonstrates the least visible artifacts and superior visual quality, with spectral fidelity closely matching the
ground truth. These qualitative results complement the quantitative metrics in Table 2. For finer details, please zoom in accordingly.
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GT Ours

PPIE-SSARN +
FSRCNN

MCAN + FSRCNN

DPDNet + FSRCNN

Results at 450nm

Results at 700nm.

Results at 650nm

FIGURE 9. Comparison of visual demosaicking and super resolution (x4 upscale) results using the ARAD-1K dataset between our method and
competitors (PPIE-SSARN, MCAN, DPD-Net), each coupled with FSRCNN. The initial column displays the ground truth (GT), supplemented by enlarged
views of specific regions. Finer details in the results from competitors appear blurry, indicating limitations in preserving high-frequency textures and
spatial accuracy during the super resolution process. In contrast, our method achieves sharper details and maintains spectral fidelity. For finer

details, please zoom in accordingly.

The Vimeo-90K Dataset [51] is a substantial repository of
high-quality videos employed for diverse video processing
tasks. Captured using professional-grade cameras, the dataset
spans a wide array of subjects. Each frame undergoes
independent compression to maintain accuracy and prevent
artifacts arising from video codecs. The resolution of all
videos is standardized to 448 x 256 pixels. Furthermore,
subsets of this dataset serve as benchmarks for various
enhancement tasks such as super resolution among others.
Additionally, employing the spectral reconstruction model
MST++4, we reconstructed spectral images from RGB,
spanning wavelengths from 400 to 700 nm across 16 bands,
with a step of 20 nm. Raw mosaic images are generated from
GT using the same 4 x 4 SFA pattern with no dominant band

2) EVALUATION METRICS

We utilize a set of quantitative evaluation metrics to assess
the performance of our method. Specifically, we employ the
peak signal-to-noise ratio (PSNR) [56], structural similarity
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index (SSIM) [57], and spectral angle mapper (SAM) [58].
PSNR is employed to quantify the pixel-by-pixel disparity
between the demosaicked and super-resolved spectral images
and the ground truth (GT). SSIM evaluates the degradation
in image quality between the generated images and the
GT. Additionally, SAM is utilized to measure the spectral
similarity between the generated images and the GT. It is
important to note that while PSNR and SSIM tend to increase
with higher image quality, SAM’s performance decreases as
image quality improves.

3) TRAINING DETAILS

Our framework is implemented based on PyTorch, and
trained our model using a NVIDIA RTX 2080 GPU equipped
with 20GB of VRAM and CUDA 11.8 for a total of
2000 epochs. We employed the Adam optimizer to update
model parameters, specifying 81 = 0.9 and 8, = 0.999.
Data augmentation techniques were applied to enhance the
robustness of the training process, encompassing random
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cropping of spectral images from both the ARAD-1K and
Vimeo90k datasets to 128 x 128 patches, as well as rotations
by 90°, 180°, and 270°. Moreover, the batch size was set to
16. To facilitate convergence, we initialized the learning rate
to 10™* and adopted a halving strategy every 250 epochs.
Moreover, All testing experiments are implemented using
the same machine: Intel Core 19-11900k CPU 2.40 GHz,
NVIDIA GPU RTX 3070 and 16 Gb of RAM.

B. COMPARISONS WITH STATE-OF-THE-ART
In this subsection, we conduct a comparative analysis
of our joint demosaicking-super resolution model against
several state-of-the-art demosaicking methods, including
MCAN [29], PPIE-SSARN [31], DPD-Net [46], and a
conventional demosaicking approach known as WB [17]
(weighted bilinear). Each of these methods is paired with
super resolution models SRCNN [59], FSRCNN [47] and
ESRGAN [60]. Testing is performed on the ARAD-1K
dataset, where we implement and fine-tune existing demo-
saicking models over this latter. Additionally, evaluation
is conducted on the SIDQ dataset, which serves as an
unseen dataset for all networks, including our own, enabling
assessment of our model generalization capabilities.
Furthermore, leveraging the versatility of our upscaling
module (see Figure 4), we train our DRDmSR model to
perform 2x and 4x upscaling, in addition to 1x upscaling
(solely demosaicking). This comprehensive approach allows
us to thoroughly evaluate the performance and scalability of
our model across various upscaling factors and showcasing
the difference between a joint solution and a sequential one.

1) DEMOSAICKING EVALUATION

Table 1 highlights the performance of our model along with
state of the arts models for ARAD-1K dataset. Moreover,
even though our focus lies on joint demosaicking and super
resolution, our model’s standalone demosaicking capabilities
are notable, demonstrated by its second-place ranking in
PSNR, closely following the leading model, PPIE-SSARN.
However, our model excels particularly in additional quality
metrics such as SAM and SSIM, providing a more compre-
hensive evaluation of image fidelity and perceptual quality.
Our model outperforms others in these metrics, demonstrat-
ing superior spatial accuracy and structural similarity. This
highlights the effectiveness of our approach in preserving
finer details and textures during the demosaicking process,
which is crucial for downstream tasks such as image analysis
and reconstruction.

Additionally, Figure 7 illustrates visual comparisons
between state of the art methods. Conventional WB performs
unsatisfactorily in most cases as the estimated images
are oversmoothed and blurred. In contrast, deep learning
models demonstrate superior performance and are closely
related. MCAN exhibits checkerboard distortion caused by
the periodic feature extraction operation and has the lowest
spectral fidelity among the deep learning models (see first

VOLUME 13, 2025

TABLE 1. Average demosaicking results on the ARAD-1K dataset.

Methods PSNR1 SAM] SSIM+
WB 36.58 1227 09212
DDM-net 44.81 4786  0.9869
MCAN 4646 3970  0.9903
PPIE-SSARN 4846  3.175  0.9936
Ours 4802 2355  0.9954

row of Figure 7). DPDNet achieves impressive demosaicking
results, yet some undesired streak artifacts persist at the
edges, as observed in the third row. PPIE-SARN exhibits
the best visual quality alongside ours, although our method
demonstrates slightly better spectral fidelity (see Figure 7
third row). Overall, our demosaicking results are performing
well, even considering that our primary objective is joint
demosaicking and super resolution.

2) DEMOSAICKING AND SUPER RESOLUTION EVALUATION
The findings presented in Table 2 encapsulate the perfor-
mance metrics of demosaicking methods (PPIE-SSARN,
MCAN, DPD-net and WB) integrated with super resolution
deep learning based models (SRCNN, FSRCNN, ESRGAN),
delineating a sequential approach alongside our proposed
joint solution.

TABLE 2. Average demosaicking + super resolution x2 upscale results on
the ARAD-1K dataset.

Method PSNR+ SAM| SSIM ¢
WB + SRCNN 25.53 13.11 0.750
WB + FSRCNN 24.47 1132 09212
WB + ESRGAN 26.19 1037 0.9245
DPD-Net + SRCNN 29.72 995 09361
DPD-Net + FSRCNN 30.01 914 09365
DPD-Net + ESRGAN 32.03 850  0.9404
MCAN + SRCNN 30.53 1060 0922
MCAN + FSRCNN 31.17 10.74 0921
MCAN + ESRGAN 3245 9.97 0.934
PPIE-SSARN + SRCNN 34.06 6.14 0.967
PPIE-SSARN + FSRCNN  34.88 6.19 0.963
PPIE-SSARN + ESRGAN  35.13 6.109 09381
Ours 3526 5691 0985

Notably, our joint solution consistently surpasses other
sequential methods across all metrics, demonstrating superior
image quality and spectral fidelity. Visual comparisons,
as depicted in Figure 8, further elucidate the efficacy
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Ours

PPIE-SSARN

DPDNet

(a) Demosaicking results at 400nm

FIGURE 10. Comparison of visual demosaicking results using the SIDQ dataset between our method, PPIE-SSARN [31], MCAN [29], and DPD-Net [46]. The
initial column displays the ground truth (GT), supplemented by enlarged views of specific regions. All competitors exhibit visible checkerboard artifacts,
while our method eliminates such distortions, producing smoother and more accurate reconstructions. For finer details, please zoom in accordingly.

of our approach compared to sequential methodologies.
This effect becomes exacerbated when upscaling, lead-
ing to the manifestation of undesirable artifacts. Con-
versely, MCAN exhibits amplified checkerboard patterns
and blur, exacerbating unwanted artifacts that were already
present in the demosaicking process, further accentuat-
ing them post super resolution. DPD-net, while not dis-
playing obvious artifacts, experiences blurring and yields
the lowest metrics among deep learning-based sequential
approaches.

In addition to the demosaicking models, FSRCNN sur-
passes SRCNN in most cases, showcasing better performance
in terms of image quality and detail retention. However,
ESRGAN outperforms both FSRCNN and SRCNN, at the
cost of a high number of parameters and GFLOPs, resulting
in significantly longer inference times (see Table 4). In con-
trast, our joint solution proposes better results at a much
lower computational cost and reduced inference time. This
highlights the efficiency and effectiveness of our approach,
which not only enhances image quality but also maintains
computational feasibility.

In contrast, our joint demosaicking super resolution
solution delivers the most best results (refer to Figure 8),
preserving intricate details such as those observed in the
depiction of the bird (see Figure 8 third row), devoid of
artifacts and maintained spectral fidelity.

Transitioning to x4 upscaling, a discernible gap between
our joint solution and sequential methodologies becomes
apparent. Table 3 presents metrics-based performance eval-
uations, revealing an amplified gap between PPIE-SARN +
ESRGAN and our joint solution. Furthermore, Figure 9 pro-
vides visual comparisons, showcasing significantly enhanced
detail representation in our joint solution compared to
sequential approaches (refer to Figure 9, third row).

In conclusion, our observations indicate that unwanted
artifacts originating from the demosaicking step become
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TABLE 3. Average demosaicking + super resolution x4 upscale results on
the ARAD-1K dataset.

Method PSNRT SAM] SSIM ¢
WB + SRCNN 20.87 21.21 0.610
WB + FSRCNN 2083 21226  0.583
WB + ESRGAN 20.88 2089  0.609
DPD-Net + SRCNN 22.56 1574 0.693
DPD-Net + FSRCNN 22.60 1551  0.669
DPD-Net + ESRGAN 23.25 1521 0.681
MCAN + SRCNN 2047 1638 0.674
MCAN + FSRCNN 22063 1613 0.649
MCAN + ESRGAN 23.097 1589  0.667
PPIE-SSARN + SRCNN 25.24 1038 0.952
PPIE-SSARN + FSRCNN  25.39 9.82 0.954
PPIE-SSARN + ESRGAN  26.18 8.57 0.959
Ours 26.29 8.12 0.961

more pronounced when subjected to upscaling, despite the
utilization of state-of-the-art super resolution models such
as SRCNN, FSRCNN and ESRGAN. Additionally, it is
noteworthy that the gap between our solution and state-of-
the-art methods is amplified when augmenting the upscaling
factor. This underscores the importance of opting for a
joint solution, as demonstrated by our approach, as the
optimal strategy for mitigating artifacts in the context of SFA
demosaicking and super resolution.

C. UNSEEN DATASET COMPARISON
In this sub-section, we undertake the evaluation of our
proposed framework’s performance using unseen spectral
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TABLE 4. Efficiency and parameter comparison with different demosaicking + SR methods.

Method Scale Params (M) GFLOPs (G) Running Time (ms)
DPD-net +SRCNN x2 1.07 174.27 2.50
DPD-net +FSRCNN X2 1.09 171.13 1.51
DPD-net +ESRGAN X2 16.7 1331.3 122.51
MCAN +SRCNN X2 1.94 124.46 2.19
MCAN +FSRCNN X2 1.98 120.85 1.20
MCAN +ESRGAN X2 17 1279.85 123.20
PPIE-SSARN +SRCNN X2 1.49 275.7 3.14
PPIE-SSARN +FSRCNN X2 1.6 273.1 2.15
PPIE-SSARN +ESRGAN X2 16.9 1430.1 124.15
Ours X2 1.32 181.34 1.45

images. Notably, neither our network nor other state-
of-the-art models have encountered the chosen dataset
during their training phase. To this end, we employed
the SIDQ dataset [61], a meticulously assembled spectral
image database comprising nine scenes. These scenes
were thoughtfully chosen to represent a diverse variety
of materials, including textile, wood, and skin, and were
captured utilizing a hyperspectral system (HySpex VNIR-
1600). The spectral range spans from 410 to 1000 nm,
encompassing 160 spectral bands, with 85 bands falling
within the visible light spectrum. Notably, we selectively
extracted 16 bands from this dataset, ensuring their alignment
with the wavelength range of the ARAD-1K dataset for
comprehensive comparison and analysis. Our data processing
pipeline follows a consistent methodology, as depicted in
Figure 6, where the high-resolution, fully defined spectral
image serves as our ground truth. This image is initially
downscaled using bicubic degradation and then simulated
into a mosaic image, which is subsequently processed by our
framework.

The subsequent Table 5 presents a summary of results
obtained from our framework and other state-of-the-art
models for demosaicking, x 2 upscaling, and x 4 upscaling.

We observe a significant improvement in performance
when transitioning from the ARAD-1K dataset to the
SIDQ dataset, with our model consistently outperforming
all others, even in the demosaicking process for the
latter. This notable enhancement can be attributed to our
model’s additional training on the spectral-reconstructed
Vimeo dataset [51], leveraging the state-of-the-art recon-
struction model from RGB [53]. This augmented dataset
introduces a wide range of diverse imaging conditions,
including variations in illumination, textures, and color
distributions, which significantly enhance our model’s ability
to generalize and ensures robust adaptation to unseen
datasets.

Although synthetic data cannot fully replicate real-world
conditions, it expands the training set, helping to address
the limited amount of spectral dataset compared to RGB
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dataset [52]. The observed performance gain—particularly in
terms of PSNR, SSIM, and SAM on SIDQ—demonstrates
our model’s ability to generalize across diverse imaging
conditions effectively. While PPIE-SSARN demonstrates
great performance in demosaicking, the sequential models
of PPIE-SSARN + ESRGAN fail to outperform other
sequential models in terms of metrics. Interestingly, DPD-
net + ESRGAN exhibits superior performance among
sequential models, particularly evident when upscaling by a
factor of x4.

Figure 10 presents visual comparisons among various
demosaicking models, including our own, with a focus on
specific areas of interest. Artifacts are distinctly visible
in different demosaicking solutions, indicating variations
in performance. MCAN exhibits prominent checkerboard
artifacts (Figure 10, third column), which are notably more
pronounced compared to those observed in the ARAD-1K
dataset. Conversely, DPD-net also displays similar artifacts
but to a lesser extent; however, it produces the blurriest
results among deep learning approaches. PPIE-SSARN
showcase excellent performance but still exhibits artifacts in
certain areas. Our model stands out as the best performer,
showcasing a complete absence of such artifacts (refer to
Figure 10).

D. ABLATION STUDY

In this part, we conducted studies to look at the structures
and effects of the RIR structure and the effect of the
pre-demosaicking used method. To investigate the impacts of
every element in the proposed model, we conducted studies
to look at the basic blocks features extraction module, where
we compare two types of RIR blocks: RCAB [44] and
RRDB [60]. In order to provide an equitable comparison,
we adjusted the total number of the two fundamental blocks
to maintain comparable parameters across all networks (see
Table 6) and trained both using the same hyperparameters as
described in section V-A3. The network with RCAB blocks
performs better than the RRDB at the same model size.
Moreover, the choice of the pre-demosaicking method is
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TABLE 5. Average results over the SIDQ dataset.

Method Scale PSNR{ SAM] SSIM1{
WB - 25.99 8.08 0.905
DPD-net - 37.01 4.23 0.912
MCAN - 38.82 4.14 0.905
PPIE-SSARN - 41.77 427 0.927
Ours - 42.14 3.14 0.969
WB +SRCNN X2 25.47 1332 0756
WB +FSRCNN X2 24.36 1364 0755
WB + ESRGAN X2 26.45 1333 0749
DPD-net +SRCNN X2 29.34 9.85 0.895
DPD-net +FSRCNN X2 29.19 1016  0.894
DPD-Net + ESRGAN X2 29.16 9.97 0.722
MCAN +SRCNN X2 28.35 1090  0.888
MCAN +FSRCNN X2 28.22 1127 0884
MCAN +ESRGAN x2 28.37 10.81 0.898
PPIE-SSARN +SRCNN x2 30.28 1077 0923
PPIE-SSARN +FSRCNN  x2 30.18 10.08  0.922
PPIE-SSARN +ESRGAN  x2 30.45 9.23 0.931
Ours X2 31.28 8.47 0.959
WB +SRCNN x4 17.37 1576  0.507
WB +FSRCNN x4 20.92 16.17 0487
WB +ESRGAN x4 22.88 1489  0.609
DPD-net +SRCNN x4 27.33 1196  0.892
DPD-net +FSRCNN x4 27.37 1233 0.882
DPD-net + ESRGAN x4 2775 1051  0.861
MCAN +SRCNN x4 26.50 1298  0.846
MCAN +FSRCNN x4 26.49 1362  0.826
MCAN + ESRGAN x4 27.09 1199  0.887

PPIE-SSARN +SRCNN x4 25.18 12.76 0.852
PPIE-SSARN +FSRCNN x4 25.24 13.45 0.842
PPIE-SSARN +ESRGAN x4 26.68 10.57 0.872
Ours x4 28.20 9.67 0.935

TABLE 6. Performance comparison of different basic block over the
ARAD-1K dataset for 2 x upscale.

Basic Block Amounts Total Parameters PSNR 1
RRDB 3 1,649,515 35.11
RCAB 20 1,752,427 35.26

crucial for the final output. To this end we tested our model
performance using WB [17], Bicubic Interpolation (Bicl) and
Bilinear interpolation (Bill). Table 7 shows that using Bicl
performs better.
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TABLE 7. Performance comparison of different basic block over the
ARAD-1K dataset for 2 x upscale.

Interpolation PSNR 1
Bilinear 35.07
WB 35.20
Bicubic 35.26

VI. CONCLUSION

In this article, we introduced a joint demosaicking and super
resolution network specifically tailored for SFA images.
At the core of our contribution lies the deep residual
demosaicking and super resolution module, which seamlessly
integrates demosaicking and super resolution tasks within a
unified framework. Our model exhibited great performance
in demosaicking task, having comparable performance in
PSNR and better spectral fidelity compared to state-of-the-
art SFA demosaicking models for the ARAD-1K dataset.
Furthermore, our investigation revealed an expanding dis-
parity between our joint solution and sequential approaches
as the upscaling factor increased, further emphasizing the
superiority of the joint solution over sequential methods
for SFA images by generating more accurate results and
better spectral fidelity. Importantly, leveraging spectral
reconstruction from RGB datasets for additional training data
enriches the generalization capabilities of our network. This
augmentation yields notable performance enhancements,
as observed in our evaluation on previously unseen datasets,
where our model consistently outperforms existing state-
of-the-art methods both quantitatively and qualitatively in
demosaicking task and demosaicking + super resolution
(x2 and x4 upscale).

An appealing direction for future research would be to
investigate the integration of joint demosaicking, denoising
and super resolution in an end-to-end framework. Hence,
substantial improvements in the spectral images visual
quality can be made by combining the advantages of the three
methods.
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