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Abstract: Recent advances in spectral imaging have enabled snapshot acquisition, as
a means to mitigate the impracticalities of spectral imaging, e.g., expert operators and
cumbersome hardware. Snapshot spectral imaging, e.g., in technologies like spectral filter
arrays, has also enabled higher temporal resolution at the expense of the spatio-spectral
resolution, allowing for the observation of temporal events. Designing, realising, and
deploying such technologies is yet challenging, particularly due to the lack of clear, user-
meaningful quality criteria across diverse applications, sensor types, and workflows. Key
research gaps include optimising raw image processing from snapshot spectral imagers and
assessing spectral image and video quality in ways valuable to end-users, manufacturers,
and developers. This paper identifies several challenges and current opportunities. It
proposes considering them jointly and suggests creating a new unified snapshot spectral
imaging paradigm that would combine new systems and standards, new algorithms, new
cost functions, and quality indices.

Keywords: spectral imaging; snapshot spectral imaging; image reconstruction; image quality

1. Introduction
Imaging science has enabled scientific progress in countless scientific fields, from space

exploration to environmental monitoring, medicine, and conservation science. Spectral
imaging (SI), a specific type of imaging technology, combines spectroscopy and imaging to
reveal detailed material and compositional information about objects (e.g., a distant planet,
a fruit, human skin, etc.) based on how they interact with light in specific wavelength
ranges [1]. In 2022, the optical instrumentation and measurement systems market reached
a value of USD 16 billion, exhibiting an annual growth rate of 5.5%. Within this market,
the sub-segment “spectrometers and spectral cameras” constitutes a significant portion,
representing a value of USD 6.5 billion [2] (source provided by Tematys/Photonics21,
2023). In another source, the global spectral imaging market was valued at approximately
USD 16.1 billion in 2022 and is projected to reach USD 47.3 billion by 2032, reflecting
a compound annual growth rate of 11.3% [3]. In Europe, this number is projected to be
8.47% [4]. Several manufacturers and models of spectral cameras are on the market, ranging
from USD 5.000 to USD 200.000 in price, such as Silios Technologies (TOUCAN Cam),
Hypsec (VNIR-1800 hyperspectral camera), Spectral Devices Inc. (MSC2-AGRI-1-A camera),
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Imec (SNAPSCAN VNIR camera), Specim (Specim IQ camera), Sony (IMX454LXR-C), and
MICASENSE (REDEDGE-MX), among others.

Spectral imaging has successfully contributed to the development of applications in
many fields. General reviews [1,5,6], along with application-specific surveys, such as in
agriculture [7], photography [8,9], materials science [10,11], and biomedical imaging [12,13],
demonstrate its versatility. SI also has applications in space exploration [14], waste
management [15], cultural heritage [16,17], and environmental monitoring [18]. How-
ever, several practical limitations to the use of spectral imaging have been found, especially
in the biomedical fields [19], where the low spatial resolution of spectral imaging systems
can make the analysis of small biological structures difficult, such as for mass spectrometry
imaging on tissues [20].

Snapshot spectral imaging (SSI) [21,22] refers to the ability of a spectral imaging system
to capture information in only one shot, as opposed to sequential or scanning devices. SSI
started to develop in the early 2000s from the need to have more compact and easy-to-use
devices in order to enable the development of higher temporal sampling. Indeed, in many
applications, e.g., robotics, where spectral imaging can help substantially with automatic
scene analysis, rapid feedback is essential, which can only be obtained with SSI. The SSI
market held the largest share of the spectral imaging market in 2023 [23] and is expected to
grow at a significant rate owing to increasing demand for high-resolution and real-time
spectral data. Several SSI technologies exist today [21], with an increasing interest from
various application domains for new developments. The field of computational imaging,
in particular, has seen the emergence of a new community of researchers and end-users
focused on super-resolution, interpolation, and enhancement methods to reconstruct full-
resolution images or videos from low-resolution sensors data [24,25], considered to be raw
data (see Figure 1).

Computational Imaging System

Sensing 

apparatus

Image 

reconstruction

solution

Figure 1. A computational imaging system is composed of a sensing apparatus (hardware) coupled
with a computational module (software) that reconstructs a full-resolution image, from limited
sampled data captured by the sensing apparatus.

SSI systems may be designed in a variety of ways [21,26], but typically involve low-
resolution sensing that is augmented by some kind of image reconstruction method (e.g.,
demosaicing, and/or super-resolution) and calibration to recover the useful spatio-spectro-
temporal resolution as well as the dynamic range. Due to the variety of sensing apparatus
and their specific individual image reconstruction solutions, and the lack of open-source
standard benchmark datasets and quality assessment methods, two SSI devices developed
independently may lead to significantly different results [27], as shown in Figure 2. This ob-
servation is crucial in understanding the motivation and the trends for future development.
One scene captured by two different SSI systems will provide information of different
quality. This is illustrated in Figure 2, where a measured spectrum from one system can be
significantly different from another. This can potentially hinder the extraction of meaning-
ful information from the data and make interpretation inconsistent. Today, users have no
way to assess the quality of their measurements, nor any standards to refer to.
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Figure 2. A scene with two materials of specific reflectance functions (left). Two different users may
possess different systems (middle) and measure different information, which may mislead their
analysis (right).

This challenge is not new in imaging science. For example, in colour imaging, each
camera model (e.g., from one manufacturer to another) captures potentially different
spectral bands and uses different proprietary image-processing software. Despite this
diversity, standardised colour spaces based on colour science principles are now well-
established, along with colour management frameworks and device characterization data
(such as ICC profiles following the International Color Consortium format) that ensure
consistent colour representation across devices. Additionally, a rich tradition of quality
assessment for colour images exists, employing both quantitative metrics and subjective
evaluations. Inspired by these developments, we infer that the creation of a unified spectral
paradigm, which will facilitate the design and use of SSI by many communities, is needed.
By defining effective, stable, compact, and easy-to-use SSI, the research community should
provide new measurement tools to a broad range of scientific fields, which will enable
advances in our understanding of the physical world. The goal of this article is to survey
the different aspects that need to be unified, and to discuss how to construct such a new
paradigm. We do not perform an exhaustive survey for all the specific aspects; rather, we
focus on the definition and illustration of the major tendencies and promising approaches.

The article is structured as follows. First, a spectral imaging model is presented in
Section 2 that mathematically formulates the process of spectral image formation, together
with an explanation of the SSI pipeline. Section 3 covers the advances and trends in
imaging technology and standardization. Section 4 considers the image reconstruction
algorithms, and Section 5 develops the approaches related to image quality. As a conclusion,
we discuss the potential unification in the SSI paradigm in Section 6 and its impact on
different communities.

2. Spectral Imaging
2.1. Imaging Model

When light (electromagnetic energy) encounters a material, it can be absorbed, scat-
tered, reflected, or transmitted. The energy that is reflected relative to the incoming energy
provides information related to material and surface properties, which is the interest of
spectroscopy. The spatial variation of this light–energy interaction (i.e., an image, described
as a projection of this energy on a plane) provides insight about the shape and the nature of
the object composed of this material, and ultimately allows for scene analysis; hence, there
is interest in SI, also referred to as reflectance spectroscopy imaging. When we investigate
the techniques that allow us to capture digital spectral images, we can identify that we
essentially sample the scene across four dimensions, namely the spatial, spectral, temporal,
and intensity dimensions of light, in order to measure one digital value related to the
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quantity of light, per spatial location, for a specific wavelength or set of wavelengths,
across a certain time. The polarization sensitivities of spectral systems are neglected in the
following imaging model. However, these effects can occur more or less pronouncedly,
depending on the capture technology used, which is discussed in Section 4.3.

The irradiance integrated by a camera sensor at the image plane J(λ, x, t) can be
represented by Equation (1), as follows:

Is(X, T) = ADC
(∫

Λ

∫
X

∫
T

J(λ, x, t)s(λ, x, t)dλdxdt + σ

)
, (1)

with J(λ, x, t) being the irradiance reaching the sensor from the radiant material and
s(λ, x, t) being the spectral sensitivity of the sensor, both at the position x (x ∈ R2) of the
image plane, as a part of one pixel X, and at the time t. The integration is continued for a
defined time T, referred to as the integration time of the pixel (in general, T is defined for
all the pixels of one sensor). In the case of moving elements in the scene, the irradiance
at location X varies with time. The spectral sensitivities of the sensor only vary along
t within a time-scanning technology, e.g., a colour wheel. In practice, the quantity of
energy captured, Is(X, T), is digitised using an analogue-to-digital converter (ADC). It is
important to understand that this digitisation needs to be in accordance with the quantity
of energy unless you have over-exposed or under-exposed signal, which is a challenge for
a sensor that has the same T for every pixel. If we consider an additive noise σ, then an
under-exposed signal shows a weak signal-to-noise ratio. Is(X, T) is the raw data captured
by the imager; that is the only information accessible by the system, and it is later used to
estimate a version of J(λ, x, t) thanks to an imaging pipeline.

To measure the properties of materials, it is relevant to relate the irradiance J(λ, x, t) to
optical material properties. In order to do that, it is required to assume a light-interaction
model [28] to access, e.g., reflectance factors. A material’s ability to reflect a part of the
light is generally an important information and is described by its bidirectional reflectance
distribution function (BRDF) [29]. In many cases, a simplification is performed where
the material is considered Lambertian. In such a hypothesis, we can additionally write
J(λ, x, t) = r(λ, x, t)l(λ, x, t) with r(λ, x, t), the reflectance factor per wavelength in the
radiant direction to the camera, which varies with t in case of moving objects. Furthermore,
l(λ, x, t) is the spectral power distribution of the light illuminating the object, which may
also vary with time. Despite being often used, we remind the reader that this never happens
in reality and that it is an approximation made to simplify the model.

In this well-used simplified model, everything is considered stable or averaged over
the integration time for a given pixel; thus, we obtain Equation (2) for each pixel, X,
as follows:

Is(X) = ADC
(∫

Λ
r(λ)l(λ)s(λ)dλ + σ

)
. (2)

To conclude, Is(X) is the measurement we make (raw data for the specific spectral sensitivity
s(λ)) to estimate J̃(λ, x, t), and the challenge for an imaging pipeline is to obtain the best
estimation of J(λ, x, t) and related quantities (e.g., r(λ)) by designing performant systems,
algorithms, and quality measures. In the following, we refer to I(X) as the complete set of
raw data from snapshot capture.

2.2. Imaging Pipeline

The imaging pipeline receives the raw data from the sensor system as its input, i.e.,
I(X), and aims to provide one version of J(x). This is performed by taking into account
the nature of I(X), which can vary between systems, and by also taking into account an
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imaging model, which may be more or less complex. A generic model of an imaging
pipeline is shown in Figure 3. Examples of different imaging pipelines can be found in the
literature, e.g., [30]. The order of modules may vary from pipeline to pipeline. Each module,
set, subset, or combination of modules is optimized according to specific quality criteria,
hence resulting in the impact of image quality index. It is noteworthy that speed and energy
performance are also very important, especially in the case of portable, wireless devices
working on batteries, e.g., smartphones. This implies a limited computational power and
usually demonstrates a drop in image quality performance. Furthermore, in many cases, it
is important to understand the minimum quality expected by the user. Illumination is an
important factor in imaging, and, in spectral imaging, two solutions co-exist, as follows:
the standard protocol is a calibration with a white diffuse patch, which implies that the
illumination will not change over time; the second solution is a relative calibration based on
scene statistics analysis to perform spectral constancy (analogue to computational colour
constancy) across changes in light spectral properties [31].

In Figure 3, we also show that, in the case of spectral imaging, several output are
possible. The straightforward output is an image reconstructed according to a standard,
which could be either the native spectral bands of the camera (like in the case of many
snapshot camera systems, or remote sensing optical sensors such as Landsat-8). Other
types of standards can also be considered. In several cases, such as laboratory-calibrated
setups, users are interested in working with an estimation of spectral radiance or reflectance
factors. In the case of colour imaging [32], a colour image according to an RGB standard is
often desired by the users, or sometimes a colorimetric image is required. It is possible and
often useful to include an image enhancement module to improve the image specifically
of the output, which could comprise denoising, smoothing, contrast boosting, etc.; these
could be applied to all or part of the image, locally or globally.

Figure 3. The camera captures raw data, the characteristics of which depend on the technology.
Essentially, these data undergo some transformations, which include reconstructing the full image
information through the fusion and integration of all the raw data. We consider that the pipeline
may be fine-tuned to a specific output, such as a colour image, a radiance or reflectance image, or
an image in a specific standard space of any kind. This pipeline is a conceptual example, and often
blocks are in different orders or repeated in the literature or in other systems. Furthermore, in specific
systems, image fusion and super-resolution have specific names, like demosaicing in spectral filter
arrays, or image registration in the case of multiple camera systems.

To provide an example, a typical setup is shown in Figure 4 for the technique known
as spectral filter arrays (SFA) [26]. A filter array can be defined by its superpixel (or
moxel or mosaic element), which corresponds to a predefined pattern composed of a set
of geometrically arranged spectral filters. This pattern is repeated over the entire surface
that makes up the focal plane of the sensor. This has specific features that define I(X). An
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important aspect of the imaging pipeline in such an example is reconstructing the spatial
dimension, using a specific algorithm named demosaicing. In this specific example, the
spectral resolution and HDR (high dynamic range) content are also jointly estimated from
I(X). The related algorithm can be trained and validated on a specific dataset, according to
specific quality indices, which gives the reconstructed image J̃(λ, x). For another type of
technology, the sampling is performed differently, and so the reconstruction is different.

4K

λ

RAW & METADATA

1080p

FULLY 
RECONSTRUCTED 
HDR SPECTRAL IMAGE

TRAINING DATA

TRAINED 
RECONSTRUCTION 

MODEL

4K

λ

a.

b.

c.

e.REASONED COST 
FUNCTIONS 

& QUALITY INDICES
d.

Figure 4. Summary of an image reconstruction algorithm for SFA raw images. From the raw image
and its associated metadata, such as spectral sensitivities and filter arrangement (a), the reconstruction
model (b) is trained on existing data, which are often full resolution spectral images from which raw
data are simulated (c), and cost functions (d), in order to reconstruct the image in all the required
dimensions (e).

3. System and Standardisation
Generally, the objective of a spectral camera system is to provide the best possible

quality of I(X) so that J̃(λ, x) can be accurately estimated later.
Spectral selection has historically been achieved sequentially using a filter wheel

combined with optical bandpass filters [33], where the camera system produces one channel
image per set of wavelengths. Several technologies have been developed [26], such as those
based on liquid crystal tunable filters [34] or tunable illumination [35]. Today, the most
well-known systems are the pushbroom systems, which sample spatio-spectral domains
over time. The disadvantage of these systems, besides their mechanical complexity and
costs, is their inability to capture moving objects in a video stream at a reasonable frame
rate. Thus, they cannot aid in the observation of dynamic events or mechanisms, while
many scientific fields would benefit from the ability to observe the evolution of rapid
phenomena from spectral images.

Snapshot spectral imaging (SSI) refers then to the ability of a spectral imaging system
to capture information in only one shot. It is thus essentially a sampling process where
the light intensity, the spatial resolution, and the spectral resolution are limited to allow
for one single take. SSI relies on several techniques to capture more or less well-sampled
dimensions. The sampled data are then used to estimate the captured image values
(e.g., [36]), as covered in Section 4. Usually, these reconstruction techniques are driven by
cost functions related to the quality of the estimation, which relates to the quality of images;
this is discussed in Section 5.

As mentioned in the Introduction, several commercial systems exist on the market,
including SSI options. However, none of the products allow for the traceability of errors in
the estimation of the measured quantities, e.g., irradiance J(λ, x, t) or reflectance factors
r(λ, x), which may mislead the people using the data; also, none of the solutions were
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designed as a whole in a transparent manner. In fact, it was demonstrated that there were
great variations in the quality of data captured by spectral imaging systems used by differ-
ent groups for cultural heritage applications [37,38]. This is the result of a combination of
different acquisition protocols and conditions, systems, algorithms, and quality evaluations
at all levels. Similar variations also occur in the spatial, temporal, and intensity domains.

3.1. Technologies for SSI

Many efforts have been initiated to develop SSI over the last few decades. In general,
these techniques revolve around the concept of having one or several solid-state image
sensors, augmented with a system that permits the sampling of spatio-spectral dimensions,
according to the light and the temporal sampling ability of the sensors. The major tech-
niques were defined 10 years ago, and no major conceptual breakthroughs have happened
since the review by Hagen and Kudenov [21]. However, many demonstrators have been
implemented and reported in the literature. A major current advancement related to the
development of sub-wavelength optics to create metasurfaces and three-dimensional (3D)
metaforms to filter the light. Hereafter, we review the major SSI techniques.

• Multispectral beamsplitting: It employs a combination of beamsplitters and several
sensors to separate light components [39]. This is an extension of the colour broad-
casting camera, which enables high-resolution imaging [40]. However, the higher the
number of prisms, the more the noise and the price increase; eventually, commercial
systems for spectral imaging limited the number of sensors to three. However, several
commercial systems are available (e.g., [41]). This technique is particularly well suited
to cases where several sensors need to be combined to capture a large interval of
the electromagnetic spectrum, i.e., visible and near-infrared (VNIR) or short-wave
infrared (SWIR).

• Coded aperture snapshot spectral imager (CASSI) [42]: It is predicated on the prin-
ciples of compressive sensing theory, which enables signal reconstruction for sam-
pling rates below the Nyquist frequency. This technique attracted interest in the
signal-processing community, and many scientific publications relate to this technique
(e.g., [43,44]), but the physical realisation of the coded aperture mask together with
the processing module is challenging [45]. Generally speaking, the advantages of
CASSI include its sensitivity, rapidity, and small data [46]. The challenges of CASSI
are related to image reconstruction complexity and the design of the pattern.

• Integral field spectroscopy: It encompasses the lenslet array methodology [47,48].
Video-rates sensors have been researched since 2009 [49,50], have recently been fol-
lowed by regular and current developments [51]. The most recent advances include
the use of filters based on metasurfaces [52].

• SFA technology [26,53,54]: It employs a filter array to sample the spectral dimension.
It attracted great interest in the imaging community since its concept is very close to
that of a colour filter array (CFA) (see Figure 4). In fact, this technique is a generali-
sation of its colour pendant that trades spatial resolution for spectral resolution. The
traded spectral resolution is usually compensated for by a demosaicing algorithm. Its
limitation, specifically its resolution, has been addressed through the fusion of a colour
image with an SFA image [55]. The current evolution of SFA is related to improve-
ments in the filtering process. We can select filters based on nano-technologies. The
nanometric control of matter would allow for several opportunities, such as nanowires
for the better control of bandpass [56]. In addition, reconfigurable filters [52] would
allow for an increase in spectral resolution but would come at the expense of the
temporal dimension.
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Other techniques are relevant but were mostly not developed to an end-user commer-
cial level. There are several factors for this; it is either due to cumbersome or expensive
optical features, or sometimes due to the low level of maturity of the technology. Other
times, the general performance was not at the level of other techniques, but this could
change in the future. We list several of these other technologies below:

• Computed tomography imaging spectrometry [58,59]: employs computed tomography;
• Tunable echelle imager [60]: employs tunable echelle gratings;
• Image-replicating imaging spectrometer [61,62]: employs image replication methodologies;
• Image mapping spectrometry [63–65]: correlates images with spectral data;
• Snapshot hyperspectral imaging Fourier transform spectrometer [66–71]: employs

Fourier transform techniques;
• Multispectral Sagnac interferometer [72]: employs Sagnac interferometry;
• Vertically stacked photodiodes [73,74]: employs vertically stacked photodiodes for

spectral imaging.

The major fundamental (r)evolution in SSI is the emergence of spectral routers [75];
indeed, by combining the concepts from sub-wavelength optics and free-form optics, it is
possible to implement 3D metaform-based spectral routers [76]. These can be fabricated us-
ing, e.g., the two-photon lithography technique [77], which enables the 3D nanofabrication
of transparent patterns with a subwavelength resolution (<200 nm) [78,79]. Numerical
optimization based on inverse design [80,81] can then be used to design different families
of spectral routers based on periodic, binarized, or a combination of both subwavelength
structures [82]. The best design can be decided according to quality indices and algorithm
performance [83]. A conceptual example of the use of spectral routers is shown in Figure 5;
specifically, the case of a hybrid system between lenslet and a filter array. In Figure 5, the
spatial resolution is defined by the block of 3 × 3 sensor pixels; each of these cells acts as
a light collector which has energy at certain wavelengths only, which are related to the
sensor sensitivity. This technique would drastically increase the efficiency of the spectral
filtering process, allowing for faster imaging and reduced noise. In particular, a strong
reduction of cross-talk is reported in the literature. Spectral routers were demonstrated for
RGB [80,84–86] and RGB-NIR [81,87]. The major asset of such an approach is that ideally
no light is lost through the rejection filters, but all the energy is used, which solves one
major issue of SSI; that is, the little quantity of light passing through each spectral filter,
i.e., the term s(λ) in Equation (2). It is expected that new generations of filters will rise and
that SSI will make progress thanks to this technique.

Figure 5. On the left, pixels from the sensor are covered by the metamaterial (e.g., photonic cristal).
On the right, two-dimensional (2D) rotated cuts provide an example on how the incoming light
reaching the filters is redirected toward each of the sensor’s pixels. Please note that there is no or
very little rejection or loss of light, and that nearly all the incident light is exploited.
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3.2. Standardisation and Calibration

Since SSI is an emerging technology, there is a lack of standardization and a need for
adequate tools to characterize and qualify systems.

3.2.1. Data Representation Space

The need for a standardized data representation space for snapshot spectral imaging
was explained by Thomas et al. [27]. In fact, in the case of hyperspectral imaging, the
de facto space is radiance factors or reflectance factors. In the case of a colorimetric
system, tristimulus values are estimated or computed. In the case of a colour imaging,
the RGB values of specific features are computed. In the case of snapshot imaging, firstly,
the time constraints impose the use of a more compact representation than data at a
wavelength resolution. Secondly, the diversity of systems require a common representation
space (see Figure 6), which could be similar conceptually to an RGB space in the colour
domain or which could be a space where information is more compact than in the domain
of wavelengths.

Figure 6. N cameras have N different sets of sensitivities (left). It is necessary to create a standard
to represent the data from all of these sensors (middle), so they can be used independently of the
technology (right).

This issue also has a major impact on the portability of machine learning solutions
trained on data from one camera and used on data from another [88]. The impact of
different dimensional reduction on applications was also demonstrated [89]. Similar issues
are reported in the remote sensing research community where it is challenging to transform
data from, e.g., Landsat-8 to Sentinel-2 [90].

Toward this goal, the pioneer work is from Nambu et al. [91], who proposed a virtual
sensor based on Gaussian sensitivities spanning the visible domain. This was followed
by Derhak and Rosen [92] with the LABPQR proposal. Then, Thomas et al. [27] proposed
an alternative to Nambu et al., using sensitivities inspired by the visual system rather
than Gaussian curves as a virtual sensor. This topic is currently being discussed exten-
sively at the Spectral Imaging Research Forum [93] at the division 8, Image Technology, of
the Commission Internationale de l’Eclairage, CIE. To our knowledge, there are several
directions currently under consideration, as follows: (1) select a few semantically mean-
ingful bands; (2) select effective regular bands that could be Gaussian-like sensitivities; or
(3) use dimension reduction techniques on a specific dataset to identify free-form bands
that would display the best performances. Among these, there are linear methods and
non-linear methods, and also reversible and non-reversible methods. The topic is closely
related to the quality of spectral images. It is also closely related to security and encryption
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in several applications. Major developments are expected to happen in the next years. It is
also notable that there is already a Technical Report from the CIE that considers the spectral
image format [94].

3.2.2. Calibration

Imaging systems calibration uses imaging test charts usually associated and related
to standards, e.g., ISO-12233 “Digital Resolution Still Camera Test Chart” relates to ISO
12233:2024 “Digital cameras—Resolution and spatial frequency responses” [95] or ISO-
14524 “Digital Camera Contrast Chart” relates to ISO 14524:2009 “Photography—Electronic
still-picture cameras—Methods for measuring opto-electronic conversion functions
(OECFs)” [96]. The case of spectral cameras has very limited similar supports. There
is an initiative with the IEEE P4001 [97] to characterize spectral imagers. The European
Machine Vision Association, EMVA [98,99] has developed a standard for machine vision
cameras, but it is not directly usable for SSI. Nothing, to our knowledge, is defined specifi-
cally for SSI.

It is, however, important that people developing SSI create such initiatives and carry
out the following steps:

• Define the required updates in terminology:

– Metrological terms must be used in an appropriate manner, e.g., reflectance factors
must be used over the term reflectance in general.

– Specific items, bands, conversion matrices, etc. must be defined.
– Spectral camera characterization methods (i.e., the relationship between raw data

and radiance or reflectance factors) must be beyond the peak sensitivities of
the camera.

• Define metadata structures for SSI:

– The conversion accuracies of the methods used to transfer raw data to spectral
radiance or reflectance factors.

– Technology specifications need to be included in metadata, e.g., in SFA, spectral
sensitivities and spatial arrangements should be included.

These initiatives may also include the design of test charts to qualify SSI systems and
reference datasets for quantifying performance, together with quality metrics.

3.3. Spatio-Spectral Compromise

The performance and uses of spectral imaging are yet to be investigated and supported
by quantitative analysis beyond the current academic publications. It is clear that fusing
NIR information to RGB images will enable better performance in several applications than
that obtained by only using RGB (cf. Section 1). However, the increase in spectral bands
in the visible range can be discussed, in particular in the context of SSI, where spectral
information increases with a decrease in spatial resolution.

Porebski et al. [100] compared texture classification from spectral and colour im-
ages. They showed that spectral images usually performed the best, whereas colour could
perform better in some particular cases. However, in their experiment, the spatial reso-
lution of both setups remained the same. In reality, we trade the spatial resolution for
spectral resolution; then, it is not quantified what the results of such a competition, based
on imaging systems that exhibit real-world limitations, would be. What is the optimal
compromise of spectral and spatial resolution? This question is even more relevant today,
since many algorithms reconstruct radiance factors from RGB pixel values with very good
performance [101–103]. This last approach has some limitations that must be analyzed and
quantified [104].
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4. Image Reconstruction
Among all the spectral imaging technologies described in Section 3, the raw data cap-

tured by a system can be sparse, uncalibrated, misaligned, spatially irregularly distributed
among channels, noisy, or lack spatial or spectral resolution. This can lead to a misinterpre-
tation of the information by any high-level analysis algorithm. Some technologies will cut
more or less in one dimension rather than another. The challenge is to compensate for the
optical limitations of systems through digital image processing [22].

4.1. Spectral, Spatial, and Intensity Reconstruction

Computer vision algorithms assume that input data (i.e., spectral channels) are per-
fectly aligned, which is rarely the case in reality, where translational, rotational, and scaling
deformations among spectral channel images can occur. Data registration in SSI is based
on a high correlation between spectral bands. This might be more or less correct, and
this might depend on the scale of observation (high or low frequencies). However, in
the context of SSI, the considered range falls within a fairly narrow spectral interval, and
adjacent bands usually have a high correlation (except at specific rupture points in the
spectra, e.g., at the shift between visible and NIR). Thus, several data registration meth-
ods are based either on Fourier transforms [105], local correlation analysis [106], or SIFT
descriptors [107], or pansharpening [108–111]. Moreover, when the number of channels
is high, images can suffer from very low spatial resolution. This limits their usability in
applications that need to discriminate small details in a scene. Super-resolution techniques
are often applied to reconstruct high-resolution images from low-resolution data [112,113],
using a single frame [114] or a video sequence [115,116]. In the specific case of filter array
sensors, the spatial reconstruction method is called demosaicing. This has long been a
much-studied topic, especially for CFAs [117]. Demosaicing is based on spatio-spectral cor-
relation [118–120], modelled either in the spatial domain or the frequency domain [121,122],
by machine learning [123] or by any other non-linear methods [124,125]. Preliminary works
have investigated jointly optimizing the sensor design with its associated demosaicing
algorithm [126,127], but this has not yet been generalized enough in all dimensions.

A pixel has a response function that maps the portion of light collected by the im-
age intensity I [128]. However, nonlinearities can be caused by the lack of sensor dy-
namic range, which is related to the ability to capture very weak light signals and very
strong light signals simultaneously. This has been counterbalanced by exposure bracketing
techniques [129–131], but makes instantaneous imaging impossible and prone to temporal
artefacts [132]. For spectral cameras, the dynamic range of raw data can vary greatly from
one channel to another, due to the variation in channel sensitivity responses [30,133]. One
direction is to exploit these responses to emulate the exposure bracketing, i.e., to produce
high dynamic range (HDR) images from a single raw image. We can call this method
“exposure mosaicking”.

From a reconstructed spectral image, it is possible to obtain a pixel-by-pixel estimate
of the spectral signature of a point in a scene. On most natural surfaces, spectra in the VNIR
are known to be relatively smooth functions across wavelengths. Thus, a spectral signature
can be estimated using a linear combination of spectral channels.

A set of known reflectance spectra is used to calibrate the system from intensity mea-
surements (Is(X) in Equation (2)). Many other inverse problems have been solved using
estimated spectral data, such as reflectance estimation (r(λ) in Equation (2)) [22,104,134–136],
illuminant estimation (l(λ) in Equation (2)) [137,138], or camera characterization (s(λ) in
Equation (2)) [139–141]. These estimators are generally designed and evaluated indepen-
dently of the technology. A major problem exists, however: the estimation performance
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depends on the prior spatial reconstruction and can vary greatly from system to system.
This is illustrated in Figure 2.

4.2. Generalization of Reconstruction Methods

The reconstruction of the different dimensions, as seen above, is usually designed and
evaluated individually, algorithm after algorithm. However, the optimization of an imaging
pipeline must consider the joint optimization of all blocks, whereas optimizing a block
independently of the others remains only an academic curiosity, as Li et al. discussed [142].
Additionally, algorithms are often specific to the capture technology used, and their indi-
vidual contribution to image quality is not evaluated within an overall pipeline. Therefore,
there is a need to unify the imaging pipeline. We propose below two frameworks that
would allow for the definition of an unified image reconstruction:

1. An approach could consider each block of the imaging pipeline as a parameterized
box. Thus, it is possible to optimize all these parameters using an optimization process.
An attempt of this kind has already been proposed in the literature [83], but with
limited generalization purposes.

2. Another approach is to have one single optimized block that encapsulates the whole
imaging pipeline, where effective parameters may not have any meaningful semantic
meaning. This set of parameters could be determined by an optimizer that takes
raw spectral data and their metadata as input and provides a full-resolution HDR
hyperspectral image. This is what is illustrated in Figure 4.

For both approaches, linear and non-linear methods can be considered, and the optimization
can be carried out over several SSI technologies and several datasets. In any case, these
approaches require a quality measure (objective cost functions), with quality coverage
across all dimensions.

4.3. Spectral Imaging and Polarization

A branch of unconventional imaging is polarization imaging. In general, this polariza-
tion signature is measured independently at a specific wavelength. When considered in
conjunction with spectral imaging, this is often because the polarization signal is a noise
effect [143]. However, polarization imaging has recently made it possible to estimate scene
characteristics in the RGB domain, such as the illumination colour/direction [144,145],
the surface normals of an object [146], or the diffuse/specular components [147]. Some
researchers have already designed algorithms that exploit the correlation between spectral
and polarization data for image reconstruction [148,149]. Nowadays, new cameras enable
the instant capture of linear polarization information, first in a specific spectral band [150]
and then in RGB (IMX250 MZR/MYR commercial sensors [151]). Although academic
prototypes exist [152], it is conceivable that, in the near future, instantaneous multispectral
polarization imaging systems will be available on the market. Thus, it will be important
to take into account polarization sensitivities in instantaneous spectral systems, either by
exploiting this modality for a better scene characterization, or for image restoration (e.g.,
removing highlights).

Most of the work on spectro-polarimetric imaging has been conducted in the visible
wavelength range. Microfiltering technologies also extend to polarization optics and
enable the fabrication of a polarization-sensitive sensor in other wavelength bands such
as SWIR, MWIR, or thermal bands [153,154]. It is necessary to develop new spectro-
polarimetric models and usages, investigate characterization/calibration techniques, and
adapt computational imaging methods to these specific wavelengths.

Finally, spectral routers or microfilters may exhibit slight polarization dependence.
Indeed, the materials used to manufacture the optical components of the spectral router (e.g.,
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waveguides) may have birefringent properties, which can induce polarization dependence.
It would be relevant to characterize this dependence, with a view to using the polarization
information for various purposes mentioned above.

4.4. Spectral Video and Green Media

Time series are sequences of data points indexed by time, typically obtained by
observing a random variable over consistent intervals. Spectral image reconstruction can
take advantage of the temporal modality when a spectral video is available (a sequence of
spectral images). Conventionally, solving a problem with deep learning involves initializing
a neural network architecture randomly and fitting it with the training data. However,
when the training dataset is limited, which is often the case when using hyperspectral
images [155], time series can lead to overfitting, where the model adapts too closely to the
training data, resulting in poor performance. There is still the need to define a strategy to
exploit the temporal dimension of SSI images, by adapting time series tools to the specific
case of spectral video data.

Spectral data is often large and complex to process and transmit. This is even more so
the case for spectral videos. That is why spectral imaging will require dedicated system-
on-chips and a hardware/software pipeline, also called image signal processing (ISP), to
achieve ambitious timing constraints with low latency and jitter. This, together with the
standardization discussed in Section 3, will enable the support of video bitrates and the
development of real-time applications. It is now necessary to consider practical recommen-
dations for obtaining good image quality with reduced computing time. What follows is
a list of criteria that could be investigated: data type (via the fixed-point approximation
of spectral data), the parallelization of processing tasks, dimensionality reduction, cache
optimization, or the use of low-level languages. These practical considerations are closely
related to energy consumption, and this is an even more relevant topic, since European pol-
icy promotes the ecodesign of products and has established minimum energy requirements
for many products (e.g., Commission Regulation (EU) 2019/2021 of 1 October 2019).

5. Image Quality
Spectral imaging is used in a wide range of applications, including remote sensing,

medical imaging, and cultural heritage, as well as their various sub-fields (e.g., remote
sensing for glaciology, agriculture, etc.), each with distinct objectives and quality require-
ments. Consequently, the notion of image or video quality is generally ill-defined. For
instance, in remote sensing, image quality may be defined in terms of cloud coverage
and the prominence of shadows [156,157]. In medical imaging, quality is often tied to the
clarity of diagnostically relevant features, such as the detection of tumours or vascular
anomalies [158]. In cultural heritage, quality might relate to the accurate reproduction
of colour and texture for the purpose of preservation, restoration, or visualisation [159].
In most cases, these assessments are influenced by factors such as the sensor’s spectral
sensitivity, spatial resolution, signal-to-noise ratio, and calibration and reconstruction pro-
cedures. However, the relative importance of these factors shifts depending on the specific
problem, leading to a fluid and application-specific understanding of what constitutes
high-quality spectral data. This challenge is further compounded by the high dimensional-
ity of spectral data, which introduces computational challenges [160]. Another enduring
difficulty is obtaining robust and unbiased ground truth (GT) data, a challenge emphasised
by Chehdi et al. [161], who noted that available GT datasets can distort the physical charac-
teristics of spectral data, thereby skewing classification results. As a consequence of these
challenges, and despite the growing importance of spectral imaging since the 1990s, the
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development of well-accepted, standardised metrics for spectral image/video quality (and
more specifically for SSI systems) has been relatively slow.

Importantly, image/video quality assessment can be defined with respect to a human
end-user or a machine/algorithm, typically a combination of both. The former approach in-
volves attributes such as aesthetics, naturalness, and saliency [162], and is relevant mainly in
the context of visualising the spectral data (via rendering [163] or colour-compositing [164]).
For instance, in monitoring and conservation, true-colour rendering of the spectral data
helps researchers to intuitively understand vegetation health, such as by identifying obvi-
ous land degradation or deforestation. On the other hand, false colour compositing enables
the visualisation of, e.g., infrared wavelengths, and the display of useful features informa-
tive of plant and soil health, which would not come across in a true-colour render [164].
Either way, the quality of the render/composite is dependent on the quality of the spectral
data. The subjective analysis is typically complemented by objective methods for, e.g.,
semantic segmentation, object recognition, or anomaly detection, and the performance of
such methods is naturally also dependent on the quality of the spectral data (e.g., compres-
sion artefacts may hinder segmentation, anomaly detection, etc. [165]). Therefore, for this
application and many others, both technical (machine/algorithm end-user) and subjective
(human end-user) quality criteria are important. In spectral cross-media reproduction, such
as spectral printing [166], the sole purpose of spectral data is to produce renders/prints
(e.g., for different illuminants). In such an application, subjective quality criteria are the
most relevant [167]. On the other hand, there are use cases where only technical quality
matters, in the sense that the spectral data is never directly visualised. In such cases, a
heat map or a segmentation map may be used as proxy to visualise the data (e.g., nutrient
mapping in precision agriculture).

Simple quantitative measures, such as the root mean square error (RMSE), the good-
ness of fit coefficient (GFC) or the peak signal-to-noise ratio (PSNR), are well established for
their simplicity and computational efficiency (see, e.g., [168]), but, because they are pixel-
wise metrics (i.e., not accounting for the spatial arrangement of pixels in the image/video),
they typically fail to capture meaningful quality attributes. For instance, a one-pixel mis-
alignment can yield a substantial RMSE, despite a potentially negligible impact on the
interpretation, be it subjective or objective. Researchers have also adapted well-known
perceptual indices, including the structural similarity index (SSIM), to account for spectral
aspects [169–172]. In these works, e.g., MvSSIM [172], the lack of information on spectral
structures carried by an average of SSIM computed on each spectral bands are exposed, and
proposals to overcome this limitation have been developed. This approach is promising
but has yet to be confirmed useful in different application domains, especially for technical
quality assessment. Research in greyscale and colour image quality assessment has inspired
other proposals for dedicated spectral quality metrics, including via the use of scene statis-
tics and machine learning [173–177], although these models can be difficult to interpret and
computationally demanding (which also raises environmental concerns). Furthermore, the
question of the usefulness and transferability of these models across application domains
remains open.

A possible direction is a multi-dimensional “quality space” or “quality gamut” that
goes beyond single-metric evaluations. It would cover fundamental dimensions such as
resolution, signal-to-noise ratio, and radiometric accuracy and would include domain-
specific requirements. This would contribute to unifying and standardising methodological
best practices, bridging the gap between narrow, application-specific demands and the
broader call for transparent, consistent metrics in spectral imaging. A potential direction for
such approach is introduced in [178], for visual colour content, where the different quality
attributes of printed colour images are identified. It is, however, necessary to quantify them
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by the definition of specific indicators and by the quantification of their weights on the
image quality.

6. Conclusions
We have surveyed the different aspects of SSI and emphasized different promising

future research directions. We propose considering the system as a whole, assuming it
is parametrized by specific features that may or may not be semantically meaningful; if
this is supported by adequate quality evaluation and standardized procedures, this should
greatly improve SSI systems. If we recall the example in Figure 2, then the two estimated
spectral information from two different systems would have a better quality and a traceable
uncertainty, which would allow for better interpretation and communication.

At the fundamental level, it appears important to provide an environment and a
method to design and study spectral imaging. This could be supported by the unification
of the quality indices, the unification of the image processing workflow, and the unification
of the system qualification, i.e., standards and calibration.

At the realisation level, it seems possible to develop new SSI systems that outperform
those in the the current literature. This is made possible by both the freedom and effi-
ciency in the design of filters enabled by new manufacturing techniques, together with
fundamental advances in sensor design.

At the application level, SSI has the potential to allow new discoveries in different
scientific fields, thanks to the time series analysis of processes that could not be observed
before. Significant advances in imaging could become possible through widespread access
to and use of new generations of spectral imaging systems that enable the observation and
characterization of rapid dynamic processes.

SSI could be deployed in society; however, current solutions are not sufficient to ensure
the validity and performance of systems, as users still need to access a formal framework
for the use of SSI. This is particularly true for the following aspects: standardization and
ecodesigns must be developed, so that the amount of data to be processed, stored, and
transmitted decreases. Potential directions can be taken depending on the hardware, such
as the potential parallelization of tasks, the optimization of data types, or dimensionality
reduction. This could help meet the real-time temporal constraints needed for future
spectral video systems.
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